Performance prediction of tobacco flavouring using response surface methodology and artificial neural network
This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design soft...
Saved in:
Published in | Journal of engineering (Stevenage, England) Vol. 2019; no. 13; pp. 367 - 372 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.01.2019
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design software. The MATLAB software's Neural Network function was used to forecast the responses, and the optimal solution configuration was coming out from the Response Surface Analysis Method. In the optimum condition, moisture removal opening, roller speed and tobacco process flow, pressure and feed liquid gas ejector flow are 18.60%, 10.74 rpm, 5314.11 kg/h, 3.70 bar and 243.63 kg/h, uniformity of the evaluation index and the utilization rate of material liquid distribution are 93.088% and 98.694%. With the corresponding experimental, results are consistent, under the condition of the error to less 7%, the test results show that through a few experimental data of predictive results of the neural network and response surface design has a certain practicability. |
---|---|
AbstractList | This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design software. The MATLAB software's Neural Network function was used to forecast the responses, and the optimal solution configuration was coming out from the Response Surface Analysis Method. In the optimum condition, moisture removal opening, roller speed and tobacco process flow, pressure and feed liquid gas ejector flow are 18.60%, 10.74 rpm, 5314.11 kg/h, 3.70 bar and 243.63 kg/h, uniformity of the evaluation index and the utilization rate of material liquid distribution are 93.088% and 98.694%. With the corresponding experimental, results are consistent, under the condition of the error to less 7%, the test results show that through a few experimental data of predictive results of the neural network and response surface design has a certain practicability. This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using response surface and artificial neural network. A series of tobacco flavouring experiment's factors were designed by Experimental Design software. The MATLAB software's Neural Network function was used to forecast the responses, and the optimal solution configuration was coming out from the Response Surface Analysis Method. In the optimum condition, moisture removal opening, roller speed and tobacco process flow, pressure and feed liquid gas ejector flow are 18.60%, 10.74 rpm, 5314.11 kg/h, 3.70 bar and 243.63 kg/h, uniformity of the evaluation index and the utilization rate of material liquid distribution are 93.088% and 98.694%. With the corresponding experimental, results are consistent, under the condition of the error to less 7%, the test results show that through a few experimental data of predictive results of the neural network and response surface design has a certain practicability. |
Author | Liu, Ze Chen, Lin Yuan, Ruibo |
Author_xml | – sequence: 1 givenname: Lin surname: Chen fullname: Chen, Lin organization: 1Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China – sequence: 2 givenname: Ruibo surname: Yuan fullname: Yuan, Ruibo email: kmust_yrb@163.com organization: 2Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, 727#Jingming South Road Chenggong District, Kunming, People's Republic of China – sequence: 3 givenname: Ze surname: Liu fullname: Liu, Ze organization: 3Technical Center Department, Yunnan Tobacco Industry Co., Ltd., 367#Hongjing Road Wuhua District, Kunming, People's Republic of China |
BookMark | eNp9kM1v1DAQxS1UJErpkbuvHLL4M06OULXQqhIc9m5N7PHiJWuv7IRq_3uSLkK9wGXeyHrvjfV7Sy5STkjIe842nKn-4z7jRjDebXomu1fkUjDNGymZvnixvyHXte4ZY1wqwRS_JIfvWEIuB0gO6bGgj26KOdEc6JQHcC7TMMKvPJeYdnSu6yxYjzlVpHUuAZbcAacf2ecx704UkqdQphiiizDShHN5lukpl5_vyOsAY8XrP3pFtne325uvzeO3L_c3nx4bJ1nfNl3wmqEXZlUjOpRq4GEwnQdujPeojQYpu245roc-4KCVDhCgFQa4lFfk_lzrM-ztscQDlJPNEO3zQy47u37RjWi5MAqMkIoPXkmnexc8V8GZ1nFtBCxdzbnLlVxrwfC3jzO7krcLebuStyv5xd-e_U9xxNP_zXb7cCs-3zEueLsEP5yDEafFNpe0EPrHkd9Yqpi8 |
Cites_doi | 10.1016/j.lwt.2018.03.048 |
ContentType | Journal Article |
Copyright | 2021 The Institution of Engineering and Technology |
Copyright_xml | – notice: 2021 The Institution of Engineering and Technology |
DBID | IDLOA 24P WIN AAYXX CITATION DOA |
DOI | 10.1049/joe.2018.9038 |
DatabaseName | IET Digital Library (Open Access) Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library CrossRef Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: IDLOA name: IET Digital Library (Open Access) url: https://digital-library.theiet.org/content/collections sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2051-3305 |
EndPage | 372 |
ExternalDocumentID | oai_doaj_org_article_1274a72341bd43c59cfd14fc76c1572a 10_1049_joe_2018_9038 TJE2BF01216 |
Genre | article |
GroupedDBID | 24P 5VS AAJGR ADACO ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BFFAM GROUPED_DOAJ IDLOA KQ8 OCL OK1 RIE RIG RNS RUI 0R~ 1OC AAHJG ABJCF ABQXS ACESK ACXQS AFKRA ARAPS AVUZU BENPR BGLVJ CCPQU EBS HCIFZ IAO IGS IPNFZ M43 M7S M~E PIMPY PTHSS ROL WIN AAYXX CITATION ITC |
ID | FETCH-LOGICAL-c3096-8fd50ed27fd50728e34b1fb78da177dde575a3388ace5b9feb545fafa627a133 |
IEDL.DBID | IDLOA |
ISSN | 2051-3305 |
IngestDate | Tue Oct 22 15:07:11 EDT 2024 Thu Sep 26 17:19:19 EDT 2024 Sat Aug 24 01:05:14 EDT 2024 Tue Jan 05 21:45:38 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | artificial neural network tobacco process flow tobacco flavouring experiment cigarette manufacturing MATLAB software response surface methodology Experimental Design software tobacco industry roller speed optimal solution configuration tobacco flow spice ejector flow response surface design feed liquid gas ejector flow pressure 3.7 bar Response Surface Analysis Method response data Expert Response Surface neural nets design of experiments |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3096-8fd50ed27fd50728e34b1fb78da177dde575a3388ace5b9feb545fafa627a133 |
OpenAccessLink | http://digital-library.theiet.org/content/journals/10.1049/joe.2018.9038 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1049_joe_2018_9038 iet_journals_10_1049_joe_2018_9038 doaj_primary_oai_doaj_org_article_1274a72341bd43c59cfd14fc76c1572a wiley_primary_10_1049_joe_2018_9038_TJE2BF01216 |
ProviderPackageCode | IDLOA RUI |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of engineering (Stevenage, England) |
PublicationYear | 2019 |
Publisher | The Institution of Engineering and Technology Wiley |
Publisher_xml | – name: The Institution of Engineering and Technology – name: Wiley |
References | Hua, B.H.; Qiong, L.; Ze, L. (C6) 2016; 31 Li, L.; Sai, Z.; Qiang, H. (C2) 2015; 34 Zhang, J.; Peng, L.I.; Sun, S.H. (C5) 2011; 3 Qinghui, Z. (C1) 1996; 29 Aliakbarian, B.; Sampaio, F.C.; Faria, J.D. (C4) 2018; 93 2015; 34 2016; 31 2011; 3 2017 1996; 29 2018; 93 e_1_2_5_4_1 Qinghui Z. (e_1_2_5_2_1) 1996; 29 Aliakbarian B. (e_1_2_5_5_1) 2018; 93 Hua B.H. (e_1_2_5_7_1) 2016; 31 Li L. (e_1_2_5_3_1) 2015; 34 Zhang J. (e_1_2_5_6_1) 2011; 3 |
References_xml | – volume: 3 start-page: 36 year: 2011 end-page: 42 ident: C5 article-title: Simultaneous determination of 1,2-propylene glycol, glycerol and triethylene glycol of smokeless tobacco products by gas chromatography-mass spectrometry publication-title: Tob. Sci. Technol. contributor: fullname: Zhang, J.; Peng, L.I.; Sun, S.H. – volume: 34 start-page: 41 issue: 8 year: 2015 end-page: 45 ident: C2 article-title: Application of response surface method in test design and optimization publication-title: Lab. Res. Explor. contributor: fullname: Li, L.; Sai, Z.; Qiang, H. – volume: 31 start-page: 874 issue: 5 year: 2016 end-page: 879 ident: C6 article-title: The neural network model and its evaluation of the physical quality of tobacco publication-title: J. Yunnan Agric. Univ., Nat. Sci. contributor: fullname: Hua, B.H.; Qiong, L.; Ze, L. – volume: 29 start-page: 30 issue: 4 year: 1996 end-page: 30 ident: C1 article-title: A brief discussion on the application of cigarette flavoring technology publication-title: Tob. Technol. contributor: fullname: Qinghui, Z. – volume: 93 start-page: 220 year: 2018 end-page: 228 ident: C4 article-title: Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network publication-title: LWT contributor: fullname: Aliakbarian, B.; Sampaio, F.C.; Faria, J.D. – volume: 29 start-page: 30 issue: 4 year: 1996 end-page: 30 article-title: A brief discussion on the application of cigarette flavoring technology publication-title: Tob. Technol. – volume: 34 start-page: 41 issue: 8 year: 2015 end-page: 45 article-title: Application of response surface method in test design and optimization publication-title: Lab. Res. Explor. – start-page: 55 year: 2017 end-page: 59 article-title: Evaluation of mining engineering technology innovation ability and application based on BP neural network – volume: 93 start-page: 220 year: 2018 end-page: 228 article-title: Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network publication-title: LWT – volume: 31 start-page: 874 issue: 5 year: 2016 end-page: 879 article-title: The neural network model and its evaluation of the physical quality of tobacco publication-title: J. Yunnan Agric. Univ., Nat. Sci. – volume: 3 start-page: 36 year: 2011 end-page: 42 article-title: Simultaneous determination of 1,2‐propylene glycol, glycerol and triethylene glycol of smokeless tobacco products by gas chromatography‐mass spectrometry publication-title: Tob. Sci. Technol. – volume: 34 start-page: 41 issue: 8 year: 2015 ident: e_1_2_5_3_1 article-title: Application of response surface method in test design and optimization publication-title: Lab. Res. Explor. contributor: fullname: Li L. – volume: 93 start-page: 220 year: 2018 ident: e_1_2_5_5_1 article-title: Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network publication-title: LWT doi: 10.1016/j.lwt.2018.03.048 contributor: fullname: Aliakbarian B. – ident: e_1_2_5_4_1 – volume: 3 start-page: 36 year: 2011 ident: e_1_2_5_6_1 article-title: Simultaneous determination of 1,2‐propylene glycol, glycerol and triethylene glycol of smokeless tobacco products by gas chromatography‐mass spectrometry publication-title: Tob. Sci. Technol. contributor: fullname: Zhang J. – volume: 29 start-page: 30 issue: 4 year: 1996 ident: e_1_2_5_2_1 article-title: A brief discussion on the application of cigarette flavoring technology publication-title: Tob. Technol. contributor: fullname: Qinghui Z. – volume: 31 start-page: 874 issue: 5 year: 2016 ident: e_1_2_5_7_1 article-title: The neural network model and its evaluation of the physical quality of tobacco publication-title: J. Yunnan Agric. Univ., Nat. Sci. contributor: fullname: Hua B.H. |
SSID | ssj0001342041 |
Score | 2.12578 |
Snippet | This study was to predict the optimum condition for leaf flavouring in cigarette manufacturing. To this purpose, an integrated research was used by using... |
SourceID | doaj crossref wiley iet |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 367 |
SubjectTerms | 19th International Conference of Fluid Power and Mechatronic Control Engineering artificial neural network cigarette manufacturing design of experiments Experimental Design software Expert Response Surface feed liquid gas ejector flow MATLAB software neural nets optimal solution configuration pressure 3.7 bar response data Response Surface Analysis Method response surface design response surface methodology roller speed spice ejector flow tobacco flavouring experiment tobacco flow tobacco industry tobacco process flow |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgGCVmJz0Yf8b5K8QYb3UtpYUendlilmg8zGQ3AhSMRtul2_z7_YCq9aBePDVp2kLeV-A9-HggdJ5TBaMysxE3cRlRrg00KWsjk-QFM8A3Mm8pdHuX3zzQySybdY76cjlhwR44ADdIQDZJRqCzVSVNdVZoWybUapbrJGMkUKO46IgpP7uSUhLTpDXVBBY8eK6dKWbCL4vY7UXpDELeqx-Gliez_M5Q_RAz3kKbLTfEV6FO22jNVDtoo-MYuIte778S_fG8cassDllcW-xaptY1ti_yrfabD7FLan_ETUiDNXixaqyE98Kp0X4-HcuqxA6EYCSBnb2lv_jk8D00HY-m1zdRe2JCpFPQIhG3ZRabkjB3ZYSblKrEKsZLmTAGPRmQMwmilENhmSqsUUCgrLQyJ0yCWt1HvaquzAHCWhqSS8A6ZyDQOFeUKAZiMmMliEhr-ujiA0ExD74Ywq9n00IA1MJBLRzUfTR0-H4-5Oys_Q0IsmiDLP4Kch-dQXRE27wWP5U08MH7vT5iOhmR4dhZ2eWH_1G3I7QOHy_CtMwx6i2blTkBorJUp_6ffAdGZuS5 priority: 102 providerName: Directory of Open Access Journals – databaseName: Open Access: Wiley-Blackwell Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnoQn7i-CCLeqm2aNunRFRdZUPawgreQpIkIul3q6u93Jqmre1DwFAhNUmYymUcm3xByVnIDWln4RLq0Tri0DkTK-8RlZSUc2BtFgBS6uy9vH_jwsXjs6pziW5iIDzEPuKFkhPMaBVybWIUEjFoU8gZRLjN5UaW5XCariBqDW5zx0XeQJecsDdUrGWy-BHz3osPZhDkuF2ZY0EsBvh-0zbObLRqtQesMNslGZy7Sq8jfLbLkJttk_QeI4A55HX3n_tNpixcvSGzaeIrCam1D_Yv-aMJ7RIp57k-0jZmxjr69t17DuFhIOoTYqZ7UFDdUxJagiHgZmpAvvkvGg5vx9W3SFVFIbA7uSSJ9XaSuZgJbwaTLucm8EbLWmRBwuIG9psFPlbBYYSrvDNhUXntdMqHBgd0jK5Nm4vYJtdqxUltflwJ8NikNZ0aAf1mIGvxK73rk_IuCahqhMlS44uaVAlIrJLVCUvdIH-k7_wgRrkNH0z6pTmBUBu6yFgyUrKl5bosKFs64t6K0wGime-QUuKM6iXv7baXLwLy__0eNhzesP0B0u_Lg3yMOyRr0VzEsc0RWZu27OwZDZWZOwmb8BPFQ4Qw priority: 102 providerName: Wiley-Blackwell |
Title | Performance prediction of tobacco flavouring using response surface methodology and artificial neural network |
URI | http://digital-library.theiet.org/content/journals/10.1049/joe.2018.9038 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fjoe.2018.9038 https://doaj.org/article/1274a72341bd43c59cfd14fc76c1572a |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEB5090UfxBPXYwkivlXbNG3SR69FRcWHXRFfQk4RdFfW4_c7SbseiOJTSmiaMjlmvsnkG4DtkmnUytwnwqU2YcI4XFLeJy4rK-7Q3igipdDFZXkyYGc3xc0UTLKN2vu7kCsjmXjcgrfc1TcPQug27sN7jYzrhCRo32JFoLvMxG6V5mIa2hSnXNqC9unReQOvor8lZzRlWUOz-aPdN7UU2ftR2WDX323WqHR68zDXWItkvx7eBZhyw0WY_cIhuASPV5-h_-RpHM5dgqzJyJOwVo0ZEf-g3kbxOiIJYe53ZFwHxjry_Dr2CtvVeaSjh52ooSVhPtXUEiQQXsYihosvQ7933D88SZocConJEZ0kwtsidZbyUHIqXM505jUXVmWc496G5ppCmCqws0JX3mk0qbzyqqRcIX5dgdZwNHSrQIxytFTG25IjZBNCM6o5wsuCW4SV3nVgZyJB-VQzZch4ws0qiaKWQdQyiLoDB0G-Hy8FgutYgaMsm_UiM0TLilPUsdqy3BQVdpwxb3hpsoJT1YEtHB05mQy_9bQXB-_v_5H9s2N60AvkduXafz67DjP4XNWOmA1ovYxf3SaaJi-6C9OUXXWhvX89uB10I8DvNjPxHUzp5Lg |
link.rule.ids | 315,783,787,867,2109,11576,27930,27938,27939,46066,46490,50828,50937 |
linkProvider | Institution of Engineering and Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgECY-DurB-IzrkxjjrbqlFOhRjZv1GQ9r4o0ABaPRramrv98ZWh970MQTScOjGRhmvmH4IGRPcAtWWYZE-W6ZcOU8qFQIiU9FIT34G3mkFLq6Fv1bfn6X3_24xd_wQ3wF3FAz4n6NCo4B6QZwciTJfKyQ5jJVB0U3U5Nkmgte4OMNjN98R1kyzrrx-UoGqy8B8J63RJvQx-FYD2OGKfL3g7l58KNxrzWand4CmW_9RXrUTPAimfDDJTL3g0VwmTzffCf_05caT15Q2rQKFLXVuYqGJ_NexQuJFBPd72ndpMZ6-vpWBwPtmpekY4ydmmFJcUU15BIUKS9jERPGV8igdzo46SftKwqJywCfJCqUedeXTGIpmfIZt2mwUpUmlRJ2N3DYDABVBYPltgjeglMVTDCCSQMIdpVMDauhXyPUGc-EcaEUEkCbUpYzKwFg5rIEYBl8h-x_SlC_NFwZOp5x80KDqDWKWqOoO-QY5ftVCSmu44eqvtetxugU8LKRDKysLXnm8gIGTnlwUrg0l8x0yC7Mjm5V7vW3kQ7j5P39P3pwfsqOe0hvJ9b_3WKHzPQHV5f68uz6YoPMQp2iidFskqlR_ea3wGsZ2e24MD8AH37kdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrYTgUPEUSwtYCHEL3Th27Bxb6KotUPWwiyoulp8VCDardMvv74wTWvZApZ4sRX5EY49nvvH4M8C7Wji0yioVOk5CIbSPqFIpFbGsGxXR35CZUujrSX04F8dn8mx455TuwvT8ENcBN9KMvF-Tgi9D6vGmII7Mny2xXJb6QzOp9D3YlETGNoLNvW_z7_ObMEsl-CS_X8lx-RWI3uXAtIm97K71sWaZMoE_2psfcbXutma7M30EW4PDyPb6GX4MG3HxBB7-QyP4FH6f3mT_s2VHRy8kbtYmRurqfcvSL_unzTcSGWW6n7Ouz42N7OKySxbb9U9J5yA7s4vAaEn17BKMOC9zkTPGn8FsejD7eFgMzygUvkKAUugU5CQGrqhUXMdKuDI5pYMtlcLtDT02i0hV42DSNSk69KqSTbbmyiKEfQ6jRbuIL4B5G3ltfQq1QtSmtRPcKUSYUgVElimO4f1fCZplT5Zh8iG3aAyK2pCoDYl6DPsk3-tKxHGdP7TduRlUxpQImK3iaGZdEJWXDQ5ciuRV7UupuB3DW5wdM-jcxf9G2s2Td_v_mNnxAd-fEr9d_fLOLd7A_dNPU_Pl6OTzNjzAKk0fo9mB0aq7jK_Qa1m518PKvAI0G-Vv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+prediction+of+tobacco+flavouring+using+response+surface+methodology+and+artificial+neural+network&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Chen%2C+Lin&rft.au=Yuan%2C+Ruibo&rft.au=Liu%2C+Ze&rft.date=2019-01-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.eissn=2051-3305&rft.volume=2019&rft.issue=13&rft.spage=367&rft.epage=372&rft_id=info:doi/10.1049%2Fjoe.2018.9038&rft.externalDocID=10_1049_joe_2018_9038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |