WIMUSim: simulating realistic variabilities in wearable IMUs for human activity recognition

IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the extensive cost and effort of real-world data collection. However, the fidelity of virtual IMU depends heavily on the quality of the source mo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computer science (Lausanne) Vol. 7
Main Authors Oishi, Nobuyuki, Birch, Phil, Roggen, Daniel, Lago, Paula
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 23.01.2025
Subjects
Online AccessGet full text
ISSN2624-9898
2624-9898
DOI10.3389/fcomp.2025.1514933

Cover

Abstract IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the extensive cost and effort of real-world data collection. However, the fidelity of virtual IMU depends heavily on the quality of the source motion data, which varies with motion capture setups. We hypothesize that improving virtual IMU fidelity is crucial to fully harness the potential of physics simulation for virtual IMU data generation in training Human Activity Recognition (HAR) models.MethodTo investigate this, we introduce WIMUSim, a 6-axis wearable IMU simulation framework designed to accurately parameterize real IMU properties when deployed on people. WIMUSim models IMUs in wearable sensing using four key parameters: Body (skeletal model), Dynamics (movement patterns), Placement (device positioning), and Hardware (IMU characteristics). Using these parameters, WIMUSim simulates virtual IMU through differentiable vector manipulations and quaternion rotations. A key novelty enabled by this approach is the identification of WIMUSim parameters using recorded real IMU data through gradient descent-based optimization, starting from an initial estimate. This process enhances the fidelity of the virtual IMU by optimizing the parameters to closely mimic the recorded IMU data. Adjusting these identified parameters allows us to introduce physically plausible variabilities.ResultsOur fidelity assessment demonstrates that WIMUSim accurately replicates real IMU data with optimized parameters and realistically simulates changes in sensor placement. Evaluations using exercise and locomotion activity datasets confirm that models trained with optimized virtual IMU data perform comparably to those trained with real IMU data. Moreover, we demonstrate the use of WIMUSim for data augmentation through two approaches: Comprehensive Parameter Mixing, which enhances data diversity by varying parameter combinations across subjects, outperforming models trained with real and non-optimized virtual IMU data by 4–10 percentage points (pp); and Personalized Dataset Generation, which customizes augmented datasets to individual user profiles, resulting in average accuracy improvements of 4 pp, with gains exceeding 10 pp for certain subjects.DiscussionThese results underscore the benefit of high-fidelity virtual IMU data and WIMUSim's utility in developing effective data generation strategies, alleviating the challenge of data scarcity in sensor-based HAR.
AbstractList IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the extensive cost and effort of real-world data collection. However, the fidelity of virtual IMU depends heavily on the quality of the source motion data, which varies with motion capture setups. We hypothesize that improving virtual IMU fidelity is crucial to fully harness the potential of physics simulation for virtual IMU data generation in training Human Activity Recognition (HAR) models.MethodTo investigate this, we introduce WIMUSim, a 6-axis wearable IMU simulation framework designed to accurately parameterize real IMU properties when deployed on people. WIMUSim models IMUs in wearable sensing using four key parameters: Body (skeletal model), Dynamics (movement patterns), Placement (device positioning), and Hardware (IMU characteristics). Using these parameters, WIMUSim simulates virtual IMU through differentiable vector manipulations and quaternion rotations. A key novelty enabled by this approach is the identification of WIMUSim parameters using recorded real IMU data through gradient descent-based optimization, starting from an initial estimate. This process enhances the fidelity of the virtual IMU by optimizing the parameters to closely mimic the recorded IMU data. Adjusting these identified parameters allows us to introduce physically plausible variabilities.ResultsOur fidelity assessment demonstrates that WIMUSim accurately replicates real IMU data with optimized parameters and realistically simulates changes in sensor placement. Evaluations using exercise and locomotion activity datasets confirm that models trained with optimized virtual IMU data perform comparably to those trained with real IMU data. Moreover, we demonstrate the use of WIMUSim for data augmentation through two approaches: Comprehensive Parameter Mixing, which enhances data diversity by varying parameter combinations across subjects, outperforming models trained with real and non-optimized virtual IMU data by 4–10 percentage points (pp); and Personalized Dataset Generation, which customizes augmented datasets to individual user profiles, resulting in average accuracy improvements of 4 pp, with gains exceeding 10 pp for certain subjects.DiscussionThese results underscore the benefit of high-fidelity virtual IMU data and WIMUSim's utility in developing effective data generation strategies, alleviating the challenge of data scarcity in sensor-based HAR.
Author Roggen, Daniel
Birch, Phil
Lago, Paula
Oishi, Nobuyuki
Author_xml – sequence: 1
  givenname: Nobuyuki
  surname: Oishi
  fullname: Oishi, Nobuyuki
– sequence: 2
  givenname: Phil
  surname: Birch
  fullname: Birch, Phil
– sequence: 3
  givenname: Daniel
  surname: Roggen
  fullname: Roggen, Daniel
– sequence: 4
  givenname: Paula
  surname: Lago
  fullname: Lago, Paula
BookMark eNpNkEtLAzEUhYNUsNb-AVf5A615zEwm7qT4KFRcaHHhItzJJDVlZlKSaaX_3vSBuLqHwzkf3HONBp3vDEK3lEw5L-Wd1b7dTBlh-ZTmNJOcX6AhK1g2kaUsB__0FRrHuCYkRSnNSzFEX5_z1-W7a-9xdO22gd51KxwMNC72TuMdBAeVa1zvTMSuwz8GAlSNwakWsfUBf29b6DDo3u1cv09d7VddyvvuBl1aaKIZn-8ILZ8eP2Yvk8Xb83z2sJhoTsp-Irk1UltGSUm4tVmuqTW1NgCyIJbzohZUmCwXtSwoEzUQWSRR0cwWeTL4CM1P3NrDWm2CayHslQenjoYPKwUhfdMYRS0RVWWEBUmympCy4CyzRArBpBGsTix2YungYwzG_vEoUYe11XFtdVhbndfmv6AAdcI
Cites_doi 10.1016/j.iot.2023.100925
10.1038/s41597-023-02567-4
10.1145/3411841
10.1016/j.eswa.2018.03.056
10.1109/ICCV51070.2023.01385
10.1016/j.jhevol.2005.09.004
10.1145/3478096
10.3390/s20082200
10.1007/978-3-030-13001-5_10
10.3390/s140609995
10.1109/SURV.2012.110112.00192
10.3390/app11073094
10.1145/3594739.3610742
10.3390/s16010115
10.1007/978-981-15-8944-7_1
10.1109/MC.2018.2381112
10.1109/MC.2023.3239344
10.1145/2499621
10.1145/3596261
10.1109/CPHS56133.2022.9804560
10.3390/s21206893
10.48550/arXiv.2301.06052
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fcomp.2025.1514933
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-9898
ExternalDocumentID oai_doaj_org_article_1f07bbe7fa904d0086324f097729e72d
10_3389_fcomp_2025_1514933
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c308t-93fe9cf210803ff45c1fedceaa960f336d717e457d96127da096612b14f651273
IEDL.DBID DOA
ISSN 2624-9898
IngestDate Wed Aug 27 01:18:00 EDT 2025
Tue Jul 01 00:59:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-93fe9cf210803ff45c1fedceaa960f336d717e457d96127da096612b14f651273
OpenAccessLink https://doaj.org/article/1f07bbe7fa904d0086324f097729e72d
ParticipantIDs doaj_primary_oai_doaj_org_article_1f07bbe7fa904d0086324f097729e72d
crossref_primary_10_3389_fcomp_2025_1514933
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-23
PublicationDateYYYYMMDD 2025-01-23
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-23
  day: 23
PublicationDecade 2020
PublicationTitle Frontiers in computer science (Lausanne)
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References B22
Khaked (B13) 2023
Leng (B18) 2023
Mathur (B20) 2018
Pellatt (B24) 2021
Gordon (B9) 2014
Jayasinghe (B11) 2023; 10
Xia (B35) 2023; 56
Zhu (B38) 2023
Fortes Rey (B6) 2024
Kwon (B15) 2021; 5
Lara (B17) 2012; 15
Bulling (B5) 2014; 46
Asare (B1) 2013
Garcia-Gonzalez (B8) 2023; 24
Liu (B19) 2021
Baños (B3) 2012
Nweke (B21) 2018; 105
Rey (B27) 2019
Roggen (B28) 2010
Roggen (B29) 2018
Sztyler (B32) 2016
Lago (B16) 2019
Rey (B26) 2021; 11
Kang (B12) 2019
Auerbach (B2) 2006; 50
Banos (B4) 2014; 14
Garcia-Gonzalez (B7) 2020; 20
Santhalingam (B30) 2023; 7
Xia (B34) 2022
Ordóñez (B23) 2016; 16
Young (B36) 2011
Plötz (B25) 2018; 51
Kwon (B14) 2020; 4
Stisen (B31) 2015
Hao (B10) 2022; 23
Zhang (B37) 2023
Xia (B33) 2021; 21
References_xml – start-page: 41
  year: 2019
  ident: B12
– volume: 24
  start-page: 100925
  year: 2023
  ident: B8
  article-title: Deep learning models for real-life human activity recognition from smartphone sensor data
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.100925
– volume: 10
  start-page: 709
  year: 2023
  ident: B11
  article-title: Inertial measurement data from loose clothing worn on the lower body during everyday activities
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02567-4
– start-page: 79
  year: 2022
  ident: B34
– volume: 4
  start-page: 1
  year: 2020
  ident: B14
  article-title: Imutube: automatic extraction of virtual on-body accelerometry from video for human activity recognition
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol
  doi: 10.1145/3411841
– start-page: 127
  year: 2015
  ident: B31
– volume: 105
  start-page: 233
  year: 2018
  ident: B21
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2018.03.056
– start-page: 199
  year: 2011
  ident: B36
– start-page: 15085
  year: 2023
  ident: B38
  doi: 10.1109/ICCV51070.2023.01385
– volume: 50
  start-page: 203
  year: 2006
  ident: B2
  article-title: Limb bone bilateral asymmetry: variability and commonality among modern humans
  publication-title: J. Hum. Evol
  doi: 10.1016/j.jhevol.2005.09.004
– volume-title: 2012 Anthropometric Survey of US Army Personnel: Methods and Summary Statistics
  year: 2014
  ident: B9
– volume: 5
  start-page: 1
  year: 2021
  ident: B15
  article-title: Approaching the real-world: Supporting activity recognition training with virtual imu data
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol
  doi: 10.1145/3478096
– volume: 20
  start-page: 2200
  year: 2020
  ident: B7
  article-title: A public domain dataset for real-life human activity recognition using smartphone sensors
  publication-title: Sensors
  doi: 10.3390/s20082200
– start-page: 135
  volume-title: Human Activity Sensing: Corpus and Applications
  year: 2019
  ident: B16
  doi: 10.1007/978-3-030-13001-5_10
– volume: 14
  start-page: 9995
  year: 2014
  ident: B4
  article-title: Dealing with the effects of sensor displacement in wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s140609995
– start-page: 1
  year: 2010
  ident: B28
– volume: 15
  start-page: 1192
  year: 2012
  ident: B17
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Commun. Surv. Tutor
  doi: 10.1109/SURV.2012.110112.00192
– start-page: 25
  year: 2024
  ident: B6
– start-page: 200
  year: 2018
  ident: B20
– volume: 11
  start-page: 3094
  year: 2021
  ident: B26
  article-title: Translating videos into synthetic training data for wearable sensor-based activity recognition systems using residual deep convolutional networks
  publication-title: Appl. Sci
  doi: 10.3390/app11073094
– start-page: 480
  year: 2023
  ident: B13
  doi: 10.1145/3594739.3610742
– volume: 16
  start-page: 115
  year: 2016
  ident: B23
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– start-page: 3
  volume-title: Activity and Behavior Computing
  year: 2021
  ident: B24
  doi: 10.1007/978-981-15-8944-7_1
– volume: 51
  start-page: 50
  year: 2018
  ident: B25
  article-title: Deep learning for human activity recognition in mobile computing
  publication-title: Computer
  doi: 10.1109/MC.2018.2381112
– volume: 56
  start-page: 42
  year: 2023
  ident: B35
  article-title: Virtual sensors with 3d digital human motion for interactive simulation
  publication-title: Computer
  doi: 10.1109/MC.2023.3239344
– volume: 46
  start-page: 1
  year: 2014
  ident: B5
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv
  doi: 10.1145/2499621
– start-page: 1
  year: 2016
  ident: B32
– start-page: 1026
  year: 2012
  ident: B3
– start-page: 39
  year: 2023
  ident: B18
– volume: 7
  start-page: 1
  year: 2023
  ident: B30
  article-title: Synthetic smartwatch imu data generation from in-the-wild asl videos
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol
  doi: 10.1145/3596261
– start-page: 1
  year: 2013
  ident: B1
– ident: B22
– start-page: 699
  year: 2019
  ident: B27
– volume: 23
  start-page: 302
  year: 2022
  ident: B10
  article-title: CROMOSim: a deep learning-based cross-modality inertial measurement simulator
  publication-title: IEEE Trans. Mob. Comput
  doi: 10.1109/CPHS56133.2022.9804560
– start-page: 177
  year: 2018
  ident: B29
– volume: 21
  start-page: 6893
  year: 2021
  ident: B33
  article-title: Optimizing sensor position with virtual sensors in human activity recognition system design
  publication-title: Sensors
  doi: 10.3390/s21206893
– year: 2023
  ident: B37
  article-title: T2M-GPT: Generating human motion from textual descriptions with discrete representations
  publication-title: arXiv
  doi: 10.48550/arXiv.2301.06052
– start-page: 1
  year: 2021
  ident: B19
SSID ssj0002511587
Score 2.2802925
Snippet IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms human activity recognition
inertial measurement unit
optimization
physics simulation
wearable computing
Title WIMUSim: simulating realistic variabilities in wearable IMUs for human activity recognition
URI https://doaj.org/article/1f07bbe7fa904d0086324f097729e72d
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzYU6sR2ErMBalWQygIVlRgiO7ZRJZoiWmDjt3PnpFWZWFiiKEoi67uL7_uiexBylmpRcst0FBtlI-C3ItLSetA8JgV3UUlchgTZ-7Q_FHcjOVoZ9YU5YXV74Bq4TuxZZozLvFZMWGTgQAE8U8gKXZZY3H2ZYitiCvdgJM4yz-oqGVBhquMxRRv0YCIvIMgJxfmvSLTSsD9Elt4W2WgoIb2ql7JN1ly1QzYX4xZo8_Xtkuen28HwYTy5pLPxJEzdql4ocL7X0GuZfoLqrZtug_il44p-gRNjYRSFx2YUyCkNA_koljLgxAi6TB6aVntk2Os-3vSjZjZCVHKWzyPFvVOlTzBFkHsvZBl7TOjUGiSJ5zy1oNOckJlVwGEyq0GqwImJhU8hxmd8n7SqaeUOCE0NiJhc89wG-ZJqoFzGORBiklnnVJucL3Aq3uoWGAVIB0S1CKgWiGrRoNom1wjl8k5sXx0ugFGLxqjFX0Y9_I-XHJF1XBj-L0n4MWnN3z_cCTCIuTkNzgLHwXf3B9T_w-M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WIMUSim%3A+simulating+realistic+variabilities+in+wearable+IMUs+for+human+activity+recognition&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Nobuyuki+Oishi&rft.au=Phil+Birch&rft.au=Daniel+Roggen&rft.au=Paula+Lago&rft.date=2025-01-23&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9898&rft.volume=7&rft_id=info:doi/10.3389%2Ffcomp.2025.1514933&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f07bbe7fa904d0086324f097729e72d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon