On symmetric division deg index of unicyclic graphs and bicyclic graphs with given matching number

Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular graphs of som...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 8; pp. 9020 - 9035
Main Authors Sun, Xiaoling, Gao, Yubin, Du, Jianwei
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular graphs of some chemical compounds are unicyclic graphs or bicyclic graphs, such as benzene compounds, napthalene, cycloalkane, et al. For another, the symmetric division deg index is proven to be a potentially useful molecular descriptor in quantitative structure-property/activity relationships (QSPR/QSAR) studies recently. Therefore, we present the maximum symmetric division deg indices of unicyclic graphs and bicyclic graphs with given matching number. Furthermore, we identify the corresponding extremal graphs.
AbstractList Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular graphs of some chemical compounds are unicyclic graphs or bicyclic graphs, such as benzene compounds, napthalene, cycloalkane, et al. For another, the symmetric division deg index is proven to be a potentially useful molecular descriptor in quantitative structure-property/activity relationships (QSPR/QSAR) studies recently. Therefore, we present the maximum symmetric division deg indices of unicyclic graphs and bicyclic graphs with given matching number. Furthermore, we identify the corresponding extremal graphs.
Author Sun, Xiaoling
Gao, Yubin
Du, Jianwei
Author_xml – sequence: 1
  givenname: Xiaoling
  surname: Sun
  fullname: Sun, Xiaoling
– sequence: 2
  givenname: Yubin
  surname: Gao
  fullname: Gao, Yubin
– sequence: 3
  givenname: Jianwei
  surname: Du
  fullname: Du, Jianwei
BookMark eNptUMtOwzAQtFCRKKU3PsAfQIqftXNEFY9KlXqBs-VXEleJUzlpoX9PSouEKk67OzszGs0tGMU2egDuMZrRnLLHRvfVjCCCOaFXYEyYoNk8l3L0Z78B067bIDSwCCOCjYFZR9gdmsb3KVjowj50oY3Q-RKG6PwXbAu4i8EebD38y6S3VQd1dNBcYJ-hr2AZ9j7CIYmtQixh3DXGpztwXei689PznICPl-f3xVu2Wr8uF0-rzFIk-6ywznunC4JMgSimzHOJEBZUaoStQKzQubGGO80pMVhgmWNLufHSeD_nOZ2A5cnXtXqjtik0Oh1Uq4P6AdpUKp36YGuviLaIWSPonGOmJR3OnFpeCMaxILkYvMjJy6a265IvlA297odq-qRDrTBSx9LVsXR1Ln0QPVyIfkP8S_8GDRuGyw
CitedBy_id crossref_primary_10_1155_2022_7783128
crossref_primary_10_1007_s40314_023_02428_1
crossref_primary_10_1016_j_amc_2022_127438
crossref_primary_10_1016_j_amc_2023_128390
crossref_primary_10_3390_computation10100181
Cites_doi 10.2298/FIL1903683D
10.1007/s12190-020-01386-9
10.1109/ACCESS.2019.2927288
10.1016/S0024-3795(03)00394-X
10.1016/j.amc.2019.124737
10.1007/s10910-005-9017-1
10.1002/qua.25659
10.1007/978-1-349-03521-2
ContentType Journal Article
CorporateAuthor School of Science, North University of China, Taiyuan 030051, China
CorporateAuthor_xml – name: School of Science, North University of China, Taiyuan 030051, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021523
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 9035
ExternalDocumentID oai_doaj_org_article_2ac04cb736514a83ac093c5f74517297
10_3934_math_2021523
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c308t-fcdeedaf20bf03134e58001738a01c704fa9bcb5da532b171891c35be8bee6593
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:27:05 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-fcdeedaf20bf03134e58001738a01c704fa9bcb5da532b171891c35be8bee6593
OpenAccessLink https://doaj.org/article/2ac04cb736514a83ac093c5f74517297
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2ac04cb736514a83ac093c5f74517297
crossref_citationtrail_10_3934_math_2021523
crossref_primary_10_3934_math_2021523
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021523-2
key-10.3934/math.2021523-1
key-10.3934/math.2021523-16
key-10.3934/math.2021523-17
key-10.3934/math.2021523-18
key-10.3934/math.2021523-19
key-10.3934/math.2021523-10
key-10.3934/math.2021523-11
key-10.3934/math.2021523-12
key-10.3934/math.2021523-13
key-10.3934/math.2021523-14
key-10.3934/math.2021523-15
key-10.3934/math.2021523-8
key-10.3934/math.2021523-7
key-10.3934/math.2021523-20
key-10.3934/math.2021523-21
key-10.3934/math.2021523-9
key-10.3934/math.2021523-22
key-10.3934/math.2021523-4
key-10.3934/math.2021523-23
key-10.3934/math.2021523-3
key-10.3934/math.2021523-24
key-10.3934/math.2021523-6
key-10.3934/math.2021523-25
key-10.3934/math.2021523-5
References_xml – ident: key-10.3934/math.2021523-9
  doi: 10.2298/FIL1903683D
– ident: key-10.3934/math.2021523-11
– ident: key-10.3934/math.2021523-10
  doi: 10.1007/s12190-020-01386-9
– ident: key-10.3934/math.2021523-13
– ident: key-10.3934/math.2021523-8
– ident: key-10.3934/math.2021523-18
  doi: 10.1109/ACCESS.2019.2927288
– ident: key-10.3934/math.2021523-21
  doi: 10.1016/S0024-3795(03)00394-X
– ident: key-10.3934/math.2021523-3
– ident: key-10.3934/math.2021523-1
– ident: key-10.3934/math.2021523-23
– ident: key-10.3934/math.2021523-5
– ident: key-10.3934/math.2021523-16
– ident: key-10.3934/math.2021523-7
– ident: key-10.3934/math.2021523-19
  doi: 10.1016/j.amc.2019.124737
– ident: key-10.3934/math.2021523-14
– ident: key-10.3934/math.2021523-22
  doi: 10.1007/s10910-005-9017-1
– ident: key-10.3934/math.2021523-6
  doi: 10.1002/qua.25659
– ident: key-10.3934/math.2021523-12
– ident: key-10.3934/math.2021523-25
– ident: key-10.3934/math.2021523-4
– ident: key-10.3934/math.2021523-2
– ident: key-10.3934/math.2021523-17
– ident: key-10.3934/math.2021523-15
– ident: key-10.3934/math.2021523-24
– ident: key-10.3934/math.2021523-20
  doi: 10.1007/978-1-349-03521-2
SSID ssj0002124274
Score 2.187195
Snippet Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 9020
SubjectTerms bicyclic graph
matching number
perfect matching
symmetric division deg index
unicyclic graph
Title On symmetric division deg index of unicyclic graphs and bicyclic graphs with given matching number
URI https://doaj.org/article/2ac04cb736514a83ac093c5f74517297
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMV4KQc4oWptk7TNERDThDS4MGm3KnGTXbYOse2wf4-dlmkgIS4cm1pRZFf-7NT-zNhNIQCRG2SU5EZH0gobGZuoyOceNAKqSgO7_vAlG4zk81iNt0Z9UU1YQw_cKK6XGogl2FxkCO2mEPioBSifS4XYq0MfOWLeVjJFPhgdssR8q6l0F1rIHsZ_9O-BxriKbxi0RdUfMKV_wPbbYJDfN4c4ZDuuPmJ7ww2T6uKY2deaL9azGQ2-Ak7NU3S9xSs34YHokM89pwaPNUzxfaCfXnBTV9z-WKMLVz4h38Zx71BByZtxICds1H96exxE7VyECERcLCMPFSKb8WlsPVEvSqcKQhtRmDiBPJbeaAtWVUaJ1CaIPjoBoawrrHOZ0uKUdep57c4YV7kFjBkIp3PpCtDaZWllvY-1g7jyXXb3pakSWtJwml0xLTF5IL2WpNey1WuX3W6k3xuyjF_kHkjpGxmiuA4LaPiyNXz5l-HP_2OTC7ZLZ2ruVC5ZZ_mxclcYZSztdfigPgFBMtAg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+symmetric+division+deg+index+of+unicyclic+graphs+and+bicyclic+graphs+with+given+matching+number&rft.jtitle=AIMS+mathematics&rft.au=Sun%2C+Xiaoling&rft.au=Gao%2C+Yubin&rft.au=Du%2C+Jianwei&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=8&rft.spage=9020&rft.epage=9035&rft_id=info:doi/10.3934%2Fmath.2021523&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon