Graph matching with a dual-step EM algorithm

This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph represent...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 20; no. 11; pp. 1236 - 1253
Main Authors Cross, A.D.J., Hancock, E.R.
Format Journal Article
LanguageEnglish
Published IEEE 01.11.1998
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. We evaluate the technique on two real-world problems.
AbstractList This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. We evaluate the technique on two real-world problems
This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. We evaluate the technique on two real-world problems.
This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. In this way, the two processes bootstrap one another. This provides a means of rejecting structural outliers. We evaluate the technique on two real-world problems. The fist involves the matching of different perspective views of 3.5-inch floppy discs. The second example is furnished by the matching of a digital map against aerial images that are subject to severe barrel distortion due to a line-scan sampling process. We complement these experiments with a sensitivity study based on synthetic data.
Author Cross, A.D.J.
Hancock, E.R.
Author_xml – sequence: 1
  givenname: A.D.J.
  surname: Cross
  fullname: Cross, A.D.J.
  organization: Dept. of Comput. Sci., York Univ., UK
– sequence: 2
  givenname: E.R.
  surname: Hancock
  fullname: Hancock, E.R.
BookMark eNqFkM1LAzEQxXOoYFs9ePW0J0Fw28nnZo9SahUqXvQcstlsG9kvkxTxv3fLFg8ieJph5vcejzdDk7ZrLUJXGBYYQ76kbJFR4DyboClgQVIpiTxHsxDeATDjQKfobuN1v08aHc3etbvk08V9opPyoOs0RNsn6-dE17vOD_fmAp1Vug728jTn6O1h_bp6TLcvm6fV_TY1FGRMtSQMBEjAkFUUF9ZUtuQls4WW-bBjTkujpS2IyIBrwoshjSgJMwRnOVA6Rzejb--7j4MNUTUuGFvXurXdISgiKaY5yP_BjDMhxBG8HUHjuxC8rVTvXaP9l8KgjmUpytRY1sAuf7HGRR1d10avXf2n4npUOGvtj_Pp-Q1283Vd
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cviu_2013_09_003
crossref_primary_10_1109_91_917123
crossref_primary_10_1109_TIP_2015_2469153
crossref_primary_10_1016_j_patcog_2016_11_004
crossref_primary_10_1109_TMI_2010_2090354
crossref_primary_10_1016_j_patrec_2004_10_020
crossref_primary_10_1016_j_patrec_2007_01_020
crossref_primary_10_1007_s11771_013_1831_1
crossref_primary_10_1016_S0262_8856_02_00040_9
crossref_primary_10_1109_TPAMI_2002_1017624
crossref_primary_10_1016_j_patcog_2014_06_011
crossref_primary_10_1109_TIP_2002_801120
crossref_primary_10_1017_aer_2016_16
crossref_primary_10_1016_j_patcog_2006_08_001
crossref_primary_10_1016_j_patrec_2012_04_008
crossref_primary_10_1109_TPAMI_2010_46
crossref_primary_10_1016_S0031_3203_01_00173_X
crossref_primary_10_1109_TIP_2003_816010
crossref_primary_10_1109_TIP_2005_863114
crossref_primary_10_1109_34_977570
crossref_primary_10_1109_JPHOT_2018_2876689
crossref_primary_10_1080_19479831003802790
crossref_primary_10_1016_j_imavis_2006_08_005
crossref_primary_10_1109_ACCESS_2022_3156662
crossref_primary_10_1016_S1077_3142_03_00009_2
crossref_primary_10_1016_S0031_3203_01_00232_1
crossref_primary_10_1016_j_patrec_2016_07_016
crossref_primary_10_1016_S1571_0653_04_00493_7
crossref_primary_10_1016_j_cviu_2010_07_007
crossref_primary_10_1016_j_patcog_2005_05_007
crossref_primary_10_1016_S0031_3203_00_00067_4
crossref_primary_10_1016_j_patcog_2007_06_002
crossref_primary_10_1109_TPAMI_2014_2324568
crossref_primary_10_1142_S0218001418550145
crossref_primary_10_1016_S0031_3203_02_00054_7
crossref_primary_10_1007_s11263_014_0766_9
crossref_primary_10_1118_1_2836422
crossref_primary_10_1109_TPAMI_2010_169
crossref_primary_10_1109_TPAMI_2012_99
crossref_primary_10_1016_j_patcog_2010_10_009
crossref_primary_10_1109_TPAMI_2012_51
crossref_primary_10_1198_jcgs_2009_07048
crossref_primary_10_1088_0031_9155_58_12_4315
crossref_primary_10_1109_34_954602
crossref_primary_10_1111_j_1541_0420_2010_01460_x
crossref_primary_10_1016_j_ress_2017_01_008
crossref_primary_10_1142_S1793351X09000768
crossref_primary_10_12677_aam_2024_138364
crossref_primary_10_1016_j_patrec_2007_02_013
crossref_primary_10_1016_S0165_0114_01_00131_2
crossref_primary_10_1016_S0167_8655_02_00186_1
crossref_primary_10_1016_j_websem_2008_12_001
crossref_primary_10_1109_TPAMI_2003_1177149
crossref_primary_10_1109_TPAMI_2013_16
crossref_primary_10_1109_TGRS_2009_2023794
crossref_primary_10_1016_j_ins_2006_02_013
crossref_primary_10_1142_S0218001404003289
crossref_primary_10_1142_S0218213008004345
crossref_primary_10_1016_j_media_2005_08_002
crossref_primary_10_1109_4233_992159
crossref_primary_10_2139_ssrn_3199442
crossref_primary_10_1016_S0031_3203_03_00009_8
crossref_primary_10_1007_s43670_025_00097_1
crossref_primary_10_1006_cviu_1999_0746
crossref_primary_10_1016_j_sigpro_2009_04_010
crossref_primary_10_1109_TPAMI_2007_1099
crossref_primary_10_1111_j_1541_0420_2006_00622_x
crossref_primary_10_1016_j_inffus_2009_12_001
crossref_primary_10_1016_j_cviu_2009_01_004
crossref_primary_10_1016_j_patrec_2011_01_015
crossref_primary_10_1109_TPAMI_2005_225
crossref_primary_10_1016_j_patrec_2009_10_011
crossref_primary_10_1109_TPAMI_2003_1251153
crossref_primary_10_1016_S1077_3142_03_00097_3
crossref_primary_10_1016_j_eswa_2014_07_051
crossref_primary_10_1109_TPAMI_2005_142
crossref_primary_10_1016_j_cviu_2011_10_009
crossref_primary_10_1016_S0262_8856_02_00010_0
Cites_doi 10.1016/0031-3203(91)90050-F
10.1109/34.329005
10.1109/CVPR.1997.609357
10.1364/JOSAA.8.000377
10.1109/34.166625
10.1006/cviu.1997.0656
10.1112/blms/16.2.81
10.1016/0262-8856(92)90043-3
10.1162/neco.1996.8.4.787
10.1109/34.601251
10.1098/rsta.1995.0022
10.7551/mitpress/3877.001.0001
10.1109/34.387502
10.1109/ICCV.1995.466883
10.1007/BFb0028337
10.1016/0004-3702(90)90098-K
10.1109/CVPR.1991.139700
10.1006/cviu.1996.0037
10.1109/34.308475
10.1162/089976698300017188
10.1109/12.210173
10.1109/34.485529
10.1109/ICCV.1995.466816
10.1145/357346.357349
10.1162/neco.1994.6.2.181
10.1023/A:1007940112931
10.1016/0734-189X(89)90146-1
10.1109/TPAMI.1982.4767255
10.1016/S0262-8856(97)00014-0
10.1109/34.546255
10.1023/A:1007927408552
10.1109/34.6778
10.1007/BF02028352
10.1016/0262-8856(95)99727-I
10.1098/rspb.1991.0045
10.1006/cviu.1995.1004
10.1016/0734-189X(85)90126-4
10.1111/j.2517-6161.1977.tb01600.x
10.1016/0031-3203(86)90029-4
10.1109/34.88573
10.1109/34.584098
10.1109/34.192485
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/34.730557
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 1253
ExternalDocumentID 10_1109_34_730557
730557
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c308t-a82406080107f31becfed5d4eba89cfe153dca8eb26705a25b0146d24c2179033
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Jul 10 17:44:46 EDT 2025
Fri Jul 11 01:10:04 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Tue Jul 01 03:18:13 EDT 2025
Wed Aug 27 02:47:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-a82406080107f31becfed5d4eba89cfe153dca8eb26705a25b0146d24c2179033
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27546668
PQPubID 23500
PageCount 18
ParticipantIDs crossref_primary_10_1109_34_730557
proquest_miscellaneous_28313908
ieee_primary_730557
proquest_miscellaneous_27546668
crossref_citationtrail_10_1109_34_730557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-11-01
PublicationDateYYYYMMDD 1998-11-01
PublicationDate_xml – month: 11
  year: 1998
  text: 1998-11-01
  day: 01
PublicationDecade 1990
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 1998
Publisher IEEE
Publisher_xml – name: IEEE
References bibi12369
bibi12368
bibi12367
ullman (bibi123639) 1979
bibi12366
bibi12365
bibi12364
bibi12363
bibi123640
bibi123641
bibi123626
bibi123627
bibi123624
bibi123625
bibi123622
bibi123644
bibi123623
bibi123645
bibi123620
bibi123642
bibi123621
cross (bibi123610) 1998; 10
ahuja (bibi12362) 1985; 29
bibi123628
bibi123629
bibi123630
utans (bibi123643) 1993
bibi123637
bibi123615
bibi123638
bibi123616
bibi123635
bibi123613
hempel (bibi123619) 1986
bibi123636
bibi123614
bibi123611
bibi123633
bibi123634
bibi123631
bibi123632
bibi12361
dempster (bibi123612) 1977; 39
bibi123617
bibi123618
References_xml – year: 1986
  ident: bibi123619
  publication-title: Robust Statistics The Approach Based on Influence Functions
– ident: bibi123638
  doi: 10.1016/0031-3203(91)90050-F
– ident: bibi123617
  doi: 10.1109/34.329005
– ident: bibi123632
  doi: 10.1109/CVPR.1997.609357
– ident: bibi123625
  doi: 10.1364/JOSAA.8.000377
– ident: bibi123611
  doi: 10.1109/34.166625
– ident: bibi123644
  doi: 10.1006/cviu.1997.0656
– ident: bibi123624
  doi: 10.1112/blms/16.2.81
– ident: bibi123635
  doi: 10.1016/0262-8856(92)90043-3
– ident: bibi123615
  doi: 10.1162/neco.1996.8.4.787
– ident: bibi123645
  doi: 10.1109/34.601251
– ident: bibi123636
  doi: 10.1098/rsta.1995.0022
– year: 1979
  ident: bibi123639
  publication-title: The Interpretation of Visual Motion
  doi: 10.7551/mitpress/3877.001.0001
– ident: bibi123634
  doi: 10.1109/34.387502
– ident: bibi123621
  doi: 10.1109/ICCV.1995.466883
– ident: bibi12366
  doi: 10.1007/BFb0028337
– ident: bibi123613
  doi: 10.1016/0004-3702(90)90098-K
– ident: bibi123622
  doi: 10.1109/CVPR.1991.139700
– ident: bibi123629
  doi: 10.1006/cviu.1996.0037
– ident: bibi12364
  doi: 10.1109/34.308475
– ident: bibi123614
  doi: 10.1162/089976698300017188
– ident: bibi123626
  doi: 10.1109/12.210173
– ident: bibi12365
  doi: 10.1109/34.485529
– ident: bibi123618
  doi: 10.1109/ICCV.1995.466816
– ident: bibi12367
  doi: 10.1145/357346.357349
– ident: bibi123623
  doi: 10.1162/neco.1994.6.2.181
– ident: bibi123620
  doi: 10.1023/A:1007940112931
– ident: bibi12363
  doi: 10.1016/0734-189X(89)90146-1
– ident: bibi12361
  doi: 10.1109/TPAMI.1982.4767255
– ident: bibi123628
  doi: 10.1016/S0262-8856(97)00014-0
– ident: bibi123627
  doi: 10.1109/34.546255
– ident: bibi123637
  doi: 10.1023/A:1007927408552
– ident: bibi123640
  doi: 10.1109/34.6778
– ident: bibi123616
  doi: 10.1007/BF02028352
– ident: bibi12369
  doi: 10.1016/0262-8856(95)99727-I
– ident: bibi123633
  doi: 10.1098/rspb.1991.0045
– year: 1993
  ident: bibi123643
  article-title: mixture models and the em algorithms for object recognition within compositional hierarchies
– ident: bibi12368
  doi: 10.1006/cviu.1995.1004
– volume: 29
  start-page: 286
  year: 1985
  ident: bibi12362
  article-title: image representation using voronoi tessellation
  publication-title: Computer Vision Graphics and Image Processing
  doi: 10.1016/0734-189X(85)90126-4
– volume: 39
  start-page: 1
  year: 1977
  ident: bibi123612
  article-title: maximum-likelihood from incomplete data via the em algorithm
  publication-title: J Royal Statistical Soc Series B (methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: bibi123630
  doi: 10.1016/0031-3203(86)90029-4
– ident: bibi123641
  doi: 10.1109/34.88573
– ident: bibi123631
  doi: 10.1109/34.584098
– volume: 10
  start-page: 780
  year: 1998
  ident: bibi123610
  article-title: perspective pose recovery with a dual step em algorithm
  publication-title: Advances in neural information processing systems
– ident: bibi123642
  doi: 10.1109/34.192485
SSID ssj0014503
Score 2.0206664
Snippet This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1236
SubjectTerms Bipartite graph
Computational geometry
Computer vision
Image sampling
Information geometry
Matrix decomposition
Maximum likelihood estimation
Pattern matching
Robot sensing systems
Title Graph matching with a dual-step EM algorithm
URI https://ieeexplore.ieee.org/document/730557
https://www.proquest.com/docview/27546668
https://www.proquest.com/docview/28313908
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxgoFBDlaSEGBpImsd04I0ItFVKZqNQt8isMlKZqk4Vfz9lJKl5CbJZ1jiI_v7Pv-w6h65AaKSTlXkaU9mgUa0_QTHk8NFJzbWhALXd48jQYT-njjM1qnW3HhTHGuOAz49uie8vXuSrtVVk_tvJUcQu1wG-rqFqbBwPKXBJkADCwwMGLqEWEwiDpE-pXDb8cPS6Xyo8N2J0qo05F1147MUIbTPLql4X01fs3qcZ__vAe2q3RJb6rpsM-2jKLLuo0mRtwvZC7aOeTDOEBun2wqtUYsKsLrMT2bhYLbFlaHkyCJR5OsJi_5CuofztE09Hw-X7s1VkUPEUCXniC20MbgCE4ehkJYcwyo5m2Y8QTKMOWp5Xg4GEP4oCJiEmrJ6MjqiKr3kXIEWov8oU5RphJbRJlI2mIphmjUpkkZCJTPNIJ4IAeumk6OFW1xLjNdDFPnasRJCmhadUnPXS1MV1Wuhq_GXVtn24MmtrLZtBSWAv2gUMsTF6u0yhmFNwx_ocFJwB5A37y65dP0bajHDqq4RlqF6vSnAPmKOSFm20fhhHUEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED4hGICBRwFRnhYCiYG0iWMTZ2BAvAq0TCCxBcd2GCgtglYI_gp_hR_H2UkqHhUbEptlWZHjO5-_s---A9gMmEllyoSXhUp7jEbakyxTnghMqoU2zGc2d7h1sdu4YmfX_HoE3ga5MMYYF3xmarbp3vJ1V_XtVVk9svRUURFBeW5entE_e9o7PURhblF6fHR50PCKEgKeCn3R86SwJxaiIvRysjDACWdGc20nKGJs437XSgp0L3cjn0vKU0umoilT1FJX2dtOtO9jCDM4zZPDBk8UjLuyywiZ0KSg31LQFgV-XA9ZLZ_ql8POVW_5YfLdOXY8De_lCuThK3e1fi-tqddv5JD_dIlmYKrAz2Q_V_hZGDGdCkyXtSlIYaoqMPmJaHEOdk4sLzdBdO5CR4m9fSaS2Dw0D9X8gRy1iGzfdh-x_34erv7kDxZgtNPtmEUgPNUmVjZWKNQs4yxVJg64zJSgOkakU4XtUqCJKkjUbS2PduKcKT9OQpbkMqjCxmDoQ84cMmxQxcpwMKDsXS-VJMHdbp9wZMd0-08JjThDh1P8MkKECOp9sTT0y-sw3rhsNZPm6cX5Mky4BEuXWLkCo73HvllFhNVL15ymE7j5a735ACziMPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+matching+with+a+dual-step+EM+algorithm&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Cross%2C+A.D.J.&rft.au=Hancock%2C+E.R.&rft.date=1998-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=20&rft.issue=11&rft.spage=1236&rft.epage=1253&rft_id=info:doi/10.1109%2F34.730557&rft.externalDocID=730557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon