Non-intrusive load identification method based on GAF and RAN networks

Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology can alleviate the problem of energy shortage and is a key technique for achieving efficient management on the user side. In response to the c...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 11
Main Authors Jianyuan, Wang, Yibo, Sun
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 29.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology can alleviate the problem of energy shortage and is a key technique for achieving efficient management on the user side. In response to the cumbersome process of manually selecting load features and the low accuracy of identification in traditional machine learning algorithms for non-intrusive load identification, this paper proposes a method that transforms the one-dimensional reactive electric signal of the load into a two-dimensional image using Gram coding and utilizes the Residual Attention Network (RAN) for load classification and recognition. By transforming the one-dimensional electrical signal into a two-dimensional image as the input to the RAN network, this approach retains the original load information while providing richer information for the RAN network to extract load features. Furthermore, the RAN network effectively addresses the poor performance and gradient vanishing issues of deep learning networks through bottleneck residual blocks. Finally, experiments were conducted on a public dataset to verify the effectiveness of the proposed method.
AbstractList Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology can alleviate the problem of energy shortage and is a key technique for achieving efficient management on the user side. In response to the cumbersome process of manually selecting load features and the low accuracy of identification in traditional machine learning algorithms for non-intrusive load identification, this paper proposes a method that transforms the one-dimensional reactive electric signal of the load into a two-dimensional image using Gram coding and utilizes the Residual Attention Network (RAN) for load classification and recognition. By transforming the one-dimensional electrical signal into a two-dimensional image as the input to the RAN network, this approach retains the original load information while providing richer information for the RAN network to extract load features. Furthermore, the RAN network effectively addresses the poor performance and gradient vanishing issues of deep learning networks through bottleneck residual blocks. Finally, experiments were conducted on a public dataset to verify the effectiveness of the proposed method.
Author Jianyuan, Wang
Yibo, Sun
Author_xml – sequence: 1
  givenname: Wang
  surname: Jianyuan
  fullname: Jianyuan, Wang
– sequence: 2
  givenname: Sun
  surname: Yibo
  fullname: Yibo, Sun
BookMark eNpNkMtKQzEQhoNUsNa-gKu8wKmT5NyyLMXWQqkgCu5CrjW1TSQ5Kr69pxfE1cz8A98M3zUahBgsQrcEJoy1_M7ZkDYTCpRNCGNQc7hAQ0p5XVS8fR3866_QOOctABBGq5LAEM3XMRQ-dOkz-y-Ld1Ea7I0NnXdey87HgPe2e4sGK5mtwf28mM6xDAY_Tdc42O47pvd8gy6d3GU7PtcRepnfP88eitXjYjmbrgrNoO0K7UrQUitLCNXcgWyNri03tSXaGdI0rHa1om3_nzVQ0baU_drxWjUld0axEVqeuCbKrfhIfi_Tj4jSi2MQ00bI1Hm9s4JUmpbQsNZKKJWrlAJeSsZVBYbS_sII0RNLp5hzsu6PR0AcxIqjWHEQK85i2S_jgG5W
Cites_doi 10.1016/j.neucom.2011.10.037
10.16109/j.cnki.jldl.2021.01.001
10.16081/j.epae.202011001
10.3788/LOP212374
10.1109/TSG.2020.3010621
10.12204/j.issn.1000-7229.2021.03.012
10.16081/j.issn.1006-6047.2018.12.019
10.1109/CVPR.2017.683
10.3389/fenrg.2021.802697
10.3389/fenrg.2023.1217279
10.3969/j.issn.2097-0706.2023.08.007
10.1016/j.enbuild.2017.09.087
10.1145/2674061.2675032
10.3390/en13133374
10.1109/CVPR.2016.90
10.1109/JPETS.2016.2559507
10.1145/2821650.2821672
10.13336/j.1003-6520.hve.20220273
10.1109/TSG.2015.2428706
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2023.1330690
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_15c240738ea04bf5bb094a39b50d2201
10_3389_fenrg_2023_1330690
GroupedDBID 2XV
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IAO
IEA
ISR
KQ8
M~E
OK1
ID FETCH-LOGICAL-c308t-cf40cacbe112c9f0a8dc6e9d6e1cfd17736f6b28013ed05284a6e9f96b749fdb3
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Tue Oct 22 15:13:19 EDT 2024
Thu Sep 26 16:15:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-cf40cacbe112c9f0a8dc6e9d6e1cfd17736f6b28013ed05284a6e9f96b749fdb3
OpenAccessLink https://doaj.org/article/15c240738ea04bf5bb094a39b50d2201
ParticipantIDs doaj_primary_oai_doaj_org_article_15c240738ea04bf5bb094a39b50d2201
crossref_primary_10_3389_fenrg_2023_1330690
PublicationCentury 2000
PublicationDate 2023-12-29
PublicationDateYYYYMMDD 2023-12-29
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-29
  day: 29
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References B20
Zhao (B22) 2023; 60
Gillis (B7) 2015; 7
Teshome (B16) 2016; 3
He (B9) 2016
Wang (B18) 2017
Wang (B19) 2021; 49
Lianwei (B11) 2021; 9
Linna (B12) 2023; 11
Tu (B17) 2018; 38
Liu (B14) 2023; 49
Darby (B1) 2006; 486
Kelly (B10) 2015; 8
Liu (B13) 2021; 42
De Baets (B2) 2018; 158
Guo (B8) 2021; 41
Xing (B21) 2017; 27
Faustine (B3) 2020; 99
Gao (B6) 2014; 58
Teng (B15) 2023; 45
Faustine (B4) 2020; 13
Figueiredo (B5) 2012; 96
References_xml – volume: 96
  start-page: 66
  year: 2012
  ident: B5
  article-title: Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.037
  contributor:
    fullname: Figueiredo
– volume: 49
  start-page: 1
  year: 2021
  ident: B19
  article-title: Non-intrusive household load rapid identification method based on steady-state current waveform matching
  publication-title: Jilin Electr. Power
  doi: 10.16109/j.cnki.jldl.2021.01.001
  contributor:
    fullname: Wang
– volume: 41
  start-page: 135
  year: 2021
  ident: B8
  article-title: Review on key techniques of non-intrusive load monitoring
  publication-title: Electr. Power Autom. Equip.
  doi: 10.16081/j.epae.202011001
  contributor:
    fullname: Guo
– volume: 60
  start-page: 0210001
  year: 2023
  ident: B22
  article-title: Non-intrusive power load identification algorithm based on hyperparameter optimization of convolutional neural network
  publication-title: Prog. Laser Optoelectron.
  doi: 10.3788/LOP212374
  contributor:
    fullname: Zhao
– volume: 99
  start-page: 1
  year: 2020
  ident: B3
  article-title: Adaptive weighted recurrence graphs for appliance recognition in non-intrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3010621
  contributor:
    fullname: Faustine
– volume: 486
  year: 2006
  ident: B1
  article-title: The effectiveness of feedback on energy consumption
  publication-title: A Review for Defra of the Literature on Metering
  contributor:
    fullname: Darby
– volume: 42
  start-page: 97
  year: 2021
  ident: B13
  article-title: Non-intrusive residential electricity load disaggregation based on temporal convolutional neural network
  publication-title: Electr. Power Constr.
  doi: 10.12204/j.issn.1000-7229.2021.03.012
  contributor:
    fullname: Liu
– volume: 38
  start-page: 128
  year: 2018
  ident: B17
  article-title: Comparison of non-intrusive load monitoring algorithms based on supervised learning
  publication-title: Electr. Power Autom. Equip.
  doi: 10.16081/j.issn.1006-6047.2018.12.019
  contributor:
    fullname: Tu
– ident: B20
– year: 2017
  ident: B18
  article-title: Residual attention network for image classification
  doi: 10.1109/CVPR.2017.683
  contributor:
    fullname: Wang
– volume: 9
  year: 2021
  ident: B11
  article-title: Urban household energy consumption forecasting based on energy price impact mechanism
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.802697
  contributor:
    fullname: Lianwei
– volume: 11
  year: 2023
  ident: B12
  article-title: Process simulation on the planning of wind-PV storage for near-zero carbon emission
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1217279
  contributor:
    fullname: Linna
– volume: 45
  start-page: 53
  year: 2023
  ident: B15
  article-title: Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality
  publication-title: Integr. Intell. Energy
  doi: 10.3969/j.issn.2097-0706.2023.08.007
  contributor:
    fullname: Teng
– volume: 158
  start-page: 32
  year: 2018
  ident: B2
  article-title: Appliance classification using VI trajectories and convolutional neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.09.087
  contributor:
    fullname: De Baets
– volume: 58
  year: 2014
  ident: B6
  article-title: PLAID: a public dataset of high-resoultion electrical appliance measurements for load identification research: demo abstract
  publication-title: ACM
  doi: 10.1145/2674061.2675032
  contributor:
    fullname: Gao
– volume: 13
  start-page: 3374
  year: 2020
  ident: B4
  article-title: Improved appliance classification in non-intrusive load monitoring using weighted recurrence graph and convolutional neural networks
  publication-title: Energies
  doi: 10.3390/en13133374
  contributor:
    fullname: Faustine
– year: 2016
  ident: B9
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
  contributor:
    fullname: He
– volume: 3
  start-page: 60
  year: 2016
  ident: B16
  article-title: Distinctive load feature extraction based on fryze's time-domain power theory
  publication-title: IEEE Power & Energy Technol. Syst. J.
  doi: 10.1109/JPETS.2016.2559507
  contributor:
    fullname: Teshome
– volume: 8
  year: 2015
  ident: B10
  article-title: Neural NILM: deep neural networks applied to energy disaggregation
  publication-title: Intell. Distrib. Comput.
  doi: 10.1145/2821650.2821672
  contributor:
    fullname: Kelly
– volume: 49
  start-page: 3584
  year: 2023
  ident: B14
  article-title: Review on the application of deep learning object detection algorithms in insulator defect detection of overhead transmission lines
  publication-title: High. Volt. Eng.
  doi: 10.13336/j.1003-6520.hve.20220273
  contributor:
    fullname: Liu
– volume: 7
  start-page: 320
  year: 2015
  ident: B7
  article-title: Non-intrusive load monitoring using wavelet design and machine learning
  publication-title: IEEE Transanctions Smart Grid
  doi: 10.1109/TSG.2015.2428706
  contributor:
    fullname: Gillis
– volume: 27
  start-page: 207
  year: 2017
  ident: B21
  article-title: Study on urban residents' electricity behavior and electricity consumption elasticity
  publication-title: CHINA Popul. Resour. Environ.
  contributor:
    fullname: Xing
SSID ssj0001325410
Score 2.2896109
Snippet Non-intrusive load identification can improve the interaction efficiency between the power supply side and the user side of the grid. Applying this technology...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
SubjectTerms bottleneck residual blocks
gram code
non-intrusive load identification
one-dimensional reactive electric signal
residual attention net
Title Non-intrusive load identification method based on GAF and RAN networks
URI https://doaj.org/article/15c240738ea04bf5bb094a39b50d2201
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJz2In7h-kYM36W7atGlyXMW6CO5BXNhbyKcsSFdw_z_ONFXqyYvHtqGE99JOXph5Q8iNEHUoeCiBgSpkpQ08U0Fhf5NcMl56l3usd35eiPmyfFpVq0GrL8wJS_bACbhpXjkUHVwGw0obK2tBkBiubMV8UfSVW0wNxFR3usJB-OQsVcmAClPTCHS8TbBZ-ARkGfrz_opEA8P-LrI0B2S_3xLSWZrKIdkJ7RHZGxgFHpNmsWmzdYsFEvB3ou8b4-na94k-HbY0tYKmGJU8hevHWUNN6-nLbEHblOv9eUKWzcPr_TzrOyBkjjO5zVwsmTPOBtgVORWZkd6JoLwIuYs-r2suorCFxLNMzyoINQYeRyVsXaroLT8lo3bThjNCgYrCSBm7ylkprIEv0ckaBjErWVRjcvuNhv5IRhcaBAJipzvsNGKne-zG5A4B-xmJJtXdDaBO99Tpv6g7_4-XXJBdnBhmmBTqkoyAiXAF-4Stve6WxBdrybj-
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+load+identification+method+based+on+GAF+and+RAN+networks&rft.jtitle=Frontiers+in+energy+research&rft.au=Wang+Jianyuan&rft.au=Sun+Yibo&rft.date=2023-12-29&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1330690&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_15c240738ea04bf5bb094a39b50d2201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon