Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set
With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppresse...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 2; pp. 4168 - 4201 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023208 |
Cover
Abstract | With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppressed with vagueness and complexity due to the deficiency of information from experts and the existence of indeterminate data in the decision-making (DM) process. The neutrosophic hypersoft set (NHSS) is the most generalized form of the neutrosophic soft set, which deals with the multi-sub-attributes of the alternatives. The NHSS accurately judges the insufficiencies, concerns, and hesitation in the DM process compared to IFHSS and PFHSS, considering the truthiness, falsity, and indeterminacy of each sub-attribute of given parameters. This research extant the operational laws for neutrosophic hypersoft numbers (NHSNs). Furthermore, we introduce the aggregation operators (AOs) for NHSS, such as neutrosophic hypersoft weighted average (NHSWA) and neutrosophic hypersoft weighted geometric (NHSWG) operators, with their necessary properties. Also, a novel multi-criteria decision-making (MCDM) approach has been developed for site selection of solid waste management (SWM). Moreover, a numerical description is presented to confirm the reliability and usability of the proposed technique. The output of the advocated algorithm is compared with the related models already established to regulate the favorable features of the planned study. |
---|---|
AbstractList | With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppressed with vagueness and complexity due to the deficiency of information from experts and the existence of indeterminate data in the decision-making (DM) process. The neutrosophic hypersoft set (NHSS) is the most generalized form of the neutrosophic soft set, which deals with the multi-sub-attributes of the alternatives. The NHSS accurately judges the insufficiencies, concerns, and hesitation in the DM process compared to IFHSS and PFHSS, considering the truthiness, falsity, and indeterminacy of each sub-attribute of given parameters. This research extant the operational laws for neutrosophic hypersoft numbers (NHSNs). Furthermore, we introduce the aggregation operators (AOs) for NHSS, such as neutrosophic hypersoft weighted average (NHSWA) and neutrosophic hypersoft weighted geometric (NHSWG) operators, with their necessary properties. Also, a novel multi-criteria decision-making (MCDM) approach has been developed for site selection of solid waste management (SWM). Moreover, a numerical description is presented to confirm the reliability and usability of the proposed technique. The output of the advocated algorithm is compared with the related models already established to regulate the favorable features of the planned study. |
Author | Zulqarnain, Rana Muhammad Siddique, Imran Ahamad, Muhammad Irfan Jarad, Fahd Gurmani, Shahid Hussain Ma, Wen Xiu |
Author_xml | – sequence: 1 givenname: Rana Muhammad surname: Zulqarnain fullname: Zulqarnain, Rana Muhammad organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China – sequence: 2 givenname: Wen Xiu surname: Ma fullname: Ma, Wen Xiu organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA, School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa – sequence: 3 givenname: Imran surname: Siddique fullname: Siddique, Imran organization: Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan – sequence: 4 givenname: Shahid Hussain surname: Gurmani fullname: Gurmani, Shahid Hussain organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China – sequence: 5 givenname: Fahd surname: Jarad fullname: Jarad, Fahd organization: Department of Mathematics, Cankaya University, Etimesgut, Ankara 06790, Turkey, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan – sequence: 6 givenname: Muhammad Irfan surname: Ahamad fullname: Ahamad, Muhammad Irfan organization: Department of Geography, Government College University Lahore 54000, Pakistan |
BookMark | eNptkN9OwyAUh4mZiXPuzgfgAdyk0D9waZapS5Z4s_uG0kPH0pYGWHRvL-sWY4xXh8Pv8J3w3aNJb3tA6DEhSyZY-tzJsF9SQhkl_AZNaVqwRS44n_w636G59wdCCE1oSot0iob1V4DeG9tjq7FsGgeNDGM7gJPBOo-Dxd4EwB5aUGOmrcPetqbGn9LHpJO9bKCDPuBjX4PDPRyDs94Oe6Pw_hRR3uoQCeEB3WrZephf6wztXte71fti-_G2Wb1sF4oRHhZVkcushjqvQYiKZQLySgsQWZYklLMsV5nIEhpTpXSaEk6hqJiuYhGKUTZDmwu2tvJQDs500p1KK005XljXlNIFo1ooJeRap4KSivMUBOFJ3BMN5UktY1dE1tOFpeKXvAP9w0tIeXZfnt2XV_dxnP4ZVyaMToOTpv3_0Td4XYzO |
CitedBy_id | crossref_primary_10_1007_s44327_025_00044_8 |
Cites_doi | 10.1109/TFUZZ.2013.2278989 10.1007/s00254-006-0529-1 10.1080/1331677X.2020.1748509 10.3233/IFS-2012-0601 10.31580/sps.v2i2.1461 10.1002/int.22136 10.1016/j.asoc.2015.12.002 10.1016/S0019-9958(65)90241-X 10.1155/2021/2036506 10.1021/acs.energyfuels.8b01972 10.1016/S0165-0114(86)80034-3 10.3233/JIFS-182540 10.1016/j.resconrec.2019.05.027 10.3934/math.20200073 10.1109/ACCESS.2022.3203717 10.1016/j.asoc.2019.03.043 10.1080/24749508.2019.1703311 10.1155/2022/5199427 10.1007/s42452-019-1109-9 10.3233/JIFS-16797 10.1016/j.cam.2006.04.008 10.1155/2022/7257449 10.3390/su11205557 10.3233/JIFS-219199 10.1287/mnsc.26.7.641 10.1155/2022/1358675 10.3934/math.2021153 10.1016/j.wasman.2011.09.023 10.1002/int.21796 10.1016/j.asoc.2016.07.013 10.1155/2020/5024369 10.1155/2018/9531064 10.3934/math.2022214 10.1016/S0898-1221(03)00016-6 10.1002/int.21676 10.1007/s40815-022-01386-w 10.3233/JIFS-190905 10.1016/j.egypro.2017.12.156 10.1155/2022/1951389 10.32604/cmes.2023.023040 10.1002/int.21946 10.3233/JIFS-190217 10.1007/s13042-016-0505-3 10.1016/j.energy.2020.118952 10.5121/ijcseit.2013.3202 10.1016/j.egypro.2016.11.307 10.3233/IFS-130916 10.3233/FI-2016-1415 10.3390/su11174530 10.1155/2021/2559979 10.1016/j.cam.2009.11.055 10.1016/j.jenvman.2007.01.011 10.1007/s10462-021-09953-7 10.1177/0734242X08098430 10.3233/JIFS-202781 10.1016/j.camwa.2008.11.009 10.1371/journal.pone.0258448 10.1016/S0898-1221(99)00056-5 10.1109/ACCESS.2019.2942766 10.1016/j.wasman.2008.08.031 10.1016/j.engappai.2017.09.009 10.1002/int.22204 10.2991/eusflat-19.2019.58 10.52280/pujm.2021.531204 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023208 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 4201 |
ExternalDocumentID | oai_doaj_org_article_ae6ff4920b884e90819e902161da9087 10_3934_math_2023208 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c308t-b76a5ded6de99b359e6bf9e9551128356c59512de9ccf44082e7b3fb2e79c323 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:28:33 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-b76a5ded6de99b359e6bf9e9551128356c59512de9ccf44082e7b3fb2e79c323 |
OpenAccessLink | https://doaj.org/article/ae6ff4920b884e90819e902161da9087 |
PageCount | 34 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae6ff4920b884e90819e902161da9087 crossref_primary_10_3934_math_2023208 crossref_citationtrail_10_3934_math_2023208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023208-36 key-10.3934/math.2023208-37 key-10.3934/math.2023208-38 key-10.3934/math.2023208-39 key-10.3934/math.2023208-32 key-10.3934/math.2023208-76 key-10.3934/math.2023208-33 key-10.3934/math.2023208-77 key-10.3934/math.2023208-34 key-10.3934/math.2023208-78 key-10.3934/math.2023208-35 key-10.3934/math.2023208-79 key-10.3934/math.2023208-72 key-10.3934/math.2023208-73 key-10.3934/math.2023208-30 key-10.3934/math.2023208-74 key-10.3934/math.2023208-31 key-10.3934/math.2023208-75 key-10.3934/math.2023208-70 key-10.3934/math.2023208-71 key-10.3934/math.2023208-29 key-10.3934/math.2023208-25 key-10.3934/math.2023208-69 key-10.3934/math.2023208-26 key-10.3934/math.2023208-27 key-10.3934/math.2023208-28 key-10.3934/math.2023208-21 key-10.3934/math.2023208-65 key-10.3934/math.2023208-22 key-10.3934/math.2023208-66 key-10.3934/math.2023208-23 key-10.3934/math.2023208-67 key-10.3934/math.2023208-24 key-10.3934/math.2023208-68 key-10.3934/math.2023208-61 key-10.3934/math.2023208-62 key-10.3934/math.2023208-63 key-10.3934/math.2023208-20 key-10.3934/math.2023208-64 key-10.3934/math.2023208-60 key-10.3934/math.2023208-18 key-10.3934/math.2023208-19 key-10.3934/math.2023208-14 key-10.3934/math.2023208-58 key-10.3934/math.2023208-15 key-10.3934/math.2023208-59 key-10.3934/math.2023208-16 key-10.3934/math.2023208-17 key-10.3934/math.2023208-10 key-10.3934/math.2023208-54 key-10.3934/math.2023208-11 key-10.3934/math.2023208-55 key-10.3934/math.2023208-12 key-10.3934/math.2023208-56 key-10.3934/math.2023208-13 key-10.3934/math.2023208-57 key-10.3934/math.2023208-50 key-10.3934/math.2023208-51 key-10.3934/math.2023208-52 key-10.3934/math.2023208-53 key-10.3934/math.2023208-47 key-10.3934/math.2023208-48 key-10.3934/math.2023208-49 key-10.3934/math.2023208-43 key-10.3934/math.2023208-44 key-10.3934/math.2023208-45 key-10.3934/math.2023208-46 key-10.3934/math.2023208-40 key-10.3934/math.2023208-41 key-10.3934/math.2023208-9 key-10.3934/math.2023208-42 key-10.3934/math.2023208-80 key-10.3934/math.2023208-4 key-10.3934/math.2023208-3 key-10.3934/math.2023208-2 key-10.3934/math.2023208-1 key-10.3934/math.2023208-8 key-10.3934/math.2023208-7 key-10.3934/math.2023208-6 key-10.3934/math.2023208-5 |
References_xml | – ident: key-10.3934/math.2023208-28 – ident: key-10.3934/math.2023208-4 doi: 10.1109/TFUZZ.2013.2278989 – ident: key-10.3934/math.2023208-64 doi: 10.1007/s00254-006-0529-1 – ident: key-10.3934/math.2023208-13 doi: 10.1080/1331677X.2020.1748509 – ident: key-10.3934/math.2023208-30 doi: 10.3233/IFS-2012-0601 – ident: key-10.3934/math.2023208-62 doi: 10.31580/sps.v2i2.1461 – ident: key-10.3934/math.2023208-16 doi: 10.1002/int.22136 – ident: key-10.3934/math.2023208-31 doi: 10.1016/j.asoc.2015.12.002 – ident: key-10.3934/math.2023208-1 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.2023208-44 – ident: key-10.3934/math.2023208-50 doi: 10.1155/2021/2036506 – ident: key-10.3934/math.2023208-73 – ident: key-10.3934/math.2023208-58 doi: 10.1021/acs.energyfuels.8b01972 – ident: key-10.3934/math.2023208-40 – ident: key-10.3934/math.2023208-2 doi: 10.1016/S0165-0114(86)80034-3 – ident: key-10.3934/math.2023208-6 doi: 10.3233/JIFS-182540 – ident: key-10.3934/math.2023208-67 doi: 10.1016/j.resconrec.2019.05.027 – ident: key-10.3934/math.2023208-36 doi: 10.3934/math.20200073 – ident: key-10.3934/math.2023208-53 doi: 10.1109/ACCESS.2022.3203717 – ident: key-10.3934/math.2023208-5 doi: 10.1016/j.asoc.2019.03.043 – ident: key-10.3934/math.2023208-78 doi: 10.1080/24749508.2019.1703311 – ident: key-10.3934/math.2023208-38 doi: 10.1155/2022/5199427 – ident: key-10.3934/math.2023208-66 doi: 10.1007/s42452-019-1109-9 – ident: key-10.3934/math.2023208-8 doi: 10.3233/JIFS-16797 – ident: key-10.3934/math.2023208-25 doi: 10.1016/j.cam.2006.04.008 – ident: key-10.3934/math.2023208-56 doi: 10.1155/2022/7257449 – ident: key-10.3934/math.2023208-29 – ident: key-10.3934/math.2023208-69 doi: 10.3390/su11205557 – ident: key-10.3934/math.2023208-68 doi: 10.3233/JIFS-219199 – ident: key-10.3934/math.2023208-19 – ident: key-10.3934/math.2023208-22 – ident: key-10.3934/math.2023208-77 doi: 10.1287/mnsc.26.7.641 – ident: key-10.3934/math.2023208-26 – ident: key-10.3934/math.2023208-35 doi: 10.1155/2022/1358675 – ident: key-10.3934/math.2023208-48 doi: 10.3934/math.2021153 – ident: key-10.3934/math.2023208-74 – ident: key-10.3934/math.2023208-79 doi: 10.1016/j.wasman.2011.09.023 – ident: key-10.3934/math.2023208-32 – ident: key-10.3934/math.2023208-14 doi: 10.1002/int.21796 – ident: key-10.3934/math.2023208-41 doi: 10.1016/j.asoc.2016.07.013 – ident: key-10.3934/math.2023208-63 doi: 10.1155/2020/5024369 – ident: key-10.3934/math.2023208-9 doi: 10.1155/2018/9531064 – ident: key-10.3934/math.2023208-47 doi: 10.3934/math.2022214 – ident: key-10.3934/math.2023208-49 – ident: key-10.3934/math.2023208-21 doi: 10.1016/S0898-1221(03)00016-6 – ident: key-10.3934/math.2023208-10 doi: 10.1002/int.21676 – ident: key-10.3934/math.2023208-55 doi: 10.1007/s40815-022-01386-w – ident: key-10.3934/math.2023208-39 doi: 10.3233/JIFS-190905 – ident: key-10.3934/math.2023208-65 doi: 10.1016/j.egypro.2017.12.156 – ident: key-10.3934/math.2023208-51 doi: 10.1155/2022/1951389 – ident: key-10.3934/math.2023208-52 doi: 10.32604/cmes.2023.023040 – ident: key-10.3934/math.2023208-11 doi: 10.1002/int.21946 – ident: key-10.3934/math.2023208-46 – ident: key-10.3934/math.2023208-34 doi: 10.3233/JIFS-190217 – ident: key-10.3934/math.2023208-43 doi: 10.1007/s13042-016-0505-3 – ident: key-10.3934/math.2023208-59 doi: 10.1016/j.energy.2020.118952 – ident: key-10.3934/math.2023208-42 doi: 10.5121/ijcseit.2013.3202 – ident: key-10.3934/math.2023208-3 doi: 10.1109/TFUZZ.2013.2278989 – ident: key-10.3934/math.2023208-61 doi: 10.1016/j.egypro.2016.11.307 – ident: key-10.3934/math.2023208-45 doi: 10.3233/IFS-130916 – ident: key-10.3934/math.2023208-15 doi: 10.3233/FI-2016-1415 – ident: key-10.3934/math.2023208-57 doi: 10.3390/su11174530 – ident: key-10.3934/math.2023208-37 doi: 10.1155/2021/2559979 – ident: key-10.3934/math.2023208-27 doi: 10.1016/j.cam.2009.11.055 – ident: key-10.3934/math.2023208-72 doi: 10.1016/j.jenvman.2007.01.011 – ident: key-10.3934/math.2023208-18 doi: 10.1007/s10462-021-09953-7 – ident: key-10.3934/math.2023208-75 doi: 10.1177/0734242X08098430 – ident: key-10.3934/math.2023208-33 doi: 10.3233/JIFS-202781 – ident: key-10.3934/math.2023208-23 doi: 10.1016/j.camwa.2008.11.009 – ident: key-10.3934/math.2023208-70 doi: 10.1371/journal.pone.0258448 – ident: key-10.3934/math.2023208-20 doi: 10.1016/S0898-1221(99)00056-5 – ident: key-10.3934/math.2023208-7 doi: 10.1109/ACCESS.2019.2942766 – ident: key-10.3934/math.2023208-17 – ident: key-10.3934/math.2023208-60 doi: 10.1016/j.wasman.2008.08.031 – ident: key-10.3934/math.2023208-80 doi: 10.1016/j.engappai.2017.09.009 – ident: key-10.3934/math.2023208-12 doi: 10.1002/int.22204 – ident: key-10.3934/math.2023208-24 – ident: key-10.3934/math.2023208-76 – ident: key-10.3934/math.2023208-71 doi: 10.2991/eusflat-19.2019.58 – ident: key-10.3934/math.2023208-54 doi: 10.52280/pujm.2021.531204 |
SSID | ssj0002124274 |
Score | 2.2056599 |
Snippet | With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal,... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 4168 |
SubjectTerms | mcdm neutrosophic hypersoft set neutrosophic soft set nhswa operator nhswg operator swm |
Title | Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set |
URI | https://doaj.org/article/ae6ff4920b884e90819e902161da9087 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYOepKxL2qw5qjiGME8TditJmsyBtmPL0D_f99JaehEvXlqahBC-PJLv9SXfI-RmyLQqhopFWhkWJayQEV5DiERhC4y7cRF0uqcvYvKaPM_TeSfVF54Jq-WBa-AGygrnEslinWWJlbiDwZMBUSkUfIV75LGMO84UrsGwICfgb9Un3bnkyQD4H8YegEBgJsnOHtSR6g97yviA7DdkkN7XgzgkO7Y8InvTVkl1c0xWT1_hjHlV0spRtQD3eBHApNXKhhD5hvqKYgyYbkJOG6wDJkrBqJYF_VQwjfSjPeRC8dLYmpZ269chhcHS0DfwRYF3Ow89-BMyGz_NHidRkyUhMjzOfKRHQqWALKArpeaptEI7wChFKgX8SpgUWBSDWmNcyC9tR5o7DS9pOOOnpFdWpT0j1DmbaumG4IFoVAaTlo-yWFgoiItM8T65-4EtN42COCayeM_Bk0CQcwQ5b0Duk9u29apWzvil3QPOQNsG9a5DAVhB3lhB_pcVnP9HJxdkF8dU_2C5JD2_3toroBxeXwfr-gaLn9Xn |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extension+of+aggregation+operators+to+site+selection+for+solid+waste+management+under+neutrosophic+hypersoft+set&rft.jtitle=AIMS+mathematics&rft.au=Rana+Muhammad+Zulqarnain&rft.au=Wen+Xiu+Ma&rft.au=Imran+Siddique&rft.au=Shahid+Hussain+Gurmani&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=4168&rft.epage=4201&rft_id=info:doi/10.3934%2Fmath.2023208&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae6ff4920b884e90819e902161da9087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |