On symmetric division deg index of unicyclic graphs and bicyclic graphs with given matching number
Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular graphs of som...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 8; pp. 9020 - 9035 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular graphs of some chemical compounds are unicyclic graphs or bicyclic graphs, such as benzene compounds, napthalene, cycloalkane, et al. For another, the symmetric division deg index is proven to be a potentially useful molecular descriptor in quantitative structure-property/activity relationships (QSPR/QSAR) studies recently. Therefore, we present the maximum symmetric division deg indices of unicyclic graphs and bicyclic graphs with given matching number. Furthermore, we identify the corresponding extremal graphs. |
---|---|
AbstractList | Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the vertices represent the atoms and the edges represent the chemical bonds in the terms of graph theory. For one thing, the molecular graphs of some chemical compounds are unicyclic graphs or bicyclic graphs, such as benzene compounds, napthalene, cycloalkane, et al. For another, the symmetric division deg index is proven to be a potentially useful molecular descriptor in quantitative structure-property/activity relationships (QSPR/QSAR) studies recently. Therefore, we present the maximum symmetric division deg indices of unicyclic graphs and bicyclic graphs with given matching number. Furthermore, we identify the corresponding extremal graphs. |
Author | Sun, Xiaoling Gao, Yubin Du, Jianwei |
Author_xml | – sequence: 1 givenname: Xiaoling surname: Sun fullname: Sun, Xiaoling – sequence: 2 givenname: Yubin surname: Gao fullname: Gao, Yubin – sequence: 3 givenname: Jianwei surname: Du fullname: Du, Jianwei |
BookMark | eNptUMtOwzAQtFCRKKU3PsAfQIqftXNEFY9KlXqBs-VXEleJUzlpoX9PSouEKk67OzszGs0tGMU2egDuMZrRnLLHRvfVjCCCOaFXYEyYoNk8l3L0Z78B067bIDSwCCOCjYFZR9gdmsb3KVjowj50oY3Q-RKG6PwXbAu4i8EebD38y6S3VQd1dNBcYJ-hr2AZ9j7CIYmtQixh3DXGpztwXei689PznICPl-f3xVu2Wr8uF0-rzFIk-6ywznunC4JMgSimzHOJEBZUaoStQKzQubGGO80pMVhgmWNLufHSeD_nOZ2A5cnXtXqjtik0Oh1Uq4P6AdpUKp36YGuviLaIWSPonGOmJR3OnFpeCMaxILkYvMjJy6a265IvlA297odq-qRDrTBSx9LVsXR1Ln0QPVyIfkP8S_8GDRuGyw |
CitedBy_id | crossref_primary_10_1155_2022_7783128 crossref_primary_10_1007_s40314_023_02428_1 crossref_primary_10_1016_j_amc_2022_127438 crossref_primary_10_1016_j_amc_2023_128390 crossref_primary_10_3390_computation10100181 |
Cites_doi | 10.2298/FIL1903683D 10.1007/s12190-020-01386-9 10.1109/ACCESS.2019.2927288 10.1016/S0024-3795(03)00394-X 10.1016/j.amc.2019.124737 10.1007/s10910-005-9017-1 10.1002/qua.25659 10.1007/978-1-349-03521-2 |
ContentType | Journal Article |
CorporateAuthor | School of Science, North University of China, Taiyuan 030051, China |
CorporateAuthor_xml | – name: School of Science, North University of China, Taiyuan 030051, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021523 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 9035 |
ExternalDocumentID | oai_doaj_org_article_2ac04cb736514a83ac093c5f74517297 10_3934_math_2021523 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c308t-fcdeedaf20bf03134e58001738a01c704fa9bcb5da532b171891c35be8bee6593 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:27:05 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-fcdeedaf20bf03134e58001738a01c704fa9bcb5da532b171891c35be8bee6593 |
OpenAccessLink | https://doaj.org/article/2ac04cb736514a83ac093c5f74517297 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ac04cb736514a83ac093c5f74517297 crossref_citationtrail_10_3934_math_2021523 crossref_primary_10_3934_math_2021523 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021523-2 key-10.3934/math.2021523-1 key-10.3934/math.2021523-16 key-10.3934/math.2021523-17 key-10.3934/math.2021523-18 key-10.3934/math.2021523-19 key-10.3934/math.2021523-10 key-10.3934/math.2021523-11 key-10.3934/math.2021523-12 key-10.3934/math.2021523-13 key-10.3934/math.2021523-14 key-10.3934/math.2021523-15 key-10.3934/math.2021523-8 key-10.3934/math.2021523-7 key-10.3934/math.2021523-20 key-10.3934/math.2021523-21 key-10.3934/math.2021523-9 key-10.3934/math.2021523-22 key-10.3934/math.2021523-4 key-10.3934/math.2021523-23 key-10.3934/math.2021523-3 key-10.3934/math.2021523-24 key-10.3934/math.2021523-6 key-10.3934/math.2021523-25 key-10.3934/math.2021523-5 |
References_xml | – ident: key-10.3934/math.2021523-9 doi: 10.2298/FIL1903683D – ident: key-10.3934/math.2021523-11 – ident: key-10.3934/math.2021523-10 doi: 10.1007/s12190-020-01386-9 – ident: key-10.3934/math.2021523-13 – ident: key-10.3934/math.2021523-8 – ident: key-10.3934/math.2021523-18 doi: 10.1109/ACCESS.2019.2927288 – ident: key-10.3934/math.2021523-21 doi: 10.1016/S0024-3795(03)00394-X – ident: key-10.3934/math.2021523-3 – ident: key-10.3934/math.2021523-1 – ident: key-10.3934/math.2021523-23 – ident: key-10.3934/math.2021523-5 – ident: key-10.3934/math.2021523-16 – ident: key-10.3934/math.2021523-7 – ident: key-10.3934/math.2021523-19 doi: 10.1016/j.amc.2019.124737 – ident: key-10.3934/math.2021523-14 – ident: key-10.3934/math.2021523-22 doi: 10.1007/s10910-005-9017-1 – ident: key-10.3934/math.2021523-6 doi: 10.1002/qua.25659 – ident: key-10.3934/math.2021523-12 – ident: key-10.3934/math.2021523-25 – ident: key-10.3934/math.2021523-4 – ident: key-10.3934/math.2021523-2 – ident: key-10.3934/math.2021523-17 – ident: key-10.3934/math.2021523-15 – ident: key-10.3934/math.2021523-24 – ident: key-10.3934/math.2021523-20 doi: 10.1007/978-1-349-03521-2 |
SSID | ssj0002124274 |
Score | 2.187195 |
Snippet | Nowadays, it is an important task to find extremal values on any molecular descriptor with respect to different graph parameters. In a molecular graph, the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 9020 |
SubjectTerms | bicyclic graph matching number perfect matching symmetric division deg index unicyclic graph |
Title | On symmetric division deg index of unicyclic graphs and bicyclic graphs with given matching number |
URI | https://doaj.org/article/2ac04cb736514a83ac093c5f74517297 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMV4KQc4oWptk7TNERDThDS4MGm3KnGTXbYOse2wf4-dlmkgIS4cm1pRZFf-7NT-zNhNIQCRG2SU5EZH0gobGZuoyOceNAKqSgO7_vAlG4zk81iNt0Z9UU1YQw_cKK6XGogl2FxkCO2mEPioBSifS4XYq0MfOWLeVjJFPhgdssR8q6l0F1rIHsZ_9O-BxriKbxi0RdUfMKV_wPbbYJDfN4c4ZDuuPmJ7ww2T6uKY2deaL9azGQ2-Ak7NU3S9xSs34YHokM89pwaPNUzxfaCfXnBTV9z-WKMLVz4h38Zx71BByZtxICds1H96exxE7VyECERcLCMPFSKb8WlsPVEvSqcKQhtRmDiBPJbeaAtWVUaJ1CaIPjoBoawrrHOZ0uKUdep57c4YV7kFjBkIp3PpCtDaZWllvY-1g7jyXXb3pakSWtJwml0xLTF5IL2WpNey1WuX3W6k3xuyjF_kHkjpGxmiuA4LaPiyNXz5l-HP_2OTC7ZLZ2ruVC5ZZ_mxclcYZSztdfigPgFBMtAg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+symmetric+division+deg+index+of+unicyclic+graphs+and+bicyclic+graphs+with+given+matching+number&rft.jtitle=AIMS+mathematics&rft.au=Sun%2C+Xiaoling&rft.au=Gao%2C+Yubin&rft.au=Du%2C+Jianwei&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=8&rft.spage=9020&rft.epage=9035&rft_id=info:doi/10.3934%2Fmath.2021523&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |