Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set

With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppresse...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 2; pp. 4168 - 4201
Main Authors Zulqarnain, Rana Muhammad, Ma, Wen Xiu, Siddique, Imran, Gurmani, Shahid Hussain, Jarad, Fahd, Ahamad, Muhammad Irfan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023208

Cover

Abstract With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppressed with vagueness and complexity due to the deficiency of information from experts and the existence of indeterminate data in the decision-making (DM) process. The neutrosophic hypersoft set (NHSS) is the most generalized form of the neutrosophic soft set, which deals with the multi-sub-attributes of the alternatives. The NHSS accurately judges the insufficiencies, concerns, and hesitation in the DM process compared to IFHSS and PFHSS, considering the truthiness, falsity, and indeterminacy of each sub-attribute of given parameters. This research extant the operational laws for neutrosophic hypersoft numbers (NHSNs). Furthermore, we introduce the aggregation operators (AOs) for NHSS, such as neutrosophic hypersoft weighted average (NHSWA) and neutrosophic hypersoft weighted geometric (NHSWG) operators, with their necessary properties. Also, a novel multi-criteria decision-making (MCDM) approach has been developed for site selection of solid waste management (SWM). Moreover, a numerical description is presented to confirm the reliability and usability of the proposed technique. The output of the advocated algorithm is compared with the related models already established to regulate the favorable features of the planned study.
AbstractList With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppressed with vagueness and complexity due to the deficiency of information from experts and the existence of indeterminate data in the decision-making (DM) process. The neutrosophic hypersoft set (NHSS) is the most generalized form of the neutrosophic soft set, which deals with the multi-sub-attributes of the alternatives. The NHSS accurately judges the insufficiencies, concerns, and hesitation in the DM process compared to IFHSS and PFHSS, considering the truthiness, falsity, and indeterminacy of each sub-attribute of given parameters. This research extant the operational laws for neutrosophic hypersoft numbers (NHSNs). Furthermore, we introduce the aggregation operators (AOs) for NHSS, such as neutrosophic hypersoft weighted average (NHSWA) and neutrosophic hypersoft weighted geometric (NHSWG) operators, with their necessary properties. Also, a novel multi-criteria decision-making (MCDM) approach has been developed for site selection of solid waste management (SWM). Moreover, a numerical description is presented to confirm the reliability and usability of the proposed technique. The output of the advocated algorithm is compared with the related models already established to regulate the favorable features of the planned study.
Author Zulqarnain, Rana Muhammad
Siddique, Imran
Ahamad, Muhammad Irfan
Jarad, Fahd
Gurmani, Shahid Hussain
Ma, Wen Xiu
Author_xml – sequence: 1
  givenname: Rana Muhammad
  surname: Zulqarnain
  fullname: Zulqarnain, Rana Muhammad
  organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
– sequence: 2
  givenname: Wen Xiu
  surname: Ma
  fullname: Ma, Wen Xiu
  organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia, Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA, School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
– sequence: 3
  givenname: Imran
  surname: Siddique
  fullname: Siddique, Imran
  organization: Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
– sequence: 4
  givenname: Shahid Hussain
  surname: Gurmani
  fullname: Gurmani, Shahid Hussain
  organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
– sequence: 5
  givenname: Fahd
  surname: Jarad
  fullname: Jarad, Fahd
  organization: Department of Mathematics, Cankaya University, Etimesgut, Ankara 06790, Turkey, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
– sequence: 6
  givenname: Muhammad Irfan
  surname: Ahamad
  fullname: Ahamad, Muhammad Irfan
  organization: Department of Geography, Government College University Lahore 54000, Pakistan
BookMark eNptkN9OwyAUh4mZiXPuzgfgAdyk0D9waZapS5Z4s_uG0kPH0pYGWHRvL-sWY4xXh8Pv8J3w3aNJb3tA6DEhSyZY-tzJsF9SQhkl_AZNaVqwRS44n_w636G59wdCCE1oSot0iob1V4DeG9tjq7FsGgeNDGM7gJPBOo-Dxd4EwB5aUGOmrcPetqbGn9LHpJO9bKCDPuBjX4PDPRyDs94Oe6Pw_hRR3uoQCeEB3WrZephf6wztXte71fti-_G2Wb1sF4oRHhZVkcushjqvQYiKZQLySgsQWZYklLMsV5nIEhpTpXSaEk6hqJiuYhGKUTZDmwu2tvJQDs500p1KK005XljXlNIFo1ooJeRap4KSivMUBOFJ3BMN5UktY1dE1tOFpeKXvAP9w0tIeXZfnt2XV_dxnP4ZVyaMToOTpv3_0Td4XYzO
CitedBy_id crossref_primary_10_1007_s44327_025_00044_8
Cites_doi 10.1109/TFUZZ.2013.2278989
10.1007/s00254-006-0529-1
10.1080/1331677X.2020.1748509
10.3233/IFS-2012-0601
10.31580/sps.v2i2.1461
10.1002/int.22136
10.1016/j.asoc.2015.12.002
10.1016/S0019-9958(65)90241-X
10.1155/2021/2036506
10.1021/acs.energyfuels.8b01972
10.1016/S0165-0114(86)80034-3
10.3233/JIFS-182540
10.1016/j.resconrec.2019.05.027
10.3934/math.20200073
10.1109/ACCESS.2022.3203717
10.1016/j.asoc.2019.03.043
10.1080/24749508.2019.1703311
10.1155/2022/5199427
10.1007/s42452-019-1109-9
10.3233/JIFS-16797
10.1016/j.cam.2006.04.008
10.1155/2022/7257449
10.3390/su11205557
10.3233/JIFS-219199
10.1287/mnsc.26.7.641
10.1155/2022/1358675
10.3934/math.2021153
10.1016/j.wasman.2011.09.023
10.1002/int.21796
10.1016/j.asoc.2016.07.013
10.1155/2020/5024369
10.1155/2018/9531064
10.3934/math.2022214
10.1016/S0898-1221(03)00016-6
10.1002/int.21676
10.1007/s40815-022-01386-w
10.3233/JIFS-190905
10.1016/j.egypro.2017.12.156
10.1155/2022/1951389
10.32604/cmes.2023.023040
10.1002/int.21946
10.3233/JIFS-190217
10.1007/s13042-016-0505-3
10.1016/j.energy.2020.118952
10.5121/ijcseit.2013.3202
10.1016/j.egypro.2016.11.307
10.3233/IFS-130916
10.3233/FI-2016-1415
10.3390/su11174530
10.1155/2021/2559979
10.1016/j.cam.2009.11.055
10.1016/j.jenvman.2007.01.011
10.1007/s10462-021-09953-7
10.1177/0734242X08098430
10.3233/JIFS-202781
10.1016/j.camwa.2008.11.009
10.1371/journal.pone.0258448
10.1016/S0898-1221(99)00056-5
10.1109/ACCESS.2019.2942766
10.1016/j.wasman.2008.08.031
10.1016/j.engappai.2017.09.009
10.1002/int.22204
10.2991/eusflat-19.2019.58
10.52280/pujm.2021.531204
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023208
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 4201
ExternalDocumentID oai_doaj_org_article_ae6ff4920b884e90819e902161da9087
10_3934_math_2023208
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c308t-b76a5ded6de99b359e6bf9e9551128356c59512de9ccf44082e7b3fb2e79c323
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:28:33 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-b76a5ded6de99b359e6bf9e9551128356c59512de9ccf44082e7b3fb2e79c323
OpenAccessLink https://doaj.org/article/ae6ff4920b884e90819e902161da9087
PageCount 34
ParticipantIDs doaj_primary_oai_doaj_org_article_ae6ff4920b884e90819e902161da9087
crossref_primary_10_3934_math_2023208
crossref_citationtrail_10_3934_math_2023208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023208-36
key-10.3934/math.2023208-37
key-10.3934/math.2023208-38
key-10.3934/math.2023208-39
key-10.3934/math.2023208-32
key-10.3934/math.2023208-76
key-10.3934/math.2023208-33
key-10.3934/math.2023208-77
key-10.3934/math.2023208-34
key-10.3934/math.2023208-78
key-10.3934/math.2023208-35
key-10.3934/math.2023208-79
key-10.3934/math.2023208-72
key-10.3934/math.2023208-73
key-10.3934/math.2023208-30
key-10.3934/math.2023208-74
key-10.3934/math.2023208-31
key-10.3934/math.2023208-75
key-10.3934/math.2023208-70
key-10.3934/math.2023208-71
key-10.3934/math.2023208-29
key-10.3934/math.2023208-25
key-10.3934/math.2023208-69
key-10.3934/math.2023208-26
key-10.3934/math.2023208-27
key-10.3934/math.2023208-28
key-10.3934/math.2023208-21
key-10.3934/math.2023208-65
key-10.3934/math.2023208-22
key-10.3934/math.2023208-66
key-10.3934/math.2023208-23
key-10.3934/math.2023208-67
key-10.3934/math.2023208-24
key-10.3934/math.2023208-68
key-10.3934/math.2023208-61
key-10.3934/math.2023208-62
key-10.3934/math.2023208-63
key-10.3934/math.2023208-20
key-10.3934/math.2023208-64
key-10.3934/math.2023208-60
key-10.3934/math.2023208-18
key-10.3934/math.2023208-19
key-10.3934/math.2023208-14
key-10.3934/math.2023208-58
key-10.3934/math.2023208-15
key-10.3934/math.2023208-59
key-10.3934/math.2023208-16
key-10.3934/math.2023208-17
key-10.3934/math.2023208-10
key-10.3934/math.2023208-54
key-10.3934/math.2023208-11
key-10.3934/math.2023208-55
key-10.3934/math.2023208-12
key-10.3934/math.2023208-56
key-10.3934/math.2023208-13
key-10.3934/math.2023208-57
key-10.3934/math.2023208-50
key-10.3934/math.2023208-51
key-10.3934/math.2023208-52
key-10.3934/math.2023208-53
key-10.3934/math.2023208-47
key-10.3934/math.2023208-48
key-10.3934/math.2023208-49
key-10.3934/math.2023208-43
key-10.3934/math.2023208-44
key-10.3934/math.2023208-45
key-10.3934/math.2023208-46
key-10.3934/math.2023208-40
key-10.3934/math.2023208-41
key-10.3934/math.2023208-9
key-10.3934/math.2023208-42
key-10.3934/math.2023208-80
key-10.3934/math.2023208-4
key-10.3934/math.2023208-3
key-10.3934/math.2023208-2
key-10.3934/math.2023208-1
key-10.3934/math.2023208-8
key-10.3934/math.2023208-7
key-10.3934/math.2023208-6
key-10.3934/math.2023208-5
References_xml – ident: key-10.3934/math.2023208-28
– ident: key-10.3934/math.2023208-4
  doi: 10.1109/TFUZZ.2013.2278989
– ident: key-10.3934/math.2023208-64
  doi: 10.1007/s00254-006-0529-1
– ident: key-10.3934/math.2023208-13
  doi: 10.1080/1331677X.2020.1748509
– ident: key-10.3934/math.2023208-30
  doi: 10.3233/IFS-2012-0601
– ident: key-10.3934/math.2023208-62
  doi: 10.31580/sps.v2i2.1461
– ident: key-10.3934/math.2023208-16
  doi: 10.1002/int.22136
– ident: key-10.3934/math.2023208-31
  doi: 10.1016/j.asoc.2015.12.002
– ident: key-10.3934/math.2023208-1
  doi: 10.1016/S0019-9958(65)90241-X
– ident: key-10.3934/math.2023208-44
– ident: key-10.3934/math.2023208-50
  doi: 10.1155/2021/2036506
– ident: key-10.3934/math.2023208-73
– ident: key-10.3934/math.2023208-58
  doi: 10.1021/acs.energyfuels.8b01972
– ident: key-10.3934/math.2023208-40
– ident: key-10.3934/math.2023208-2
  doi: 10.1016/S0165-0114(86)80034-3
– ident: key-10.3934/math.2023208-6
  doi: 10.3233/JIFS-182540
– ident: key-10.3934/math.2023208-67
  doi: 10.1016/j.resconrec.2019.05.027
– ident: key-10.3934/math.2023208-36
  doi: 10.3934/math.20200073
– ident: key-10.3934/math.2023208-53
  doi: 10.1109/ACCESS.2022.3203717
– ident: key-10.3934/math.2023208-5
  doi: 10.1016/j.asoc.2019.03.043
– ident: key-10.3934/math.2023208-78
  doi: 10.1080/24749508.2019.1703311
– ident: key-10.3934/math.2023208-38
  doi: 10.1155/2022/5199427
– ident: key-10.3934/math.2023208-66
  doi: 10.1007/s42452-019-1109-9
– ident: key-10.3934/math.2023208-8
  doi: 10.3233/JIFS-16797
– ident: key-10.3934/math.2023208-25
  doi: 10.1016/j.cam.2006.04.008
– ident: key-10.3934/math.2023208-56
  doi: 10.1155/2022/7257449
– ident: key-10.3934/math.2023208-29
– ident: key-10.3934/math.2023208-69
  doi: 10.3390/su11205557
– ident: key-10.3934/math.2023208-68
  doi: 10.3233/JIFS-219199
– ident: key-10.3934/math.2023208-19
– ident: key-10.3934/math.2023208-22
– ident: key-10.3934/math.2023208-77
  doi: 10.1287/mnsc.26.7.641
– ident: key-10.3934/math.2023208-26
– ident: key-10.3934/math.2023208-35
  doi: 10.1155/2022/1358675
– ident: key-10.3934/math.2023208-48
  doi: 10.3934/math.2021153
– ident: key-10.3934/math.2023208-74
– ident: key-10.3934/math.2023208-79
  doi: 10.1016/j.wasman.2011.09.023
– ident: key-10.3934/math.2023208-32
– ident: key-10.3934/math.2023208-14
  doi: 10.1002/int.21796
– ident: key-10.3934/math.2023208-41
  doi: 10.1016/j.asoc.2016.07.013
– ident: key-10.3934/math.2023208-63
  doi: 10.1155/2020/5024369
– ident: key-10.3934/math.2023208-9
  doi: 10.1155/2018/9531064
– ident: key-10.3934/math.2023208-47
  doi: 10.3934/math.2022214
– ident: key-10.3934/math.2023208-49
– ident: key-10.3934/math.2023208-21
  doi: 10.1016/S0898-1221(03)00016-6
– ident: key-10.3934/math.2023208-10
  doi: 10.1002/int.21676
– ident: key-10.3934/math.2023208-55
  doi: 10.1007/s40815-022-01386-w
– ident: key-10.3934/math.2023208-39
  doi: 10.3233/JIFS-190905
– ident: key-10.3934/math.2023208-65
  doi: 10.1016/j.egypro.2017.12.156
– ident: key-10.3934/math.2023208-51
  doi: 10.1155/2022/1951389
– ident: key-10.3934/math.2023208-52
  doi: 10.32604/cmes.2023.023040
– ident: key-10.3934/math.2023208-11
  doi: 10.1002/int.21946
– ident: key-10.3934/math.2023208-46
– ident: key-10.3934/math.2023208-34
  doi: 10.3233/JIFS-190217
– ident: key-10.3934/math.2023208-43
  doi: 10.1007/s13042-016-0505-3
– ident: key-10.3934/math.2023208-59
  doi: 10.1016/j.energy.2020.118952
– ident: key-10.3934/math.2023208-42
  doi: 10.5121/ijcseit.2013.3202
– ident: key-10.3934/math.2023208-3
  doi: 10.1109/TFUZZ.2013.2278989
– ident: key-10.3934/math.2023208-61
  doi: 10.1016/j.egypro.2016.11.307
– ident: key-10.3934/math.2023208-45
  doi: 10.3233/IFS-130916
– ident: key-10.3934/math.2023208-15
  doi: 10.3233/FI-2016-1415
– ident: key-10.3934/math.2023208-57
  doi: 10.3390/su11174530
– ident: key-10.3934/math.2023208-37
  doi: 10.1155/2021/2559979
– ident: key-10.3934/math.2023208-27
  doi: 10.1016/j.cam.2009.11.055
– ident: key-10.3934/math.2023208-72
  doi: 10.1016/j.jenvman.2007.01.011
– ident: key-10.3934/math.2023208-18
  doi: 10.1007/s10462-021-09953-7
– ident: key-10.3934/math.2023208-75
  doi: 10.1177/0734242X08098430
– ident: key-10.3934/math.2023208-33
  doi: 10.3233/JIFS-202781
– ident: key-10.3934/math.2023208-23
  doi: 10.1016/j.camwa.2008.11.009
– ident: key-10.3934/math.2023208-70
  doi: 10.1371/journal.pone.0258448
– ident: key-10.3934/math.2023208-20
  doi: 10.1016/S0898-1221(99)00056-5
– ident: key-10.3934/math.2023208-7
  doi: 10.1109/ACCESS.2019.2942766
– ident: key-10.3934/math.2023208-17
– ident: key-10.3934/math.2023208-60
  doi: 10.1016/j.wasman.2008.08.031
– ident: key-10.3934/math.2023208-80
  doi: 10.1016/j.engappai.2017.09.009
– ident: key-10.3934/math.2023208-12
  doi: 10.1002/int.22204
– ident: key-10.3934/math.2023208-24
– ident: key-10.3934/math.2023208-76
– ident: key-10.3934/math.2023208-71
  doi: 10.2991/eusflat-19.2019.58
– ident: key-10.3934/math.2023208-54
  doi: 10.52280/pujm.2021.531204
SSID ssj0002124274
Score 2.2056599
Snippet With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 4168
SubjectTerms mcdm
neutrosophic hypersoft set
neutrosophic soft set
nhswa operator
nhswg operator
swm
Title Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set
URI https://doaj.org/article/ae6ff4920b884e90819e902161da9087
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7Enzh_kYOepKxL2qw5qjiGME8TditJmsyBtmPL0D_f99JaehEvXlqahBC-PJLv9SXfI-RmyLQqhopFWhkWJayQEV5DiERhC4y7cRF0uqcvYvKaPM_TeSfVF54Jq-WBa-AGygrnEslinWWJlbiDwZMBUSkUfIV75LGMO84UrsGwICfgb9Un3bnkyQD4H8YegEBgJsnOHtSR6g97yviA7DdkkN7XgzgkO7Y8InvTVkl1c0xWT1_hjHlV0spRtQD3eBHApNXKhhD5hvqKYgyYbkJOG6wDJkrBqJYF_VQwjfSjPeRC8dLYmpZ269chhcHS0DfwRYF3Ow89-BMyGz_NHidRkyUhMjzOfKRHQqWALKArpeaptEI7wChFKgX8SpgUWBSDWmNcyC9tR5o7DS9pOOOnpFdWpT0j1DmbaumG4IFoVAaTlo-yWFgoiItM8T65-4EtN42COCayeM_Bk0CQcwQ5b0Duk9u29apWzvil3QPOQNsG9a5DAVhB3lhB_pcVnP9HJxdkF8dU_2C5JD2_3toroBxeXwfr-gaLn9Xn
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extension+of+aggregation+operators+to+site+selection+for+solid+waste+management+under+neutrosophic+hypersoft+set&rft.jtitle=AIMS+mathematics&rft.au=Rana+Muhammad+Zulqarnain&rft.au=Wen+Xiu+Ma&rft.au=Imran+Siddique&rft.au=Shahid+Hussain+Gurmani&rft.date=2023-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=4168&rft.epage=4201&rft_id=info:doi/10.3934%2Fmath.2023208&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae6ff4920b884e90819e902161da9087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon