Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative

In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator havin...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 2; pp. 1062 - 1073
Main Authors Agarwal, Ritu, Prasad Yadav, Mahaveer, Baleanu, Dumitru, D. Purohit, S.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2020
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2020074

Cover

Loading…
Abstract In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator having non singular kernel. Fixed point theorem has been used to prove the uniqueness and existence of the solution of governing differential equation. We apply Laplace transform and use technique of iterative method to obtain the solution. Few applications of the main result are discussed by taking different initial conditions to observe the effect on derivatives of different fractional order on the concentration of miscible fluids.
AbstractList In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator having non singular kernel. Fixed point theorem has been used to prove the uniqueness and existence of the solution of governing differential equation. We apply Laplace transform and use technique of iterative method to obtain the solution. Few applications of the main result are discussed by taking different initial conditions to observe the effect on derivatives of different fractional order on the concentration of miscible fluids.
Author Prasad Yadav, Mahaveer
Baleanu, Dumitru
D. Purohit, S.
Agarwal, Ritu
Author_xml – sequence: 1
  givenname: Ritu
  surname: Agarwal
  fullname: Agarwal, Ritu
– sequence: 2
  givenname: Mahaveer
  surname: Prasad Yadav
  fullname: Prasad Yadav, Mahaveer
– sequence: 3
  givenname: Dumitru
  surname: Baleanu
  fullname: Baleanu, Dumitru
– sequence: 4
  givenname: S.
  surname: D. Purohit
  fullname: D. Purohit, S.
BookMark eNptkVtLAzEQhYMoeOubPyA_wGo2m93NPkrxBgVf9DlMkkmbst3YJOvl37utFUR8OsMw3-Ew55Qc9qFHQi4KdlW2pbheQ15eccYZa8QBOeGiKad1K-Xhr_mYTFJaMcZ4wQVvxAnZ3H74lLE3SKG3dOj9ZsAeU6LB0bVPxusOqevCO8XNANmHnuZlDMNiSV_DqImu0Xqg7z4vKdAxFE2-XwwdROoimC0BHbUY_duIv-E5OXLQJZzs9Yy83N0-zx6m86f7x9nNfGpKJvNUi4bbppGlBSidQYPAAFnFa9cyzYrK8loUvBUgZCkbLCpjQDOOYJ2uNZRn5PHb1wZYqdfo1xA_VQCvdosQFwpi9qZDJaFmYKGRVmthpNRV23IHtauFq2qOoxf_9jIxpBTRKePz7hk5gu9UwdS2A7XtQO07GKHLP9BPiH_PvwD5a46D
CitedBy_id crossref_primary_10_1007_s40065_020_00293_y
crossref_primary_10_3390_sym13040673
crossref_primary_10_1142_S2661335224500205
crossref_primary_10_1186_s13662_020_02794_8
crossref_primary_10_3390_fractalfract7080580
crossref_primary_10_3390_math10081319
crossref_primary_10_13111_2066_8201_2021_13_4_1
crossref_primary_10_1016_j_aej_2020_03_039
crossref_primary_10_1080_27690911_2022_2117913
crossref_primary_10_3390_math11173763
crossref_primary_10_1186_s13662_020_03183_x
crossref_primary_10_3390_fractalfract4030036
crossref_primary_10_1002_mma_7346
crossref_primary_10_3390_axioms13060344
crossref_primary_10_1016_j_aej_2020_06_040
crossref_primary_10_1186_s13660_021_02552_8
crossref_primary_10_3390_axioms10030175
crossref_primary_10_1186_s13662_020_02859_8
crossref_primary_10_1007_s13398_020_00948_7
crossref_primary_10_3390_fractalfract8110640
crossref_primary_10_1142_S266133522450014X
crossref_primary_10_35378_gujs_813138
crossref_primary_10_1142_S2661335224500217
crossref_primary_10_31197_atnaa_775089
crossref_primary_10_3390_axioms12090886
crossref_primary_10_32604_cmes_2022_017010
crossref_primary_10_3934_math_2020301
crossref_primary_10_3390_axioms11080408
crossref_primary_10_1002_num_22794
crossref_primary_10_1186_s13662_020_03178_8
crossref_primary_10_3390_math9182179
crossref_primary_10_1016_j_chaos_2022_111802
Cites_doi 10.1002/mma.5822
10.1029/TR039i001p00067
10.1029/WR013i004p00743
10.1017/S0022112059000672
10.5890/DNC.2019.09.009
ContentType Journal Article
CorporateAuthor 4 Department of HEAS(Mathematics), Rajasthan Technical University, Kota-324010, India
3 Institute of Space Sciences, Magurele-Bucharest-R 76900, Romania
1 Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, India
2 Department of Mathematics, Cankaya University, Ankara-06430, Turkey
CorporateAuthor_xml – name: 4 Department of HEAS(Mathematics), Rajasthan Technical University, Kota-324010, India
– name: 2 Department of Mathematics, Cankaya University, Ankara-06430, Turkey
– name: 3 Institute of Space Sciences, Magurele-Bucharest-R 76900, Romania
– name: 1 Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, India
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020074
DatabaseName CrossRef
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 1073
ExternalDocumentID oai_doaj_org_article_8a60ada78dbb4c88b5992fa6f64f562e
10_3934_math_2020074
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c308t-b472d7783daa3fcecea0ae0526f90b015d2641294a48387e15ccab02eadfb6ba3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:11:49 EDT 2025
Tue Jul 01 03:56:44 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-b472d7783daa3fcecea0ae0526f90b015d2641294a48387e15ccab02eadfb6ba3
OpenAccessLink https://doaj.org/article/8a60ada78dbb4c88b5992fa6f64f562e
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8a60ada78dbb4c88b5992fa6f64f562e
crossref_citationtrail_10_3934_math_2020074
crossref_primary_10_3934_math_2020074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References 11
12
13
26
16
17
18
19
R. Agarwal, Kritika, S. D. Purohit (1)
R. Agarwal, M. P. Yadav, R. P. Agarwal (5)
2
3
4
6
7
P. G. Saffman (23)
8
9
G. De Josselin de Jong (15)
20
21
F. W. Schwartz (25)
References_xml – ident: 1
  article-title: i>A mathematical fractional model with non-singular kernel for</i> thrombin receptor activation in calcium signalling</i
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.5822
– ident: 16
  article-title: F. A. Dullien, Porous
– ident: 15
  article-title: i>Longitudinal and transverse diffusion in granular deposits</i
  publication-title: Trans. Am. Geophys. Union
  doi: 10.1029/TR039i001p00067
– ident: 8
  article-title: i>The extended fractional Caputo-Fabrizio derivative of order 0 ≤ σ < 1 on $C_\mathbb{R}[0,1]$ and the existence of solutions for two higher-order series-type differential equations</i
– ident: 3
  article-title: t al., Analytic solution of fractional advection dispersion equation with decay for contaminant transport in porous media</i
– ident: 2
  article-title: R. Agarwal, M. P. Yadav, R. P. Agarwal, Collation analysis of fractional moisture content based model in unsaturated zone using q-homotopy analysis method, Methods of Mathematical
– ident: 6
  article-title: i>Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer</i
– ident: 18
  article-title: i>Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models</i
– ident: 19
  article-title: i>A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence</i
– ident: 9
  article-title: i>Calculus of variations involving Caputo-Fabrizio fractional differentiation</i
– ident: 7
  article-title: t al., On high order fractional integro-differential equations including the Caputo-Fabrizio derivative</i
– ident: 17
  article-title: i>Steady flow through porous media</i
– ident: 25
  article-title: i>Macroscopic dispersion in porous media: The controlling factors</i
  publication-title: Water Resour. Res.
  doi: 10.1029/WR013i004p00743
– ident: 4
  article-title: t al., Analytic solution of space time fractional advection dispersion equation with retardation for contaminant transport in porous media</i
– ident: 12
  article-title: i>The fractional model of spring pendulum: New features within different kernels</i
– ident: 13
  article-title: i>A new definition of fractional derivative without singular kernel</i
– ident: 23
  article-title: i>A theory of dispersion in a porous medium</i
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112059000672
– ident: 20
  article-title: i>A new fractional modelling and control strategy for the outbreak of dengue fever</i
– ident: 21
  article-title: i>Properties of a new fractional derivative without singular kernel</i
– ident: 5
  article-title: i>Analytic solution of time fractional Boussinesq equation for groundwater flow in unconfined aquifer</i
  publication-title: J. Discontinuity, Nonlinearity Complexity
  doi: 10.5890/DNC.2019.09.009
– ident: 11
  article-title: t al., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator</i
– ident: 26
  article-title: i>Numerical investigation of fractional-fractal Boussinesq equation</i
SSID ssj0002124274
Score 2.2854717
Snippet In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1062
SubjectTerms caputo-fabrizio fractional derivative operator
fixed point theorem
iterative method
laplace transform
miscible flow
Title Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative
URI https://doaj.org/article/8a60ada78dbb4c88b5992fa6f64f562e
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeugEmFDW1ndgeAVFVSGWiUrfIz6lQKC3w87lLQlUGxMIaWYl1d7rvvov9HWMXfWuVNkkhN0GuKoVXmTNBZQhHPiXlpPPUhxw9lMOxvJ8Uk7VRX3QmrJEHbgzX07bMbcAXBuek19oVxvBky1TKhNgdKfsi5q2RKcrBmJAl8q3mpLswQvaw_qN_D9Sakz8waE2qv8aUwQ7bbotBuG42scs24vMe2xqtlFTf9tnr3Sc5Al0DyPlhWeutUnqCWYInulLrphHSdPYB8bWR7YZ29g5gaY28HurLIUANV7CAbB-oPUCnTyHNm2sNuIeAkfhei4AfsPHg7vF2mLVjEjIvcr3InFQ8KKVFsFYkH320uY2k45IMtTmLgEUPwrq0UgutYr9Ar7mcYwwlVzorDlkHPx6PGJS-yEMwjocgZWG4xezHudGEdC5p3mVX34arfKshTqMsphVyCTJzRWauWjN32eVq9UujnfHLuhvywWoNKV7XDzAOqjYOqr_i4Pg_XnLCNmlPTYvllHUW82U8w6Jj4c7r-PoC_6jZ_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+and+uniqueness+of+miscible+flow+equation+through+porous+media+with+a+non+singular+fractional+derivative&rft.jtitle=AIMS+mathematics&rft.au=Ritu+Agarwal&rft.au=Mahaveer+Prasad+Yadav&rft.au=Dumitru+Baleanu&rft.au=S.+D.+Purohit&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=2&rft.spage=1062&rft.epage=1073&rft_id=info:doi/10.3934%2Fmath.2020074&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a60ada78dbb4c88b5992fa6f64f562e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon