Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative
In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator havin...
Saved in:
Published in | AIMS mathematics Vol. 5; no. 2; pp. 1062 - 1073 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2020074 |
Cover
Loading…
Abstract | In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator having non singular kernel. Fixed point theorem has been used to prove the uniqueness and existence of the solution of governing differential equation. We apply Laplace transform and use technique of iterative method to obtain the solution. Few applications of the main result are discussed by taking different initial conditions to observe the effect on derivatives of different fractional order on the concentration of miscible fluids. |
---|---|
AbstractList | In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular diffusion and convection. Here, we analyze the governing differential equation involving Caputo-Fabrizio fractional derivative operator having non singular kernel. Fixed point theorem has been used to prove the uniqueness and existence of the solution of governing differential equation. We apply Laplace transform and use technique of iterative method to obtain the solution. Few applications of the main result are discussed by taking different initial conditions to observe the effect on derivatives of different fractional order on the concentration of miscible fluids. |
Author | Prasad Yadav, Mahaveer Baleanu, Dumitru D. Purohit, S. Agarwal, Ritu |
Author_xml | – sequence: 1 givenname: Ritu surname: Agarwal fullname: Agarwal, Ritu – sequence: 2 givenname: Mahaveer surname: Prasad Yadav fullname: Prasad Yadav, Mahaveer – sequence: 3 givenname: Dumitru surname: Baleanu fullname: Baleanu, Dumitru – sequence: 4 givenname: S. surname: D. Purohit fullname: D. Purohit, S. |
BookMark | eNptkVtLAzEQhYMoeOubPyA_wGo2m93NPkrxBgVf9DlMkkmbst3YJOvl37utFUR8OsMw3-Ew55Qc9qFHQi4KdlW2pbheQ15eccYZa8QBOeGiKad1K-Xhr_mYTFJaMcZ4wQVvxAnZ3H74lLE3SKG3dOj9ZsAeU6LB0bVPxusOqevCO8XNANmHnuZlDMNiSV_DqImu0Xqg7z4vKdAxFE2-XwwdROoimC0BHbUY_duIv-E5OXLQJZzs9Yy83N0-zx6m86f7x9nNfGpKJvNUi4bbppGlBSidQYPAAFnFa9cyzYrK8loUvBUgZCkbLCpjQDOOYJ2uNZRn5PHb1wZYqdfo1xA_VQCvdosQFwpi9qZDJaFmYKGRVmthpNRV23IHtauFq2qOoxf_9jIxpBTRKePz7hk5gu9UwdS2A7XtQO07GKHLP9BPiH_PvwD5a46D |
CitedBy_id | crossref_primary_10_1007_s40065_020_00293_y crossref_primary_10_3390_sym13040673 crossref_primary_10_1142_S2661335224500205 crossref_primary_10_1186_s13662_020_02794_8 crossref_primary_10_3390_fractalfract7080580 crossref_primary_10_3390_math10081319 crossref_primary_10_13111_2066_8201_2021_13_4_1 crossref_primary_10_1016_j_aej_2020_03_039 crossref_primary_10_1080_27690911_2022_2117913 crossref_primary_10_3390_math11173763 crossref_primary_10_1186_s13662_020_03183_x crossref_primary_10_3390_fractalfract4030036 crossref_primary_10_1002_mma_7346 crossref_primary_10_3390_axioms13060344 crossref_primary_10_1016_j_aej_2020_06_040 crossref_primary_10_1186_s13660_021_02552_8 crossref_primary_10_3390_axioms10030175 crossref_primary_10_1186_s13662_020_02859_8 crossref_primary_10_1007_s13398_020_00948_7 crossref_primary_10_3390_fractalfract8110640 crossref_primary_10_1142_S266133522450014X crossref_primary_10_35378_gujs_813138 crossref_primary_10_1142_S2661335224500217 crossref_primary_10_31197_atnaa_775089 crossref_primary_10_3390_axioms12090886 crossref_primary_10_32604_cmes_2022_017010 crossref_primary_10_3934_math_2020301 crossref_primary_10_3390_axioms11080408 crossref_primary_10_1002_num_22794 crossref_primary_10_1186_s13662_020_03178_8 crossref_primary_10_3390_math9182179 crossref_primary_10_1016_j_chaos_2022_111802 |
Cites_doi | 10.1002/mma.5822 10.1029/TR039i001p00067 10.1029/WR013i004p00743 10.1017/S0022112059000672 10.5890/DNC.2019.09.009 |
ContentType | Journal Article |
CorporateAuthor | 4 Department of HEAS(Mathematics), Rajasthan Technical University, Kota-324010, India 3 Institute of Space Sciences, Magurele-Bucharest-R 76900, Romania 1 Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, India 2 Department of Mathematics, Cankaya University, Ankara-06430, Turkey |
CorporateAuthor_xml | – name: 4 Department of HEAS(Mathematics), Rajasthan Technical University, Kota-324010, India – name: 2 Department of Mathematics, Cankaya University, Ankara-06430, Turkey – name: 3 Institute of Space Sciences, Magurele-Bucharest-R 76900, Romania – name: 1 Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, India |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2020074 |
DatabaseName | CrossRef DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 1073 |
ExternalDocumentID | oai_doaj_org_article_8a60ada78dbb4c88b5992fa6f64f562e 10_3934_math_2020074 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c308t-b472d7783daa3fcecea0ae0526f90b015d2641294a48387e15ccab02eadfb6ba3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:11:49 EDT 2025 Tue Jul 01 03:56:44 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-b472d7783daa3fcecea0ae0526f90b015d2641294a48387e15ccab02eadfb6ba3 |
OpenAccessLink | https://doaj.org/article/8a60ada78dbb4c88b5992fa6f64f562e |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a60ada78dbb4c88b5992fa6f64f562e crossref_citationtrail_10_3934_math_2020074 crossref_primary_10_3934_math_2020074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2020 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | 11 12 13 26 16 17 18 19 R. Agarwal, Kritika, S. D. Purohit (1) R. Agarwal, M. P. Yadav, R. P. Agarwal (5) 2 3 4 6 7 P. G. Saffman (23) 8 9 G. De Josselin de Jong (15) 20 21 F. W. Schwartz (25) |
References_xml | – ident: 1 article-title: i>A mathematical fractional model with non-singular kernel for</i> thrombin receptor activation in calcium signalling</i publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.5822 – ident: 16 article-title: F. A. Dullien, Porous – ident: 15 article-title: i>Longitudinal and transverse diffusion in granular deposits</i publication-title: Trans. Am. Geophys. Union doi: 10.1029/TR039i001p00067 – ident: 8 article-title: i>The extended fractional Caputo-Fabrizio derivative of order 0 ≤ σ < 1 on $C_\mathbb{R}[0,1]$ and the existence of solutions for two higher-order series-type differential equations</i – ident: 3 article-title: t al., Analytic solution of fractional advection dispersion equation with decay for contaminant transport in porous media</i – ident: 2 article-title: R. Agarwal, M. P. Yadav, R. P. Agarwal, Collation analysis of fractional moisture content based model in unsaturated zone using q-homotopy analysis method, Methods of Mathematical – ident: 6 article-title: i>Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer</i – ident: 18 article-title: i>Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models</i – ident: 19 article-title: i>A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence</i – ident: 9 article-title: i>Calculus of variations involving Caputo-Fabrizio fractional differentiation</i – ident: 7 article-title: t al., On high order fractional integro-differential equations including the Caputo-Fabrizio derivative</i – ident: 17 article-title: i>Steady flow through porous media</i – ident: 25 article-title: i>Macroscopic dispersion in porous media: The controlling factors</i publication-title: Water Resour. Res. doi: 10.1029/WR013i004p00743 – ident: 4 article-title: t al., Analytic solution of space time fractional advection dispersion equation with retardation for contaminant transport in porous media</i – ident: 12 article-title: i>The fractional model of spring pendulum: New features within different kernels</i – ident: 13 article-title: i>A new definition of fractional derivative without singular kernel</i – ident: 23 article-title: i>A theory of dispersion in a porous medium</i publication-title: J. Fluid Mech. doi: 10.1017/S0022112059000672 – ident: 20 article-title: i>A new fractional modelling and control strategy for the outbreak of dengue fever</i – ident: 21 article-title: i>Properties of a new fractional derivative without singular kernel</i – ident: 5 article-title: i>Analytic solution of time fractional Boussinesq equation for groundwater flow in unconfined aquifer</i publication-title: J. Discontinuity, Nonlinearity Complexity doi: 10.5890/DNC.2019.09.009 – ident: 11 article-title: t al., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator</i – ident: 26 article-title: i>Numerical investigation of fractional-fractal Boussinesq equation</i |
SSID | ssj0002124274 |
Score | 2.2854717 |
Snippet | In this paper, we discuss the phenomenon of miscible flow with longitudinal dispersion in porous media. This process simultaneously occur because of molecular... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1062 |
SubjectTerms | caputo-fabrizio fractional derivative operator fixed point theorem iterative method laplace transform miscible flow |
Title | Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative |
URI | https://doaj.org/article/8a60ada78dbb4c88b5992fa6f64f562e |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1FeugEmFDW1ndgeAVFVSGWiUrfIz6lQKC3w87lLQlUGxMIaWYl1d7rvvov9HWMXfWuVNkkhN0GuKoVXmTNBZQhHPiXlpPPUhxw9lMOxvJ8Uk7VRX3QmrJEHbgzX07bMbcAXBuek19oVxvBky1TKhNgdKfsi5q2RKcrBmJAl8q3mpLswQvaw_qN_D9Sakz8waE2qv8aUwQ7bbotBuG42scs24vMe2xqtlFTf9tnr3Sc5Al0DyPlhWeutUnqCWYInulLrphHSdPYB8bWR7YZ29g5gaY28HurLIUANV7CAbB-oPUCnTyHNm2sNuIeAkfhei4AfsPHg7vF2mLVjEjIvcr3InFQ8KKVFsFYkH320uY2k45IMtTmLgEUPwrq0UgutYr9Ar7mcYwwlVzorDlkHPx6PGJS-yEMwjocgZWG4xezHudGEdC5p3mVX34arfKshTqMsphVyCTJzRWauWjN32eVq9UujnfHLuhvywWoNKV7XDzAOqjYOqr_i4Pg_XnLCNmlPTYvllHUW82U8w6Jj4c7r-PoC_6jZ_Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+and+uniqueness+of+miscible+flow+equation+through+porous+media+with+a+non+singular+fractional+derivative&rft.jtitle=AIMS+mathematics&rft.au=Ritu+Agarwal&rft.au=Mahaveer+Prasad+Yadav&rft.au=Dumitru+Baleanu&rft.au=S.+D.+Purohit&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=2&rft.spage=1062&rft.epage=1073&rft_id=info:doi/10.3934%2Fmath.2020074&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a60ada78dbb4c88b5992fa6f64f562e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |