Non-intrusive load identification method based on GAF and RAN networks
Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology can alleviate the problem of energy shortage and is a key technique for achieving efficient management on the user side. In response to the c...
Saved in:
Published in | Frontiers in energy research Vol. 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
29.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology can alleviate the problem of energy shortage and is a key technique for achieving efficient management on the user side. In response to the cumbersome process of manually selecting load features and the low accuracy of identification in traditional machine learning algorithms for non-intrusive load identification, this paper proposes a method that transforms the one-dimensional reactive electric signal of the load into a two-dimensional image using Gram coding and utilizes the Residual Attention Network (RAN) for load classification and recognition. By transforming the one-dimensional electrical signal into a two-dimensional image as the input to the RAN network, this approach retains the original load information while providing richer information for the RAN network to extract load features. Furthermore, the RAN network effectively addresses the poor performance and gradient vanishing issues of deep learning networks through bottleneck residual blocks. Finally, experiments were conducted on a public dataset to verify the effectiveness of the proposed method. |
---|---|
AbstractList | Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology can alleviate the problem of energy shortage and is a key technique for achieving efficient management on the user side. In response to the cumbersome process of manually selecting load features and the low accuracy of identification in traditional machine learning algorithms for non-intrusive load identification, this paper proposes a method that transforms the one-dimensional reactive electric signal of the load into a two-dimensional image using Gram coding and utilizes the Residual Attention Network (RAN) for load classification and recognition. By transforming the one-dimensional electrical signal into a two-dimensional image as the input to the RAN network, this approach retains the original load information while providing richer information for the RAN network to extract load features. Furthermore, the RAN network effectively addresses the poor performance and gradient vanishing issues of deep learning networks through bottleneck residual blocks. Finally, experiments were conducted on a public dataset to verify the effectiveness of the proposed method. |
Author | Jianyuan, Wang Yibo, Sun |
Author_xml | – sequence: 1 givenname: Wang surname: Jianyuan fullname: Jianyuan, Wang – sequence: 2 givenname: Sun surname: Yibo fullname: Yibo, Sun |
BookMark | eNpNkMtKQzEQhoNUsNa-gKu8wKmT5NyyLMXWQqkgCu5CrjW1TSQ5Kr69pxfE1cz8A98M3zUahBgsQrcEJoy1_M7ZkDYTCpRNCGNQc7hAQ0p5XVS8fR3866_QOOctABBGq5LAEM3XMRQ-dOkz-y-Ld1Ea7I0NnXdey87HgPe2e4sGK5mtwf28mM6xDAY_Tdc42O47pvd8gy6d3GU7PtcRepnfP88eitXjYjmbrgrNoO0K7UrQUitLCNXcgWyNri03tSXaGdI0rHa1om3_nzVQ0baU_drxWjUld0axEVqeuCbKrfhIfi_Tj4jSi2MQ00bI1Hm9s4JUmpbQsNZKKJWrlAJeSsZVBYbS_sII0RNLp5hzsu6PR0AcxIqjWHEQK85i2S_jgG5W |
Cites_doi | 10.1016/j.neucom.2011.10.037 10.16109/j.cnki.jldl.2021.01.001 10.16081/j.epae.202011001 10.3788/LOP212374 10.1109/TSG.2020.3010621 10.12204/j.issn.1000-7229.2021.03.012 10.16081/j.issn.1006-6047.2018.12.019 10.1109/CVPR.2017.683 10.3389/fenrg.2021.802697 10.3389/fenrg.2023.1217279 10.3969/j.issn.2097-0706.2023.08.007 10.1016/j.enbuild.2017.09.087 10.1145/2674061.2675032 10.3390/en13133374 10.1109/CVPR.2016.90 10.1109/JPETS.2016.2559507 10.1145/2821650.2821672 10.13336/j.1003-6520.hve.20220273 10.1109/TSG.2015.2428706 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fenrg.2023.1330690 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_15c240738ea04bf5bb094a39b50d2201 10_3389_fenrg_2023_1330690 |
GroupedDBID | 2XV 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ IAO IEA ISR KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c308t-cf40cacbe112c9f0a8dc6e9d6e1cfd17736f6b28013ed05284a6e9f96b749fdb3 |
IEDL.DBID | DOA |
ISSN | 2296-598X |
IngestDate | Tue Oct 22 15:13:19 EDT 2024 Thu Sep 26 16:15:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-cf40cacbe112c9f0a8dc6e9d6e1cfd17736f6b28013ed05284a6e9f96b749fdb3 |
OpenAccessLink | https://doaj.org/article/15c240738ea04bf5bb094a39b50d2201 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_15c240738ea04bf5bb094a39b50d2201 crossref_primary_10_3389_fenrg_2023_1330690 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-29 |
PublicationDateYYYYMMDD | 2023-12-29 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | B20 Zhao (B22) 2023; 60 Gillis (B7) 2015; 7 Teshome (B16) 2016; 3 He (B9) 2016 Wang (B18) 2017 Wang (B19) 2021; 49 Lianwei (B11) 2021; 9 Linna (B12) 2023; 11 Tu (B17) 2018; 38 Liu (B14) 2023; 49 Darby (B1) 2006; 486 Kelly (B10) 2015; 8 Liu (B13) 2021; 42 De Baets (B2) 2018; 158 Guo (B8) 2021; 41 Xing (B21) 2017; 27 Faustine (B3) 2020; 99 Gao (B6) 2014; 58 Teng (B15) 2023; 45 Faustine (B4) 2020; 13 Figueiredo (B5) 2012; 96 |
References_xml | – volume: 96 start-page: 66 year: 2012 ident: B5 article-title: Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.037 contributor: fullname: Figueiredo – volume: 49 start-page: 1 year: 2021 ident: B19 article-title: Non-intrusive household load rapid identification method based on steady-state current waveform matching publication-title: Jilin Electr. Power doi: 10.16109/j.cnki.jldl.2021.01.001 contributor: fullname: Wang – volume: 41 start-page: 135 year: 2021 ident: B8 article-title: Review on key techniques of non-intrusive load monitoring publication-title: Electr. Power Autom. Equip. doi: 10.16081/j.epae.202011001 contributor: fullname: Guo – volume: 60 start-page: 0210001 year: 2023 ident: B22 article-title: Non-intrusive power load identification algorithm based on hyperparameter optimization of convolutional neural network publication-title: Prog. Laser Optoelectron. doi: 10.3788/LOP212374 contributor: fullname: Zhao – volume: 99 start-page: 1 year: 2020 ident: B3 article-title: Adaptive weighted recurrence graphs for appliance recognition in non-intrusive load monitoring publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3010621 contributor: fullname: Faustine – volume: 486 year: 2006 ident: B1 article-title: The effectiveness of feedback on energy consumption publication-title: A Review for Defra of the Literature on Metering contributor: fullname: Darby – volume: 42 start-page: 97 year: 2021 ident: B13 article-title: Non-intrusive residential electricity load disaggregation based on temporal convolutional neural network publication-title: Electr. Power Constr. doi: 10.12204/j.issn.1000-7229.2021.03.012 contributor: fullname: Liu – volume: 38 start-page: 128 year: 2018 ident: B17 article-title: Comparison of non-intrusive load monitoring algorithms based on supervised learning publication-title: Electr. Power Autom. Equip. doi: 10.16081/j.issn.1006-6047.2018.12.019 contributor: fullname: Tu – ident: B20 – year: 2017 ident: B18 article-title: Residual attention network for image classification doi: 10.1109/CVPR.2017.683 contributor: fullname: Wang – volume: 9 year: 2021 ident: B11 article-title: Urban household energy consumption forecasting based on energy price impact mechanism publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.802697 contributor: fullname: Lianwei – volume: 11 year: 2023 ident: B12 article-title: Process simulation on the planning of wind-PV storage for near-zero carbon emission publication-title: Front. Energy Res. doi: 10.3389/fenrg.2023.1217279 contributor: fullname: Linna – volume: 45 start-page: 53 year: 2023 ident: B15 article-title: Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality publication-title: Integr. Intell. Energy doi: 10.3969/j.issn.2097-0706.2023.08.007 contributor: fullname: Teng – volume: 158 start-page: 32 year: 2018 ident: B2 article-title: Appliance classification using VI trajectories and convolutional neural networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.09.087 contributor: fullname: De Baets – volume: 58 year: 2014 ident: B6 article-title: PLAID: a public dataset of high-resoultion electrical appliance measurements for load identification research: demo abstract publication-title: ACM doi: 10.1145/2674061.2675032 contributor: fullname: Gao – volume: 13 start-page: 3374 year: 2020 ident: B4 article-title: Improved appliance classification in non-intrusive load monitoring using weighted recurrence graph and convolutional neural networks publication-title: Energies doi: 10.3390/en13133374 contributor: fullname: Faustine – year: 2016 ident: B9 article-title: Deep residual learning for image recognition doi: 10.1109/CVPR.2016.90 contributor: fullname: He – volume: 3 start-page: 60 year: 2016 ident: B16 article-title: Distinctive load feature extraction based on fryze's time-domain power theory publication-title: IEEE Power & Energy Technol. Syst. J. doi: 10.1109/JPETS.2016.2559507 contributor: fullname: Teshome – volume: 8 year: 2015 ident: B10 article-title: Neural NILM: deep neural networks applied to energy disaggregation publication-title: Intell. Distrib. Comput. doi: 10.1145/2821650.2821672 contributor: fullname: Kelly – volume: 49 start-page: 3584 year: 2023 ident: B14 article-title: Review on the application of deep learning object detection algorithms in insulator defect detection of overhead transmission lines publication-title: High. Volt. Eng. doi: 10.13336/j.1003-6520.hve.20220273 contributor: fullname: Liu – volume: 7 start-page: 320 year: 2015 ident: B7 article-title: Non-intrusive load monitoring using wavelet design and machine learning publication-title: IEEE Transanctions Smart Grid doi: 10.1109/TSG.2015.2428706 contributor: fullname: Gillis – volume: 27 start-page: 207 year: 2017 ident: B21 article-title: Study on urban residents' electricity behavior and electricity consumption elasticity publication-title: CHINA Popul. Resour. Environ. contributor: fullname: Xing |
SSID | ssj0001325410 |
Score | 2.2896109 |
Snippet | Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | bottleneck residual blocks gram code non-intrusive load identification one-dimensional reactive electric signal residual attention net |
Title | Non-intrusive load identification method based on GAF and RAN networks |
URI | https://doaj.org/article/15c240738ea04bf5bb094a39b50d2201 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJz2In7h-kYM36W7atGlyXMW6CO5BXNhbyKcsSFdw_z_ONFXqyYvHtqGE99JOXph5Q8iNEHUoeCiBgSpkpQ08U0Fhf5NcMl56l3usd35eiPmyfFpVq0GrL8wJS_bACbhpXjkUHVwGw0obK2tBkBiubMV8UfSVW0wNxFR3usJB-OQsVcmAClPTCHS8TbBZ-ARkGfrz_opEA8P-LrI0B2S_3xLSWZrKIdkJ7RHZGxgFHpNmsWmzdYsFEvB3ou8b4-na94k-HbY0tYKmGJU8hevHWUNN6-nLbEHblOv9eUKWzcPr_TzrOyBkjjO5zVwsmTPOBtgVORWZkd6JoLwIuYs-r2suorCFxLNMzyoINQYeRyVsXaroLT8lo3bThjNCgYrCSBm7ylkprIEv0ckaBjErWVRjcvuNhv5IRhcaBAJipzvsNGKne-zG5A4B-xmJJtXdDaBO99Tpv6g7_4-XXJBdnBhmmBTqkoyAiXAF-4Stve6WxBdrybj- |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+load+identification+method+based+on+GAF+and+RAN+networks&rft.jtitle=Frontiers+in+energy+research&rft.au=Wang+Jianyuan&rft.au=Sun+Yibo&rft.date=2023-12-29&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1330690&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_15c240738ea04bf5bb094a39b50d2201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |