WIMUSim: simulating realistic variabilities in wearable IMUs for human activity recognition
IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the extensive cost and effort of real-world data collection. However, the fidelity of virtual IMU depends heavily on the quality of the source mo...
Saved in:
Published in | Frontiers in computer science (Lausanne) Vol. 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
23.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2624-9898 2624-9898 |
DOI | 10.3389/fcomp.2025.1514933 |
Cover
Abstract | IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the extensive cost and effort of real-world data collection. However, the fidelity of virtual IMU depends heavily on the quality of the source motion data, which varies with motion capture setups. We hypothesize that improving virtual IMU fidelity is crucial to fully harness the potential of physics simulation for virtual IMU data generation in training Human Activity Recognition (HAR) models.MethodTo investigate this, we introduce WIMUSim, a 6-axis wearable IMU simulation framework designed to accurately parameterize real IMU properties when deployed on people. WIMUSim models IMUs in wearable sensing using four key parameters: Body (skeletal model), Dynamics (movement patterns), Placement (device positioning), and Hardware (IMU characteristics). Using these parameters, WIMUSim simulates virtual IMU through differentiable vector manipulations and quaternion rotations. A key novelty enabled by this approach is the identification of WIMUSim parameters using recorded real IMU data through gradient descent-based optimization, starting from an initial estimate. This process enhances the fidelity of the virtual IMU by optimizing the parameters to closely mimic the recorded IMU data. Adjusting these identified parameters allows us to introduce physically plausible variabilities.ResultsOur fidelity assessment demonstrates that WIMUSim accurately replicates real IMU data with optimized parameters and realistically simulates changes in sensor placement. Evaluations using exercise and locomotion activity datasets confirm that models trained with optimized virtual IMU data perform comparably to those trained with real IMU data. Moreover, we demonstrate the use of WIMUSim for data augmentation through two approaches: Comprehensive Parameter Mixing, which enhances data diversity by varying parameter combinations across subjects, outperforming models trained with real and non-optimized virtual IMU data by 4–10 percentage points (pp); and Personalized Dataset Generation, which customizes augmented datasets to individual user profiles, resulting in average accuracy improvements of 4 pp, with gains exceeding 10 pp for certain subjects.DiscussionThese results underscore the benefit of high-fidelity virtual IMU data and WIMUSim's utility in developing effective data generation strategies, alleviating the challenge of data scarcity in sensor-based HAR. |
---|---|
AbstractList | IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the extensive cost and effort of real-world data collection. However, the fidelity of virtual IMU depends heavily on the quality of the source motion data, which varies with motion capture setups. We hypothesize that improving virtual IMU fidelity is crucial to fully harness the potential of physics simulation for virtual IMU data generation in training Human Activity Recognition (HAR) models.MethodTo investigate this, we introduce WIMUSim, a 6-axis wearable IMU simulation framework designed to accurately parameterize real IMU properties when deployed on people. WIMUSim models IMUs in wearable sensing using four key parameters: Body (skeletal model), Dynamics (movement patterns), Placement (device positioning), and Hardware (IMU characteristics). Using these parameters, WIMUSim simulates virtual IMU through differentiable vector manipulations and quaternion rotations. A key novelty enabled by this approach is the identification of WIMUSim parameters using recorded real IMU data through gradient descent-based optimization, starting from an initial estimate. This process enhances the fidelity of the virtual IMU by optimizing the parameters to closely mimic the recorded IMU data. Adjusting these identified parameters allows us to introduce physically plausible variabilities.ResultsOur fidelity assessment demonstrates that WIMUSim accurately replicates real IMU data with optimized parameters and realistically simulates changes in sensor placement. Evaluations using exercise and locomotion activity datasets confirm that models trained with optimized virtual IMU data perform comparably to those trained with real IMU data. Moreover, we demonstrate the use of WIMUSim for data augmentation through two approaches: Comprehensive Parameter Mixing, which enhances data diversity by varying parameter combinations across subjects, outperforming models trained with real and non-optimized virtual IMU data by 4–10 percentage points (pp); and Personalized Dataset Generation, which customizes augmented datasets to individual user profiles, resulting in average accuracy improvements of 4 pp, with gains exceeding 10 pp for certain subjects.DiscussionThese results underscore the benefit of high-fidelity virtual IMU data and WIMUSim's utility in developing effective data generation strategies, alleviating the challenge of data scarcity in sensor-based HAR. |
Author | Roggen, Daniel Birch, Phil Lago, Paula Oishi, Nobuyuki |
Author_xml | – sequence: 1 givenname: Nobuyuki surname: Oishi fullname: Oishi, Nobuyuki – sequence: 2 givenname: Phil surname: Birch fullname: Birch, Phil – sequence: 3 givenname: Daniel surname: Roggen fullname: Roggen, Daniel – sequence: 4 givenname: Paula surname: Lago fullname: Lago, Paula |
BookMark | eNpNkEtLAzEUhYNUsNb-AVf5A615zEwm7qT4KFRcaHHhItzJJDVlZlKSaaX_3vSBuLqHwzkf3HONBp3vDEK3lEw5L-Wd1b7dTBlh-ZTmNJOcX6AhK1g2kaUsB__0FRrHuCYkRSnNSzFEX5_z1-W7a-9xdO22gd51KxwMNC72TuMdBAeVa1zvTMSuwz8GAlSNwakWsfUBf29b6DDo3u1cv09d7VddyvvuBl1aaKIZn-8ILZ8eP2Yvk8Xb83z2sJhoTsp-Irk1UltGSUm4tVmuqTW1NgCyIJbzohZUmCwXtSwoEzUQWSRR0cwWeTL4CM1P3NrDWm2CayHslQenjoYPKwUhfdMYRS0RVWWEBUmympCy4CyzRArBpBGsTix2YungYwzG_vEoUYe11XFtdVhbndfmv6AAdcI |
Cites_doi | 10.1016/j.iot.2023.100925 10.1038/s41597-023-02567-4 10.1145/3411841 10.1016/j.eswa.2018.03.056 10.1109/ICCV51070.2023.01385 10.1016/j.jhevol.2005.09.004 10.1145/3478096 10.3390/s20082200 10.1007/978-3-030-13001-5_10 10.3390/s140609995 10.1109/SURV.2012.110112.00192 10.3390/app11073094 10.1145/3594739.3610742 10.3390/s16010115 10.1007/978-981-15-8944-7_1 10.1109/MC.2018.2381112 10.1109/MC.2023.3239344 10.1145/2499621 10.1145/3596261 10.1109/CPHS56133.2022.9804560 10.3390/s21206893 10.48550/arXiv.2301.06052 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3389/fcomp.2025.1514933 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2624-9898 |
ExternalDocumentID | oai_doaj_org_article_1f07bbe7fa904d0086324f097729e72d 10_3389_fcomp_2025_1514933 |
GroupedDBID | 9T4 AAFWJ AAYXX ACXDI ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c308t-93fe9cf210803ff45c1fedceaa960f336d717e457d96127da096612b14f651273 |
IEDL.DBID | DOA |
ISSN | 2624-9898 |
IngestDate | Wed Aug 27 01:18:00 EDT 2025 Tue Jul 01 00:59:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-93fe9cf210803ff45c1fedceaa960f336d717e457d96127da096612b14f651273 |
OpenAccessLink | https://doaj.org/article/1f07bbe7fa904d0086324f097729e72d |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1f07bbe7fa904d0086324f097729e72d crossref_primary_10_3389_fcomp_2025_1514933 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-23 |
PublicationDateYYYYMMDD | 2025-01-23 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in computer science (Lausanne) |
PublicationYear | 2025 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | B22 Khaked (B13) 2023 Leng (B18) 2023 Mathur (B20) 2018 Pellatt (B24) 2021 Gordon (B9) 2014 Jayasinghe (B11) 2023; 10 Xia (B35) 2023; 56 Zhu (B38) 2023 Fortes Rey (B6) 2024 Kwon (B15) 2021; 5 Lara (B17) 2012; 15 Bulling (B5) 2014; 46 Asare (B1) 2013 Garcia-Gonzalez (B8) 2023; 24 Liu (B19) 2021 Baños (B3) 2012 Nweke (B21) 2018; 105 Rey (B27) 2019 Roggen (B28) 2010 Roggen (B29) 2018 Sztyler (B32) 2016 Lago (B16) 2019 Rey (B26) 2021; 11 Kang (B12) 2019 Auerbach (B2) 2006; 50 Banos (B4) 2014; 14 Garcia-Gonzalez (B7) 2020; 20 Santhalingam (B30) 2023; 7 Xia (B34) 2022 Ordóñez (B23) 2016; 16 Young (B36) 2011 Plötz (B25) 2018; 51 Kwon (B14) 2020; 4 Stisen (B31) 2015 Hao (B10) 2022; 23 Zhang (B37) 2023 Xia (B33) 2021; 21 |
References_xml | – start-page: 41 year: 2019 ident: B12 – volume: 24 start-page: 100925 year: 2023 ident: B8 article-title: Deep learning models for real-life human activity recognition from smartphone sensor data publication-title: Internet Things doi: 10.1016/j.iot.2023.100925 – volume: 10 start-page: 709 year: 2023 ident: B11 article-title: Inertial measurement data from loose clothing worn on the lower body during everyday activities publication-title: Sci. Data doi: 10.1038/s41597-023-02567-4 – start-page: 79 year: 2022 ident: B34 – volume: 4 start-page: 1 year: 2020 ident: B14 article-title: Imutube: automatic extraction of virtual on-body accelerometry from video for human activity recognition publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol doi: 10.1145/3411841 – start-page: 127 year: 2015 ident: B31 – volume: 105 start-page: 233 year: 2018 ident: B21 article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2018.03.056 – start-page: 199 year: 2011 ident: B36 – start-page: 15085 year: 2023 ident: B38 doi: 10.1109/ICCV51070.2023.01385 – volume: 50 start-page: 203 year: 2006 ident: B2 article-title: Limb bone bilateral asymmetry: variability and commonality among modern humans publication-title: J. Hum. Evol doi: 10.1016/j.jhevol.2005.09.004 – volume-title: 2012 Anthropometric Survey of US Army Personnel: Methods and Summary Statistics year: 2014 ident: B9 – volume: 5 start-page: 1 year: 2021 ident: B15 article-title: Approaching the real-world: Supporting activity recognition training with virtual imu data publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol doi: 10.1145/3478096 – volume: 20 start-page: 2200 year: 2020 ident: B7 article-title: A public domain dataset for real-life human activity recognition using smartphone sensors publication-title: Sensors doi: 10.3390/s20082200 – start-page: 135 volume-title: Human Activity Sensing: Corpus and Applications year: 2019 ident: B16 doi: 10.1007/978-3-030-13001-5_10 – volume: 14 start-page: 9995 year: 2014 ident: B4 article-title: Dealing with the effects of sensor displacement in wearable activity recognition publication-title: Sensors doi: 10.3390/s140609995 – start-page: 1 year: 2010 ident: B28 – volume: 15 start-page: 1192 year: 2012 ident: B17 article-title: A survey on human activity recognition using wearable sensors publication-title: IEEE Commun. Surv. Tutor doi: 10.1109/SURV.2012.110112.00192 – start-page: 25 year: 2024 ident: B6 – start-page: 200 year: 2018 ident: B20 – volume: 11 start-page: 3094 year: 2021 ident: B26 article-title: Translating videos into synthetic training data for wearable sensor-based activity recognition systems using residual deep convolutional networks publication-title: Appl. Sci doi: 10.3390/app11073094 – start-page: 480 year: 2023 ident: B13 doi: 10.1145/3594739.3610742 – volume: 16 start-page: 115 year: 2016 ident: B23 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – start-page: 3 volume-title: Activity and Behavior Computing year: 2021 ident: B24 doi: 10.1007/978-981-15-8944-7_1 – volume: 51 start-page: 50 year: 2018 ident: B25 article-title: Deep learning for human activity recognition in mobile computing publication-title: Computer doi: 10.1109/MC.2018.2381112 – volume: 56 start-page: 42 year: 2023 ident: B35 article-title: Virtual sensors with 3d digital human motion for interactive simulation publication-title: Computer doi: 10.1109/MC.2023.3239344 – volume: 46 start-page: 1 year: 2014 ident: B5 article-title: A tutorial on human activity recognition using body-worn inertial sensors publication-title: ACM Comput. Surv doi: 10.1145/2499621 – start-page: 1 year: 2016 ident: B32 – start-page: 1026 year: 2012 ident: B3 – start-page: 39 year: 2023 ident: B18 – volume: 7 start-page: 1 year: 2023 ident: B30 article-title: Synthetic smartwatch imu data generation from in-the-wild asl videos publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol doi: 10.1145/3596261 – start-page: 1 year: 2013 ident: B1 – ident: B22 – start-page: 699 year: 2019 ident: B27 – volume: 23 start-page: 302 year: 2022 ident: B10 article-title: CROMOSim: a deep learning-based cross-modality inertial measurement simulator publication-title: IEEE Trans. Mob. Comput doi: 10.1109/CPHS56133.2022.9804560 – start-page: 177 year: 2018 ident: B29 – volume: 21 start-page: 6893 year: 2021 ident: B33 article-title: Optimizing sensor position with virtual sensors in human activity recognition system design publication-title: Sensors doi: 10.3390/s21206893 – year: 2023 ident: B37 article-title: T2M-GPT: Generating human motion from textual descriptions with discrete representations publication-title: arXiv doi: 10.48550/arXiv.2301.06052 – start-page: 1 year: 2021 ident: B19 |
SSID | ssj0002511587 |
Score | 2.2802925 |
Snippet | IntroductionPhysics simulation has emerged as a promising approach to generate virtual Inertial Measurement Unit (IMU) data, offering a solution to reduce the... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
SubjectTerms | human activity recognition inertial measurement unit optimization physics simulation wearable computing |
Title | WIMUSim: simulating realistic variabilities in wearable IMUs for human activity recognition |
URI | https://doaj.org/article/1f07bbe7fa904d0086324f097729e72d |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzYU6sR2ErMBalWQygIVlRgiO7ZRJZoiWmDjt3PnpFWZWFiiKEoi67uL7_uiexBylmpRcst0FBtlI-C3ItLSetA8JgV3UUlchgTZ-7Q_FHcjOVoZ9YU5YXV74Bq4TuxZZozLvFZMWGTgQAE8U8gKXZZY3H2ZYitiCvdgJM4yz-oqGVBhquMxRRv0YCIvIMgJxfmvSLTSsD9Elt4W2WgoIb2ql7JN1ly1QzYX4xZo8_Xtkuen28HwYTy5pLPxJEzdql4ocL7X0GuZfoLqrZtug_il44p-gRNjYRSFx2YUyCkNA_koljLgxAi6TB6aVntk2Os-3vSjZjZCVHKWzyPFvVOlTzBFkHsvZBl7TOjUGiSJ5zy1oNOckJlVwGEyq0GqwImJhU8hxmd8n7SqaeUOCE0NiJhc89wG-ZJqoFzGORBiklnnVJucL3Aq3uoWGAVIB0S1CKgWiGrRoNom1wjl8k5sXx0ugFGLxqjFX0Y9_I-XHJF1XBj-L0n4MWnN3z_cCTCIuTkNzgLHwXf3B9T_w-M |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WIMUSim%3A+simulating+realistic+variabilities+in+wearable+IMUs+for+human+activity+recognition&rft.jtitle=Frontiers+in+computer+science+%28Lausanne%29&rft.au=Nobuyuki+Oishi&rft.au=Phil+Birch&rft.au=Daniel+Roggen&rft.au=Paula+Lago&rft.date=2025-01-23&rft.pub=Frontiers+Media+S.A&rft.eissn=2624-9898&rft.volume=7&rft_id=info:doi/10.3389%2Ffcomp.2025.1514933&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1f07bbe7fa904d0086324f097729e72d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-9898&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-9898&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-9898&client=summon |