Performance prediction of tobacco flavouring using response surface methodology and artificial neural network

This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design soft...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2019; no. 13; pp. 367 - 372
Main Authors Chen, Lin, Yuan, Ruibo, Liu, Ze
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.01.2019
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design software. The MATLAB software's Neural Network function was used to forecast the responses, and the optimal solution configuration was coming out from the Response Surface Analysis Method. In the optimum condition, moisture removal opening, roller speed and tobacco process flow, pressure and feed liquid gas ejector flow are 18.60%, 10.74 rpm, 5314.11 kg/h, 3.70 bar and 243.63 kg/h, uniformity of the evaluation index and the utilization rate of material liquid distribution are 93.088% and 98.694%. With the corresponding experimental, results are consistent, under the condition of the error to less 7%, the test results show that through a few experimental data of predictive results of the neural network and response surface design has a certain practicability.
AbstractList This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design software. The MATLAB software's Neural Network function was used to forecast the responses, and the optimal solution configuration was coming out from the Response Surface Analysis Method. In the optimum condition, moisture removal opening, roller speed and tobacco process flow, pressure and feed liquid gas ejector flow are 18.60%, 10.74 rpm, 5314.11 kg/h, 3.70 bar and 243.63 kg/h, uniformity of the evaluation index and the utilization rate of material liquid distribution are 93.088% and 98.694%. With the corresponding experimental, results are consistent, under the condition of the error to less 7%, the test results show that through a few experimental data of predictive results of the neural network and response surface design has a certain practicability.
This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design software. The MATLAB software's Neural Network function was used to forecast the responses, and the optimal solution configuration was coming out from the Response Surface Analysis Method. In the optimum condition, moisture removal opening, roller speed and tobacco process flow, pressure and feed liquid gas ejector flow are 18.60%, 10.74 rpm, 5314.11 kg/h, 3.70 bar and 243.63 kg/h, uniformity of the evaluation index and the utilization rate of material liquid distribution are 93.088% and 98.694%. With the corresponding experimental, results are consistent, under the condition of the error to less 7%, the test results show that through a few experimental data of predictive results of the neural network and response surface design has a certain practicability.
Author Liu, Ze
Chen, Lin
Yuan, Ruibo
Author_xml – sequence: 1
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  organization: 1Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
– sequence: 2
  givenname: Ruibo
  surname: Yuan
  fullname: Yuan, Ruibo
  email: kmust_yrb@163.com
  organization: 2Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, 727#Jingming South Road Chenggong District, Kunming, People's Republic of China
– sequence: 3
  givenname: Ze
  surname: Liu
  fullname: Liu, Ze
  organization: 3Technical Center Department, Yunnan Tobacco Industry Co., Ltd., 367#Hongjing Road Wuhua District, Kunming, People's Republic of China
BookMark eNp9kM1v1DAQxS1UJErpkbuvHLL4M06OULXQqhIc9m5N7PHiJWuv7IRq_3uSLkK9wGXeyHrvjfV7Sy5STkjIe842nKn-4z7jRjDebXomu1fkUjDNGymZvnixvyHXte4ZY1wqwRS_JIfvWEIuB0gO6bGgj26KOdEc6JQHcC7TMMKvPJeYdnSu6yxYjzlVpHUuAZbcAacf2ecx704UkqdQphiiizDShHN5lukpl5_vyOsAY8XrP3pFtne325uvzeO3L_c3nx4bJ1nfNl3wmqEXZlUjOpRq4GEwnQdujPeojQYpu245roc-4KCVDhCgFQa4lFfk_lzrM-ztscQDlJPNEO3zQy47u37RjWi5MAqMkIoPXkmnexc8V8GZ1nFtBCxdzbnLlVxrwfC3jzO7krcLebuStyv5xd-e_U9xxNP_zXb7cCs-3zEueLsEP5yDEafFNpe0EPrHkd9Yqpi8
Cites_doi 10.1016/j.lwt.2018.03.048
ContentType Journal Article
Copyright 2021 The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Institution of Engineering and Technology
DBID IDLOA
24P
WIN
AAYXX
CITATION
DOA
DOI 10.1049/joe.2018.9038
DatabaseName IET Digital Library (Open Access)
Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library
CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: IDLOA
  name: IET Digital Library (Open Access)
  url: https://digital-library.theiet.org/content/collections
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage 372
ExternalDocumentID oai_doaj_org_article_1274a72341bd43c59cfd14fc76c1572a
10_1049_joe_2018_9038
TJE2BF01216
Genre article
GroupedDBID 24P
5VS
AAJGR
ADACO
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
GROUPED_DOAJ
IDLOA
KQ8
OCL
OK1
RIE
RIG
RNS
RUI
0R~
1OC
AAHJG
ABJCF
ABQXS
ACESK
ACXQS
AFKRA
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
HCIFZ
IAO
IGS
IPNFZ
M43
M7S
M~E
PIMPY
PTHSS
ROL
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3096-8fd50ed27fd50728e34b1fb78da177dde575a3388ace5b9feb545fafa627a133
IEDL.DBID IDLOA
ISSN 2051-3305
IngestDate Tue Oct 22 15:07:11 EDT 2024
Thu Sep 26 17:19:19 EDT 2024
Sat Aug 24 01:05:14 EDT 2024
Tue Jan 05 21:45:38 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords artificial neural network
tobacco process flow
tobacco flavouring experiment
cigarette manufacturing
MATLAB software
response surface methodology
Experimental Design software
tobacco industry
roller speed
optimal solution configuration
tobacco flow
spice ejector flow
response surface design
feed liquid gas ejector flow
pressure 3.7 bar
Response Surface Analysis Method
response data
Expert Response Surface
neural nets
design of experiments
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3096-8fd50ed27fd50728e34b1fb78da177dde575a3388ace5b9feb545fafa627a133
OpenAccessLink http://digital-library.theiet.org/content/journals/10.1049/joe.2018.9038
PageCount 6
ParticipantIDs crossref_primary_10_1049_joe_2018_9038
iet_journals_10_1049_joe_2018_9038
doaj_primary_oai_doaj_org_article_1274a72341bd43c59cfd14fc76c1572a
wiley_primary_10_1049_joe_2018_9038_TJE2BF01216
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: Wiley
References Hua, B.H.; Qiong, L.; Ze, L. (C6) 2016; 31
Li, L.; Sai, Z.; Qiang, H. (C2) 2015; 34
Zhang, J.; Peng, L.I.; Sun, S.H. (C5) 2011; 3
Qinghui, Z. (C1) 1996; 29
Aliakbarian, B.; Sampaio, F.C.; Faria, J.D. (C4) 2018; 93
2015; 34
2016; 31
2011; 3
2017
1996; 29
2018; 93
e_1_2_5_4_1
Qinghui Z. (e_1_2_5_2_1) 1996; 29
Aliakbarian B. (e_1_2_5_5_1) 2018; 93
Hua B.H. (e_1_2_5_7_1) 2016; 31
Li L. (e_1_2_5_3_1) 2015; 34
Zhang J. (e_1_2_5_6_1) 2011; 3
References_xml – volume: 3
  start-page: 36
  year: 2011
  end-page: 42
  ident: C5
  article-title: Simultaneous determination of 1,2-propylene glycol, glycerol and triethylene glycol of smokeless tobacco products by gas chromatography-mass spectrometry
  publication-title: Tob. Sci. Technol.
  contributor:
    fullname: Zhang, J.; Peng, L.I.; Sun, S.H.
– volume: 34
  start-page: 41
  issue: 8
  year: 2015
  end-page: 45
  ident: C2
  article-title: Application of response surface method in test design and optimization
  publication-title: Lab. Res. Explor.
  contributor:
    fullname: Li, L.; Sai, Z.; Qiang, H.
– volume: 31
  start-page: 874
  issue: 5
  year: 2016
  end-page: 879
  ident: C6
  article-title: The neural network model and its evaluation of the physical quality of tobacco
  publication-title: J. Yunnan Agric. Univ., Nat. Sci.
  contributor:
    fullname: Hua, B.H.; Qiong, L.; Ze, L.
– volume: 29
  start-page: 30
  issue: 4
  year: 1996
  end-page: 30
  ident: C1
  article-title: A brief discussion on the application of cigarette flavoring technology
  publication-title: Tob. Technol.
  contributor:
    fullname: Qinghui, Z.
– volume: 93
  start-page: 220
  year: 2018
  end-page: 228
  ident: C4
  article-title: Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network
  publication-title: LWT
  contributor:
    fullname: Aliakbarian, B.; Sampaio, F.C.; Faria, J.D.
– volume: 29
  start-page: 30
  issue: 4
  year: 1996
  end-page: 30
  article-title: A brief discussion on the application of cigarette flavoring technology
  publication-title: Tob. Technol.
– volume: 34
  start-page: 41
  issue: 8
  year: 2015
  end-page: 45
  article-title: Application of response surface method in test design and optimization
  publication-title: Lab. Res. Explor.
– start-page: 55
  year: 2017
  end-page: 59
  article-title: Evaluation of mining engineering technology innovation ability and application based on BP neural network
– volume: 93
  start-page: 220
  year: 2018
  end-page: 228
  article-title: Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network
  publication-title: LWT
– volume: 31
  start-page: 874
  issue: 5
  year: 2016
  end-page: 879
  article-title: The neural network model and its evaluation of the physical quality of tobacco
  publication-title: J. Yunnan Agric. Univ., Nat. Sci.
– volume: 3
  start-page: 36
  year: 2011
  end-page: 42
  article-title: Simultaneous determination of 1,2‐propylene glycol, glycerol and triethylene glycol of smokeless tobacco products by gas chromatography‐mass spectrometry
  publication-title: Tob. Sci. Technol.
– volume: 34
  start-page: 41
  issue: 8
  year: 2015
  ident: e_1_2_5_3_1
  article-title: Application of response surface method in test design and optimization
  publication-title: Lab. Res. Explor.
  contributor:
    fullname: Li L.
– volume: 93
  start-page: 220
  year: 2018
  ident: e_1_2_5_5_1
  article-title: Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network
  publication-title: LWT
  doi: 10.1016/j.lwt.2018.03.048
  contributor:
    fullname: Aliakbarian B.
– ident: e_1_2_5_4_1
– volume: 3
  start-page: 36
  year: 2011
  ident: e_1_2_5_6_1
  article-title: Simultaneous determination of 1,2‐propylene glycol, glycerol and triethylene glycol of smokeless tobacco products by gas chromatography‐mass spectrometry
  publication-title: Tob. Sci. Technol.
  contributor:
    fullname: Zhang J.
– volume: 29
  start-page: 30
  issue: 4
  year: 1996
  ident: e_1_2_5_2_1
  article-title: A brief discussion on the application of cigarette flavoring technology
  publication-title: Tob. Technol.
  contributor:
    fullname: Qinghui Z.
– volume: 31
  start-page: 874
  issue: 5
  year: 2016
  ident: e_1_2_5_7_1
  article-title: The neural network model and its evaluation of the physical quality of tobacco
  publication-title: J. Yunnan Agric. Univ., Nat. Sci.
  contributor:
    fullname: Hua B.H.
SSID ssj0001342041
Score 2.12578
Snippet This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using...
SourceID doaj
crossref
wiley
iet
SourceType Open Website
Aggregation Database
Publisher
StartPage 367
SubjectTerms 19th International Conference of Fluid Power and Mechatronic Control Engineering
artificial neural network
cigarette manufacturing
design of experiments
Experimental Design software
Expert Response Surface
feed liquid gas ejector flow
MATLAB software
neural nets
optimal solution configuration
pressure 3.7 bar
response data
Response Surface Analysis Method
response surface design
response surface methodology
roller speed
spice ejector flow
tobacco flavouring experiment
tobacco flow
tobacco industry
tobacco process flow
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgGCVmJz0Yf8b5K8QYb3UtpYUendlilmg8zGQ3AhSMRtul2_z7_YCq9aBePDVp2kLeV-A9-HggdJ5TBaMysxE3cRlRrg00KWsjk-QFM8A3Mm8pdHuX3zzQySybdY76cjlhwR44ADdIQDZJRqCzVSVNdVZoWybUapbrJGMkUKO46IgpP7uSUhLTpDXVBBY8eK6dKWbCL4vY7UXpDELeqx-Gliez_M5Q_RAz3kKbLTfEV6FO22jNVDtoo-MYuIte778S_fG8cassDllcW-xaptY1ti_yrfabD7FLan_ETUiDNXixaqyE98Kp0X4-HcuqxA6EYCSBnb2lv_jk8D00HY-m1zdRe2JCpFPQIhG3ZRabkjB3ZYSblKrEKsZLmTAGPRmQMwmilENhmSqsUUCgrLQyJ0yCWt1HvaquzAHCWhqSS8A6ZyDQOFeUKAZiMmMliEhr-ujiA0ExD74Ywq9n00IA1MJBLRzUfTR0-H4-5Oys_Q0IsmiDLP4Kch-dQXRE27wWP5U08MH7vT5iOhmR4dhZ2eWH_1G3I7QOHy_CtMwx6i2blTkBorJUp_6ffAdGZuS5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Open Access: Wiley-Blackwell Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-CCLeqm2aNunRFRdZUPawgreQpIkIul3q6u93Jqmre1DwFAhNUmYymUcm3xByVnIDWln4RLq0Tri0DkTK-8RlZSUc2BtFgBS6uy9vH_jwsXjs6pziW5iIDzEPuKFkhPMaBVybWIUEjFoU8gZRLjN5UaW5XCariBqDW5zx0XeQJecsDdUrGWy-BHz3osPZhDkuF2ZY0EsBvh-0zbObLRqtQesMNslGZy7Sq8jfLbLkJttk_QeI4A55HX3n_tNpixcvSGzaeIrCam1D_Yv-aMJ7RIp57k-0jZmxjr69t17DuFhIOoTYqZ7UFDdUxJagiHgZmpAvvkvGg5vx9W3SFVFIbA7uSSJ9XaSuZgJbwaTLucm8EbLWmRBwuIG9psFPlbBYYSrvDNhUXntdMqHBgd0jK5Nm4vYJtdqxUltflwJ8NikNZ0aAf1mIGvxK73rk_IuCahqhMlS44uaVAlIrJLVCUvdIH-k7_wgRrkNH0z6pTmBUBu6yFgyUrKl5bosKFs64t6K0wGime-QUuKM6iXv7baXLwLy__0eNhzesP0B0u_Lg3yMOyRr0VzEsc0RWZu27OwZDZWZOwmb8BPFQ4Qw
  priority: 102
  providerName: Wiley-Blackwell
Title Performance prediction of tobacco flavouring using response surface methodology and artificial neural network
URI http://digital-library.theiet.org/content/journals/10.1049/joe.2018.9038
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2018.9038
https://doaj.org/article/1274a72341bd43c59cfd14fc76c1572a
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5090UfxBPXYwkivlXbNG3SR69FRcWHXRFfQk4RdFfW4_c7SbseiOJTSmiaMjlmvsnkG4DtkmnUytwnwqU2YcI4XFLeJy4rK-7Q3igipdDFZXkyYGc3xc0UTLKN2vu7kCsjmXjcgrfc1TcPQug27sN7jYzrhCRo32JFoLvMxG6V5mIa2hSnXNqC9unReQOvor8lZzRlWUOz-aPdN7UU2ftR2WDX323WqHR68zDXWItkvx7eBZhyw0WY_cIhuASPV5-h_-RpHM5dgqzJyJOwVo0ZEf-g3kbxOiIJYe53ZFwHxjry_Dr2CtvVeaSjh52ooSVhPtXUEiQQXsYihosvQ7933D88SZocConJEZ0kwtsidZbyUHIqXM505jUXVmWc496G5ppCmCqws0JX3mk0qbzyqqRcIX5dgdZwNHSrQIxytFTG25IjZBNCM6o5wsuCW4SV3nVgZyJB-VQzZch4ws0qiaKWQdQyiLoDB0G-Hy8FgutYgaMsm_UiM0TLilPUsdqy3BQVdpwxb3hpsoJT1YEtHB05mQy_9bQXB-_v_5H9s2N60AvkduXafz67DjP4XNWOmA1ovYxf3SaaJi-6C9OUXXWhvX89uB10I8DvNjPxHUzp5Lg
link.rule.ids 315,783,787,867,2109,11576,27930,27938,27939,46066,46490,50828,50937
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECY-DurB-IzrkxjjrbqlFOhRjZv1GQ9r4o0ABaPRramrv98ZWh970MQTScOjGRhmvmH4IGRPcAtWWYZE-W6ZcOU8qFQIiU9FIT34G3mkFLq6Fv1bfn6X3_24xd_wQ3wF3FAz4n6NCo4B6QZwciTJfKyQ5jJVB0U3U5Nkmgte4OMNjN98R1kyzrrx-UoGqy8B8J63RJvQx-FYD2OGKfL3g7l58KNxrzWand4CmW_9RXrUTPAimfDDJTL3g0VwmTzffCf_05caT15Q2rQKFLXVuYqGJ_NexQuJFBPd72ndpMZ6-vpWBwPtmpekY4ydmmFJcUU15BIUKS9jERPGV8igdzo46SftKwqJywCfJCqUedeXTGIpmfIZt2mwUpUmlRJ2N3DYDABVBYPltgjeglMVTDCCSQMIdpVMDauhXyPUGc-EcaEUEkCbUpYzKwFg5rIEYBl8h-x_SlC_NFwZOp5x80KDqDWKWqOoO-QY5ftVCSmu44eqvtetxugU8LKRDKysLXnm8gIGTnlwUrg0l8x0yC7Mjm5V7vW3kQ7j5P39P3pwfsqOe0hvJ9b_3WKHzPQHV5f68uz6YoPMQp2iidFskqlR_ea3wGsZ2e24MD8AH37kdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrYTgUPEUSwtYCHEL3Th27Bxb6KotUPWwiyoulp8VCDardMvv74wTWvZApZ4sRX5EY49nvvH4M8C7Wji0yioVOk5CIbSPqFIpFbGsGxXR35CZUujrSX04F8dn8mx455TuwvT8ENcBN9KMvF-Tgi9D6vGmII7Mny2xXJb6QzOp9D3YlETGNoLNvW_z7_ObMEsl-CS_X8lx-RWI3uXAtIm97K71sWaZMoE_2psfcbXutma7M30EW4PDyPb6GX4MG3HxBB7-QyP4FH6f3mT_s2VHRy8kbtYmRurqfcvSL_unzTcSGWW6n7Ouz42N7OKySxbb9U9J5yA7s4vAaEn17BKMOC9zkTPGn8FsejD7eFgMzygUvkKAUugU5CQGrqhUXMdKuDI5pYMtlcLtDT02i0hV42DSNSk69KqSTbbmyiKEfQ6jRbuIL4B5G3ltfQq1QtSmtRPcKUSYUgVElimO4f1fCZplT5Zh8iG3aAyK2pCoDYl6DPsk3-tKxHGdP7TduRlUxpQImK3iaGZdEJWXDQ5ciuRV7UupuB3DW5wdM-jcxf9G2s2Td_v_mNnxAd-fEr9d_fLOLd7A_dNPU_Pl6OTzNjzAKk0fo9mB0aq7jK_Qa1m518PKvAI0G-Vv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+prediction+of+tobacco+flavouring+using+response+surface+methodology+and+artificial+neural+network&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Chen%2C+Lin&rft.au=Yuan%2C+Ruibo&rft.au=Liu%2C+Ze&rft.date=2019-01-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.eissn=2051-3305&rft.volume=2019&rft.issue=13&rft.spage=367&rft.epage=372&rft_id=info:doi/10.1049%2Fjoe.2018.9038&rft.externalDocID=10_1049_joe_2018_9038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon