Quantification of the Mechanical Properties in the Human–Exoskeleton Upper Arm Interface During Overhead Work Postures in Healthy Young Adults
Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely character...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 15; p. 4605 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25154605 |
Cover
Loading…
Abstract | Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under various loading conditions. Forces and torques were applied in three orthogonal axes to the upper arm pHEI of 21 subjects using an electromechanical apparatus. Interaction loads and displacements were measured, and stiffness data were derived as well as mathematically described using linear and non-linear regression models, yielding all the diagonal elements of the stiffness tensor. We find that the non-linear nature of pHEI stiffness is best described using exponential functions, though we also provide linear approximations for simplified modeling. We identify statistically significant differences between loading conditions and report median translational stiffnesses between 2.1 N/mm along and 4.5 N/mm perpendicular to the arm axis, as well as rotational stiffnesses of 0.2 N·m/° perpendicular to the arm, while rotations around the longitudinal axis are almost an order of magnitude smaller (0.03 N·m/°). The resulting stiffness models are suitable for use in digital human–exoskeleton models, potentially leading to more accurate estimations of biomechanical efficacy and discomfort of exoskeletons. |
---|---|
AbstractList | Exoskeletons transfer loads to the human body via physical human-exoskeleton interfaces (pHEI). However, the human-exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under various loading conditions. Forces and torques were applied in three orthogonal axes to the upper arm pHEI of 21 subjects using an electromechanical apparatus. Interaction loads and displacements were measured, and stiffness data were derived as well as mathematically described using linear and non-linear regression models, yielding all the diagonal elements of the stiffness tensor. We find that the non-linear nature of pHEI stiffness is best described using exponential functions, though we also provide linear approximations for simplified modeling. We identify statistically significant differences between loading conditions and report median translational stiffnesses between 2.1 N/mm along and 4.5 N/mm perpendicular to the arm axis, as well as rotational stiffnesses of 0.2 N·m/° perpendicular to the arm, while rotations around the longitudinal axis are almost an order of magnitude smaller (0.03 N·m/°). The resulting stiffness models are suitable for use in digital human-exoskeleton models, potentially leading to more accurate estimations of biomechanical efficacy and discomfort of exoskeletons. Exoskeletons transfer loads to the human body via physical human-exoskeleton interfaces (pHEI). However, the human-exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under various loading conditions. Forces and torques were applied in three orthogonal axes to the upper arm pHEI of 21 subjects using an electromechanical apparatus. Interaction loads and displacements were measured, and stiffness data were derived as well as mathematically described using linear and non-linear regression models, yielding all the diagonal elements of the stiffness tensor. We find that the non-linear nature of pHEI stiffness is best described using exponential functions, though we also provide linear approximations for simplified modeling. We identify statistically significant differences between loading conditions and report median translational stiffnesses between 2.1 N/mm along and 4.5 N/mm perpendicular to the arm axis, as well as rotational stiffnesses of 0.2 N·m/° perpendicular to the arm, while rotations around the longitudinal axis are almost an order of magnitude smaller (0.03 N·m/°). The resulting stiffness models are suitable for use in digital human-exoskeleton models, potentially leading to more accurate estimations of biomechanical efficacy and discomfort of exoskeletons.Exoskeletons transfer loads to the human body via physical human-exoskeleton interfaces (pHEI). However, the human-exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under various loading conditions. Forces and torques were applied in three orthogonal axes to the upper arm pHEI of 21 subjects using an electromechanical apparatus. Interaction loads and displacements were measured, and stiffness data were derived as well as mathematically described using linear and non-linear regression models, yielding all the diagonal elements of the stiffness tensor. We find that the non-linear nature of pHEI stiffness is best described using exponential functions, though we also provide linear approximations for simplified modeling. We identify statistically significant differences between loading conditions and report median translational stiffnesses between 2.1 N/mm along and 4.5 N/mm perpendicular to the arm axis, as well as rotational stiffnesses of 0.2 N·m/° perpendicular to the arm, while rotations around the longitudinal axis are almost an order of magnitude smaller (0.03 N·m/°). The resulting stiffness models are suitable for use in digital human-exoskeleton models, potentially leading to more accurate estimations of biomechanical efficacy and discomfort of exoskeletons. |
Author | Aschenbrenner, Jonas Tröster, Mark Schiebl, Jonas Elsner, Nawid Schneider, Urs Maufroy, Christophe Birchinger, Paul Bauernhansl, Thomas |
AuthorAffiliation | 2 Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany 1 Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany |
AuthorAffiliation_xml | – name: 2 Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany – name: 1 Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany |
Author_xml | – sequence: 1 givenname: Jonas orcidid: 0000-0002-5276-004X surname: Schiebl fullname: Schiebl, Jonas – sequence: 2 givenname: Nawid surname: Elsner fullname: Elsner, Nawid – sequence: 3 givenname: Paul surname: Birchinger fullname: Birchinger, Paul – sequence: 4 givenname: Jonas surname: Aschenbrenner fullname: Aschenbrenner, Jonas – sequence: 5 givenname: Christophe orcidid: 0000-0002-7929-4560 surname: Maufroy fullname: Maufroy, Christophe – sequence: 6 givenname: Mark orcidid: 0000-0002-9488-0971 surname: Tröster fullname: Tröster, Mark – sequence: 7 givenname: Urs orcidid: 0000-0003-2260-0296 surname: Schneider fullname: Schneider, Urs – sequence: 8 givenname: Thomas orcidid: 0000-0001-5768-2055 surname: Bauernhansl fullname: Bauernhansl, Thomas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40807771$$D View this record in MEDLINE/PubMed |
BookMark | eNpdks1uEzEQgFeoiP7AgRdAlrjAITC21_tzQlFpSaSiFokKcbIm3tlk042d2t6K3voISLwhT4JJStRysjXz-dPMeA6zPessZdlLDu-krOF9EIqrvAD1JDvguchHlRCw9-C-nx2GsAQQUsrqWbafQwVlWfKD7OeXAW3s2s5g7JxlrmVxQewzmQXaFOzZhXdr8rGjwDq7SU6GFdrfd79OfrhwRT3F9O5ynSA29is2tZF8i4bYx8F3ds7Ob8gvCBv2zfkrduFCHPxWNiHs4-KWfXdD4sbN0MfwPHvaYh_oxf15lF2ennw9nozOzj9Nj8dnIyOhVqNGzZSqSM4UNMDLHIRRRSNRlW1ZiKpRTYlYFRwKCS1HyWcGlUnzIFW0pUJ5lE233sbhUq99t0J_qx12ehNwfq4xdW160rKsVC7QGAWYF8WsUi1XnABFLUWhmuT6sHWth9mKGkM2euwfSR9nbLfQc3ejuZB5LXKZDG_uDd5dDxSiXnXBUN-jJTcELYWsU48gIaGv_0OXbvA2zWpDQVVKyBP16mFJu1r-_XwC3m4B410IntodwkH_3Sq92yr5B2RIv1A |
Cites_doi | 10.1177/0278364914562476 10.1115/1.4044841 10.1504/IJHFMS.2022.124304 10.1016/j.apergo.2022.103706 10.3390/s18020566 10.1109/TBME.2013.2267741 10.1080/24725838.2021.2005720 10.1177/0954411918759801 10.1109/TRO.2011.2178151 10.1109/BioRob.2012.6290777 10.1017/wtc.2024.2 10.1109/TMRB.2020.3042255 10.1080/24725838.2021.1954565 10.1016/j.apergo.2021.103385 10.3390/s17061294 10.3390/robotics9010016 10.53730/ijhs.v6nS8.10127 10.1109/TNSRE.2015.2464719 10.3390/ijerph192315533 10.1007/BF00640647 10.3389/frobt.2018.00072 10.1109/ICABME47164.2019.8940321 10.1016/j.jbiomech.2022.110987 10.3390/s21041445 10.1109/TNSRE.2006.881565 10.1080/11762320902879961 10.3390/pr10091798 10.1152/ajpendo.00111.2013 10.1109/TNSRE.2019.2945368 10.1016/j.apergo.2022.103903 10.3390/ijerph17145140 10.1115/DETC2020-22668 10.1108/IR-08-2014-0379 10.1109/BIOROB.2018.8487701 10.3390/robotics11060147 10.3390/s22113993 10.3389/fbioe.2022.1044275 10.1109/70.54735 10.1016/j.jmbbm.2009.03.004 10.1172/JCI158451 10.1016/j.jbiomech.2021.110839 10.3390/ijerph19159040 10.1080/24725838.2019.1638331 10.1016/j.apergo.2018.02.009 10.1017/wtc.2022.17 10.1088/1748-605X/ac2b7a 10.1007/s11432-014-5203-8 10.1109/WHC.2009.4810871 10.1115/DETC2015-47871 10.1109/TBME.2022.3159094 10.1017/wtc.2021.5 10.1177/0018720820913789 10.1109/TNSRE.2016.2521160 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s25154605 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_378542acc50a466b85f151e0a293265d PMC12349243 40807771 10_3390_s25154605 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research grantid: 01IS21025D – fundername: German Federal Ministry of Education and Research (BMBF) grantid: 01IS21025D |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. M48 PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c3095-d5b558e3b50d017402c56d3a57f7628d5d7aa8610630f1a31bca5c424e56f75a3 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:23:16 EDT 2025 Thu Aug 21 18:27:01 EDT 2025 Fri Sep 05 15:10:14 EDT 2025 Sat Aug 23 13:01:57 EDT 2025 Thu Sep 04 05:03:04 EDT 2025 Thu Jul 31 00:37:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | wearable robot interaction stiffness interface mechanics exoskeleton upper arm mechanical characterization physical human–exoskeleton interaction physical human-robot interaction |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3095-d5b558e3b50d017402c56d3a57f7628d5d7aa8610630f1a31bca5c424e56f75a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2260-0296 0000-0001-5768-2055 0000-0002-9488-0971 0000-0002-7929-4560 0000-0002-5276-004X |
OpenAccessLink | https://doaj.org/article/378542acc50a466b85f151e0a293265d |
PMID | 40807771 |
PQID | 3239087304 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_378542acc50a466b85f151e0a293265d pubmedcentral_primary_oai_pubmedcentral_nih_gov_12349243 proquest_miscellaneous_3239402030 proquest_journals_3239087304 pubmed_primary_40807771 crossref_primary_10_3390_s25154605 |
PublicationCentury | 2000 |
PublicationDate | 20250725 |
PublicationDateYYYYMMDD | 2025-07-25 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250725 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Weiss (ref_51) 1987; 56 Morrow (ref_50) 2010; 3 ref_56 Steinhilber (ref_4) 2021; 94 ref_11 Langlois (ref_13) 2021; 3 ref_55 ref_54 ref_53 ref_52 Bogue (ref_3) 2015; 42 Joodaki (ref_48) 2018; 232 Mukaka (ref_63) 2012; 24 ref_17 Fritzsche (ref_21) 2021; 2 ref_16 Schmalz (ref_24) 2022; 10 Wang (ref_39) 2023; 65 Zhou (ref_22) 2021; 9 Fan (ref_35) 2013; 60 Junius (ref_7) 2018; 70 Palmer (ref_65) 2022; 132 Asbeck (ref_42) 2015; 34 ref_25 Schiele (ref_14) 2006; 14 ref_23 ref_62 Young (ref_12) 2017; 25 Akiyama (ref_10) 2016; 24 ref_26 Linnenberg (ref_58) 2022; 101 Shafiei (ref_32) 2020; 12 Seiferheld (ref_28) 2022; 7 ref_34 ref_33 ref_31 ref_30 Maurice (ref_57) 2020; 28 Schiele (ref_44) 2009; 6 Ampe (ref_18) 2023; 106 Kopp (ref_19) 2022; 3 ref_38 Jensen (ref_27) 2018; 5 ref_37 Huysamen (ref_41) 2018; 70 Sartori (ref_20) 2024; 5 Blaak (ref_64) 2001; 4 Alkhouli (ref_49) 2013; 305 ref_47 ref_46 Popovic (ref_29) 1990; 6 ref_45 ref_43 Singh (ref_61) 2014; 3 ref_40 ref_1 ref_2 Theurel (ref_5) 2019; 7 Rossini (ref_59) 2022; 69 ref_9 ref_8 Kumari (ref_60) 2022; 6 Jarrasse (ref_15) 2012; 28 Tran (ref_36) 2014; 57 ref_6 |
References_xml | – volume: 34 start-page: 744 year: 2015 ident: ref_42 article-title: A biologically inspired soft exosuit for walking assistance publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914562476 – volume: 12 start-page: 011007 year: 2020 ident: ref_32 article-title: The Effects of the Connection Stiffness of Robotic Exoskeletons on the Gait Quality and Comfort publication-title: J. Mech. Robot. doi: 10.1115/1.4044841 – volume: 7 start-page: 275 year: 2022 ident: ref_28 article-title: Biomechanical investigation of a passive upper-extremity exoskeleton for manual material handling—A computational parameter study and modelling approach publication-title: Int. J. Hum. Factors Model. Simul. doi: 10.1504/IJHFMS.2022.124304 – volume: 101 start-page: 103706 year: 2022 ident: ref_58 article-title: Industrial exoskeletons for overhead work: Circumferential pressures on the upper arm caused by the physical human-machine-interface publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2022.103706 – ident: ref_33 doi: 10.3390/s18020566 – volume: 4 start-page: 499 year: 2001 ident: ref_64 article-title: Gender differences in fat metabolism publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 60 start-page: 3314 year: 2013 ident: ref_35 article-title: Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2267741 – volume: 10 start-page: 7 year: 2022 ident: ref_24 article-title: A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting publication-title: IISE Trans. Occup. Ergon. Hum. Factors doi: 10.1080/24725838.2021.2005720 – ident: ref_1 – volume: 232 start-page: 323 year: 2018 ident: ref_48 article-title: Skin mechanical properties and modeling: A review publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411918759801 – volume: 3 start-page: 77 year: 2014 ident: ref_61 article-title: An Anthropometric Study of the Humerus in Adults publication-title: Res. Rev. J. Med. Health Sci. – volume: 28 start-page: 697 year: 2012 ident: ref_15 article-title: Connecting a Human Limb to an Exoskeleton publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2011.2178151 – ident: ref_11 doi: 10.1109/BioRob.2012.6290777 – volume: 5 start-page: e6 year: 2024 ident: ref_20 article-title: Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace publication-title: Wearable Technol. doi: 10.1017/wtc.2024.2 – ident: ref_56 – volume: 24 start-page: 69 year: 2012 ident: ref_63 article-title: A guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med. J. – volume: 3 start-page: 146 year: 2021 ident: ref_13 article-title: Investigating the Effects of Strapping Pressure on Human-Robot Interface Dynamics Using a Soft Robotic Cuff publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2020.3042255 – volume: 9 start-page: 167 year: 2021 ident: ref_22 article-title: Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting publication-title: IISE Trans. Occup. Ergon. Hum. Factors doi: 10.1080/24725838.2021.1954565 – volume: 94 start-page: 103385 year: 2021 ident: ref_4 article-title: The influence of using exoskeletons during occupational tasks on acute physical stress and strain compared to no exoskeleton—A systematic review and meta-analysis publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2021.103385 – ident: ref_34 doi: 10.3390/s17061294 – ident: ref_2 doi: 10.3390/robotics9010016 – ident: ref_62 – ident: ref_38 – volume: 6 start-page: 1577 year: 2022 ident: ref_60 article-title: Midshaft diameter of humerus and its accuracy in sex determination of south Indian population publication-title: ijhs doi: 10.53730/ijhs.v6nS8.10127 – volume: 24 start-page: 784 year: 2016 ident: ref_10 article-title: Measurement of Contact Behavior Including Slippage of Cuff When Using Wearable Physical Assistant Robot publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2464719 – ident: ref_9 doi: 10.3390/ijerph192315533 – volume: 56 start-page: 217 year: 1987 ident: ref_51 article-title: Three protocols for measuring subcutaneous fat thickness on the upper extremities publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00640647 – ident: ref_16 doi: 10.3389/frobt.2018.00072 – volume: 70 start-page: 050802-1 year: 2018 ident: ref_7 article-title: Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation publication-title: Appl. Mech. Rev. – ident: ref_8 doi: 10.1109/ICABME47164.2019.8940321 – ident: ref_53 – ident: ref_55 doi: 10.1016/j.jbiomech.2022.110987 – ident: ref_30 – ident: ref_40 doi: 10.3390/s21041445 – volume: 14 start-page: 456 year: 2006 ident: ref_14 article-title: Kinematic design to improve ergonomics in human machine interaction publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.881565 – volume: 6 start-page: 157 year: 2009 ident: ref_44 article-title: Influence of Attachment Pressure and Kinematic Configuration on pHRI with Wearable Robots publication-title: Appl. Bionics Biomech. doi: 10.1080/11762320902879961 – ident: ref_47 doi: 10.3390/pr10091798 – volume: 305 start-page: E1427 year: 2013 ident: ref_49 article-title: The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00111.2013 – volume: 28 start-page: 152 year: 2020 ident: ref_57 article-title: Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2945368 – volume: 106 start-page: 103903 year: 2023 ident: ref_18 article-title: Passive shoulder exoskeleton support partially mitigates fatigue-induced effects in overhead work publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2022.103903 – ident: ref_25 doi: 10.3390/ijerph17145140 – ident: ref_31 doi: 10.1115/DETC2020-22668 – volume: 42 start-page: 5 year: 2015 ident: ref_3 article-title: Robotic exoskeletons: A review of recent progress publication-title: Ind. Robot. Int. J. doi: 10.1108/IR-08-2014-0379 – ident: ref_37 doi: 10.1109/BIOROB.2018.8487701 – ident: ref_23 doi: 10.3390/robotics11060147 – ident: ref_6 doi: 10.3390/s22113993 – ident: ref_17 doi: 10.3389/fbioe.2022.1044275 – volume: 6 start-page: 200 year: 1990 ident: ref_29 article-title: Dynamics of the self-fitting modular orthosis publication-title: IEEE Trans. Robot. Automat. doi: 10.1109/70.54735 – volume: 3 start-page: 124 year: 2010 ident: ref_50 article-title: Transversely isotropic tensile material properties of skeletal muscle tissue publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2009.03.004 – volume: 132 start-page: e158451 year: 2022 ident: ref_65 article-title: Metabolic changes in aging humans: Current evidence and therapeutic strategies publication-title: J. Clin. Invest. doi: 10.1172/JCI158451 – volume: 5 start-page: 1 year: 2018 ident: ref_27 article-title: Development and simulation of a passive upper extremity orthosis for amyoplasia publication-title: J. Rehabil. Assist. Technol. Eng. – ident: ref_46 doi: 10.1016/j.jbiomech.2021.110839 – ident: ref_26 doi: 10.3390/ijerph19159040 – volume: 7 start-page: 264 year: 2019 ident: ref_5 article-title: Occupational Exoskeletons: Overview of Their Benefits and Limitations in Preventing Work-Related Musculoskeletal Disorders publication-title: IISE Trans. Occup. Ergon. Hum. Factors doi: 10.1080/24725838.2019.1638331 – volume: 70 start-page: 148 year: 2018 ident: ref_41 article-title: Evaluation of a passive exoskeleton for static upper limb activities publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2018.02.009 – ident: ref_54 – volume: 3 start-page: e22 year: 2022 ident: ref_19 article-title: Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons publication-title: Wearable Technol. doi: 10.1017/wtc.2022.17 – ident: ref_52 doi: 10.1088/1748-605X/ac2b7a – volume: 57 start-page: 1 year: 2014 ident: ref_36 article-title: The relationship between physical human-exoskeleton interaction and dynamic factors: Using a learning approach for control applications publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-014-5203-8 – ident: ref_45 doi: 10.1109/WHC.2009.4810871 – ident: ref_43 doi: 10.1115/DETC2015-47871 – volume: 69 start-page: 3008 year: 2022 ident: ref_59 article-title: An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3159094 – volume: 2 start-page: e6 year: 2021 ident: ref_21 article-title: Assessing the efficiency of exoskeletons in physical strain reduction by biomechanical simulation with AnyBody Modeling System publication-title: Wearable Technol. doi: 10.1017/wtc.2021.5 – volume: 65 start-page: 909 year: 2023 ident: ref_39 article-title: Analysis of Human-Exoskeleton System Interaction for Ergonomic Design publication-title: Hum Factors doi: 10.1177/0018720820913789 – volume: 25 start-page: 171 year: 2017 ident: ref_12 article-title: State of the Art and Future Directions for Lower Limb Robotic Exoskeletons publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2521160 |
SSID | ssj0023338 |
Score | 2.4533 |
Snippet | Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly... Exoskeletons transfer loads to the human body via physical human-exoskeleton interfaces (pHEI). However, the human-exoskeleton interaction remains poorly... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 4605 |
SubjectTerms | Adult Anthropometry Arm - physiology Biomechanical Phenomena - physiology Biomechanics exoskeleton Exoskeleton Device Female Healthy Volunteers Humans interaction stiffness Interfaces Load Male Mathematical functions Mechanical properties Motion capture Muscle function physical human-robot interaction physical human–exoskeleton interaction Posture - physiology Torque upper arm wearable robot Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFcoyaxJ_aeUIEuFVJ5SKzUW-QnVIhku-lKcOMnIPEP-SXMONnQRYhr7N1YmfHMN2PPN4w99RZmTjnIIQDk0tcyN56K3Qm811rEmadq5OM39dFCvj6BkzHh1o_XKjc2MRlq3znKke-LCqNzjfoony3PcuoaRaerYwuNy-xKiZ6G9FzPX00Bl8D4a2ATEvjj_R59OdA54JYPSlT9_8KXf1-TvOB35jfY9REw8oNBwjfZpdDeYtcu0AjeZj_er81w5yd9Zt5FjrCOHweq6iUh8HeUcl8Rdyo_bdNgSt7_-v7z8GvXf0bXgxCQL5Y4Cd_0hac8YTQu8JepjJG_RY1Hs-05Jdc5dfhdr4Y_G-qYvvFkNvgB0Xn0d9hifvjhxVE-dlrInUCMlXuwADoIC4XHLYoxpYPaCwMqorHUHrwyRiPSqkURSyNK6ww4WckAdVRgxF2203ZtuM-4C9FZbS2xxEjtAGdiAF65UtVy5k3M2JPNt2-WA6FGg4EICaiZBJSx5ySVaQJxYKcH3epjM26pRigNsjLOQWFkXVsNEeFLKExFmBR8xvY2Mm3Gjdk3f9QoY4-nYdxSdE5i2tCthzkUVosiY_cGFZhWIhFhK6XKjOkt5dha6vZIe_op0XYjRpAY7Yrd_6_rAbtaUY_hghg09tjO-WodHiLwObePknb_BmIhBrk priority: 102 providerName: ProQuest |
Title | Quantification of the Mechanical Properties in the Human–Exoskeleton Upper Arm Interface During Overhead Work Postures in Healthy Young Adults |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40807771 https://www.proquest.com/docview/3239087304 https://www.proquest.com/docview/3239402030 https://pubmed.ncbi.nlm.nih.gov/PMC12349243 https://doaj.org/article/378542acc50a466b85f151e0a293265d |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoHDim8CS2UQ12jT2BO7x11oWSHtsiAq9RY5tiNWiHTVbqXlxk9A4h_yS5ix06pFSFy45BBbiWOPZ95zPM8Ar3yDI6cd5hgQc-UrlVvPye4M3isj25HnbOTTs-pkqt7NcLZ11BfvCUvywKnjDqU2qErrHBZWVVVjsKUgFQpbMvJAz963GBVrMtVTLUnMK-kISSL1h0uK4sh_AHeiTxTp_xuy_HOD5FbEmdyF_R4qiqPUxHtwI3T34c6WgOAD-PFhZdNun9jBYt4KAnTiNHA-L3e_OOfF9gWrpoqLLhbGZftf33-Or-fLLxR0CPyJ6SVVojd9FXGFsLUuiDcxgVG8J1snh-0FL6sLPtt3tUgPSxlM30R0GOKIhTyWD2E6GX96fZL3ZyzkThK6yj02iCbIBgtPk5PYpMPKS4u6JTdpPHptrSGMVcmiHVo5bJxFp0oVsGo1WvkI9rp5F56AcKF1jWka1odRxiHVJOpduqGu1MjbNoOX676vL5OURk0UhAeo3gxQBsc8KpsKrH4db5BN1L1N1P-yiQwO1mNa91NyWcuSXmTIoakMXmyKaTLxHxLbhfkq1WFCLYsMHicT2LREEbbWWg8zMDvGsdPU3ZLu4nMU7CZ0oIjnyqf_4-Oewe2SzyAuWGHjAPauFqvwnIDRVTOAm3qm6Wombwdw63h8dv5xEOfFb9MWEZQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QE4IP4JFDAIjlGzsSfJHhBq6VZb2l0K6kq9pY7t0KoiWXa7gt54BCTeg4fiSZjJz9JFiFuvsZVYmfH4-2zPNwAvbIY9Exv00SH6ykbK15aT3Rm8R4nMe5azkYejaDBWbw_xcAV-trkwfK2yjYlVoLal4T3ydRkSO0_IH9XryWefq0bx6WpbQqN2i113_oUo2-zVzhbZ92UYbvcP3gz8pqqAbyThCd9ihpg4mWFgyR2JPxmMrNQY5xQYEos21johVBHJIO9q2c2MRqNC5TDKY9SS3nsFVhVntHZgdbM_2v-woHiSGF-tXyRpuOszQg_IJ49Lq15VHOBfiPbvi5kXVrrtm3Cjgahio_apW7Diittw_YJw4R34_n6u61tGlWFFmQsCkmLoOI-YzS72eZN_ymqt4qSoGqvjgl_ffvS_lrNTWuwIdIrxhDrRlz6Jamcy18aJrSpxUryjOUYLhRW8nS-4pvB8Wr-szpw6F1WgEhssIDK7C-NLscI96BRl4R6AMC43WZJlrEujEoPUkyh_aLpxpHpW5x48b_99OqklPFKiPmygdGEgDzbZKosOrLpdPSinH9NmEqcyTlCF2hgMtIqiLMGcAJMLdMgoGK0Ha61N0yYUzNI_juvBs0UzTWI-mdGFK-d1HybyMvDgfu0Ci5EowvRxHHc9SJacY2moyy3FyXElFE6oRBG_lg__P66ncHVwMNxL93ZGu4_gWsgVjgPW71iDztl07h4T7DrLnjS-LuDosqfXb3EJQ24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IP4JFDAIjtFmY0-cPSBU2K5aSkuRWGlvqWM7UCGSZbcr6I1HQOJteByehBlnd9tFiFuvsZVYmR9_n8czA_DUldiz2mKMHjFWLlOxcZzszuA9y2XVc5yNvLefbQ_V6xGO1uDXIheGr1UufGJw1K6xfEbekSmx85z0UXWq-bWIg_7gxfhLzB2kONK6aKfRqsiuP_lK9G36fKdPsn6WpoOt96-243mHgdhKwhaxwxIx97LExJFqEpeymDlpUFfkJHKHThuTE8LIZFJ1jeyW1qBVqfKYVRqNpPdegItaEqoiW9KjU7Inifu1lYwkLbwzJRyBHINc2f9Cm4B_Ydu_r2ie2fMG1-DqHKyKzVa7rsOar2_AlTMlDG_Cj3cz0943CiIWTSUIUoo9zxnFrADigI_7J1y3VRzVYTAEDn5__7n1rZl-om2P4KcYjmkSfemzCGeUlbFe9EMKpXhL1kZbhhN8sC-4u_Bs0r6szaE6EcFliU0uJTK9BcNzkcFtWK-b2t8FYX1ly7wsuUKNyi3STCL_qe3qTPWcqSJ4svj3xbgt5lEQCWIBFUsBRfCSpbKcwPW3w4Nm8qGYm3MhdY4qNdZiYlSWlTlWBJ18YlLGw-gi2FjItJg7hWlxqsIRPF4OkzlzjMbUvpm1c5jSyySCO60KLFeiCN1rrbsR5CvKsbLU1ZH66GMoGU74RBHTlvf-v65HcImMqnizs797Hy6n3Oo44UIeG7B-PJn5B4S_jsuHQdEFHJ63Zf0Bok1GNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+the+Mechanical+Properties+in+the+Human%E2%80%93Exoskeleton+Upper+Arm+Interface+During+Overhead+Work+Postures+in+Healthy+Young+Adults&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jonas+Schiebl&rft.au=Nawid+Elsner&rft.au=Paul+Birchinger&rft.au=Jonas+Aschenbrenner&rft.date=2025-07-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=15&rft.spage=4605&rft_id=info:doi/10.3390%2Fs25154605&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_378542acc50a466b85f151e0a293265d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |