Reactive scattering of H2 on Cu(111) at 925 K: Effective Hartree potential vs sudden approximation

We present new quantum dynamical results for the reactive scattering of hydrogen molecules from a Cu(111) surface at a surface temperature of 925 K. Reaction, scattering, and diffraction probabilities are compared for results obtained using both an effective Hartree potential (EfHP) and a sudden app...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 161; no. 15
Main Authors Smits, Bauke, Sah, Mantu Kumar, Naskar, Koushik, Adhikari, Satrajit, Meyer, Jörg, Somers, Mark F.
Format Journal Article
LanguageEnglish
Published United States 21.10.2024
Online AccessGet full text

Cover

Loading…
Abstract We present new quantum dynamical results for the reactive scattering of hydrogen molecules from a Cu(111) surface at a surface temperature of 925 K. Reaction, scattering, and diffraction probabilities are compared for results obtained using both an effective Hartree potential (EfHP) and a sudden approximation approach, implemented through the static corrugation model (SCM), to include surface temperature effects. Toward this goal, we show how the SRP48 DFT-functional and an embedded atom potential perform when used to calculate copper lattice constants and thermal expansion coefficients based on lattice dynamics calculations within the quasi-harmonic approximation. The so-calculated phonons are then used in the EfHP approach to replace the normal modes of a fictitious copper cluster used in earlier work. We find that both the EfHP and SCM approaches correctly predict the reaction probability curve broadening effect when the surface temperature is increased. Similarly, results for rovibrationally elastic scattering appear to be improved, predominantly for the SCM model. The behavior of the EfHP results appears to remain much closer to that of a Born–Oppenheimer static surface approach, which excludes any surface temperature effects. Finally, for the diffraction, we show very clear attenuation effects for the SCM approach, significantly decreasing specular diffraction probabilities at 925 K surface temperature. These results demonstrate that state-of-the-art theoretical models are able to reproduce strictly quantum mechanical scattering effects with a sudden approximation model and open up interesting opportunities for further comparisons to experimental diffraction results.
AbstractList We present new quantum dynamical results for the reactive scattering of hydrogen molecules from a Cu(111) surface at a surface temperature of 925 K. Reaction, scattering, and diffraction probabilities are compared for results obtained using both an effective Hartree potential (EfHP) and a sudden approximation approach, implemented through the static corrugation model (SCM), to include surface temperature effects. Toward this goal, we show how the SRP48 DFT-functional and an embedded atom potential perform when used to calculate copper lattice constants and thermal expansion coefficients based on lattice dynamics calculations within the quasi-harmonic approximation. The so-calculated phonons are then used in the EfHP approach to replace the normal modes of a fictitious copper cluster used in earlier work. We find that both the EfHP and SCM approaches correctly predict the reaction probability curve broadening effect when the surface temperature is increased. Similarly, results for rovibrationally elastic scattering appear to be improved, predominantly for the SCM model. The behavior of the EfHP results appears to remain much closer to that of a Born-Oppenheimer static surface approach, which excludes any surface temperature effects. Finally, for the diffraction, we show very clear attenuation effects for the SCM approach, significantly decreasing specular diffraction probabilities at 925 K surface temperature. These results demonstrate that state-of-the-art theoretical models are able to reproduce strictly quantum mechanical scattering effects with a sudden approximation model and open up interesting opportunities for further comparisons to experimental diffraction results.
Author Smits, Bauke
Naskar, Koushik
Sah, Mantu Kumar
Somers, Mark F.
Adhikari, Satrajit
Meyer, Jörg
Author_xml – sequence: 1
  givenname: Bauke
  surname: Smits
  fullname: Smits, Bauke
  email: b.smits@lic.leidenuniv.nl
  organization: Leiden Institute of Chemistry, Gorlaeus Building, Leiden University
– sequence: 2
  givenname: Mantu Kumar
  surname: Sah
  fullname: Sah, Mantu Kumar
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 3
  givenname: Koushik
  surname: Naskar
  fullname: Naskar, Koushik
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 4
  givenname: Satrajit
  surname: Adhikari
  fullname: Adhikari, Satrajit
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 5
  givenname: Jörg
  surname: Meyer
  fullname: Meyer, Jörg
  email: j.meyer@chem.leidenuniv.nl
  organization: Leiden Institute of Chemistry, Gorlaeus Building, Leiden University
– sequence: 6
  givenname: Mark F.
  surname: Somers
  fullname: Somers, Mark F.
  organization: Leiden Institute of Chemistry, Gorlaeus Building, Leiden University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39404207$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtKw0AUhgep2IsufAGZpQqpZ67JuJNSrVgQpPswmYtE2knITIq-jc_ik1ltdXU23_n_c74xGoQmOITOCUwJSHYjpkAZEUIdoRGBQmW5VDBAIwBKMiVBDtE4xjcAIDnlJ2jIFAdOIR8h8-K0SfXW4Wh0Sq6rwytuPF5Q3AQ86y8JIVdYJ6yo-Pp8usVz791-YaG71DmH2ya5kGq9xtuIY2-tC1i3bde81xud6iacomOv19GdHeYEre7nq9kiWz4_PM7ulplhUKQsZyw3hBa0spp6SQthoeKVVswLz7jlRuqKWAqeE2aYZ1IKTbWQDioDBZugi31s21cbZ8u22_V3H-Xfszvgeg9EU6ffy_4ZAuWPyVKUB5PsGxv3Y5w
CODEN JCPSA6
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
DBID AJDQP
NPM
DOI 10.1063/5.0231559
DatabaseName AIP Open Access Journals
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 39404207
jcp
Genre Journal Article
GrantInformation_xml – fundername: Indian Association for the Cultivation of Science
  funderid: https://doi.org/10.13039/501100024236
– fundername: Gov. of India, Ministry of Social Justice and Empowerment
– fundername: Science and Engineering Research Board
  grantid: CRG/2023/000611
  funderid: https://doi.org/10.13039/501100001843
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
ABJGX
NPM
ID FETCH-LOGICAL-c308t-7337c1282bda2f6285d0b4ba93f5f34d4c6ab1d20f413c3f3665a2a56e0bc083
IEDL.DBID AJDQP
ISSN 0021-9606
IngestDate Wed Feb 19 02:04:55 EST 2025
Tue Nov 05 04:18:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
Published open access through an agreement with Leiden University 4496
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-7337c1282bda2f6285d0b4ba93f5f34d4c6ab1d20f413c3f3665a2a56e0bc083
ORCID 0009-0004-4101-7789
0000-0001-9093-2255
0000-0003-1466-998X
0009-0004-4406-3991
0000-0002-2462-4892
0000-0003-0146-730X
OpenAccessLink http://dx.doi.org/10.1063/5.0231559
PMID 39404207
PageCount 11
ParticipantIDs pubmed_primary_39404207
scitation_primary_10_1063_5_0231559
PublicationCentury 2000
PublicationDate 20241021
2024-Oct-21
PublicationDateYYYYMMDD 2024-10-21
PublicationDate_xml – month: 10
  year: 2024
  text: 20241021
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2024
References Meyer, Reuter (c45) 2014; 53
Smits, Somers (c31) 2023; 158
Xiao, Dong, Busnengo (c41) 2010; 132
Smits, Somers (c29) 2022; 157
Kroes, Díaz (c34) 2016; 45
Kaufmann, Shuai, Auerbach, Schwarzer, Wodtke (c9) 2018; 148
Dutta, Mandal, Adhikari, Spiering, Meyer, Somers (c27) 2021; 154
Kresse, Furthmüller (c67) 1996; 6
Smith, Hill, Torrente-Murciano (c1) 2020; 13
Sah, Naskar, Adhikari, Smits, Meyer, Somers (c32) 2024; 161
Hodgson, Samson, Wight, Cottrell (c6) 1997; 78
Zhu, Zhang, Zhang, Zhou, Jiang (c22) 2020; 22
Bonfanti, Díaz, Somers, Kroes (c14) 2011; 13
Galparsoro, Kaufmann, Auerbach, Kandratsenka, Wodtke (c23) 2020; 22
Olsen, Kroes, Lo/vvik, Baerends (c53) 1997; 107
Díaz, Pijper, Olsen, Busnengo, Auerbach, Kroes (c12) 2009; 326
Seminara, Peludhero, Dong, Martínez, Busnengo (c43) 2019; 62
Spiering, Meyer (c20) 2018; 9
Nattino, Díaz, Jackson, Kroes (c60) 2012; 108
Michelsen, Rettner, Auerbach, Zare (c4) 1993; 98
Jackson (c38) 1998; 108
Bonfanti, Somers, Díaz, Busnengo, Kroes (c17) 2013; 227
Díaz, Olsen, Auerbach, Kroes (c13) 2010; 12
Togo, Chaput, Tadano, Tanaka (c63) 2023; 35
Rodríguez-Fernández, Bonnet, Crespos, Larrégaray, Díez Muiño (c73) 2019; 10
Nattino, Genova, Guijt, Muzas, Díaz, Auerbach, Kroes (c16) 2014; 141
Tiwari, Nave, Jackson (c36) 2010; 132
Suleimanov, Aoiz, Guo (c52) 2016; 120
Jackson (c40) 2022; 559
Lozano, Shen, Moiraghi, Dong, Busnengo (c42) 2015; 640
Feit, Fleck, Steiger (c54) 1982; 47
Chadwick, Somers, Stewart, Alkoby, Carter, Butkovicova, Alexandrowicz (c10) 2022; 13
Hjorth Larsen, Jørgen Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Bjerre Jensen, Kermode, Kitchin, Leonhard Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Bergmann Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (c61) 2017; 29
Chadwick, Alexandrowicz (c11) 2024; 251
Busnengo, Salin, Dong (c59) 2000; 112
Spiering, Wijzenbroek, Somers (c21) 2018; 149
Craig, Manolopoulos (c51) 2004; 121
Shakouri, Behler, Meyer, Kroes (c46) 2017; 8
Bertino, Farías (c71) 2002; 14
Farías, Rieder (c70) 1998; 61
Mondal, Wijzenbroek, Bonfanti, Díaz, Kroes (c18) 2013; 117
Kroes, Wijzenbroek, Manson (c44) 2017; 147
Bonnet (c72) 2013; 32
Hou, Gulding, Rettner, Wodtke, Auerbach (c7) 1997; 277
Kroes (c35) 2021; 23
Wijzenbroek, Somers (c15) 2012; 137
Sheng, Kramer, Cadien, Fujita, Chen (c68) 2011; 83
Smits, Somers (c24) 2021; 154
Murphy, Hodgson (c8) 1998; 108
Rettner, Michelsen, Auerbach (c5) 1995; 102
Shakouri, Behler, Meyer, Kroes (c47) 2018; 122
Smits, Litjens, Somers (c28) 2022; 156
Kroes, Juaristi, Alducin (c19) 2017; 121
Jackson (c39) 2021; 155
Kresse, Hafner (c65) 1993; 47
Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier, in ’t Veld, Kohlmeyer, Moore, Nguyen, Shan, Stevens, Tranchida, Trott, Plimpton (c64) 2022; 271
Balint-Kurti, Dixon, Marston (c56) 1992; 11
Kroes, Somers (c57) 2005; 04
Smeets, Kroes (c25) 2021; 23
Smeets, Kroes (c26) 2021; 125
Kresse, Furthmüller (c66) 1996; 54
Guo, Farjamnia, Jackson (c37) 2016; 7
Kroes (c58) 1999; 60
Berger, Leisch, Winkler, Rendulic (c3) 1990; 175
Behler (c48) 2017; 56
Artrith, Behler (c49) 2012; 85
Vibok, Balint-Kurti (c55) 1992; 96
Dutta, Naskar, Adhikari, Meyer, Somers (c30) 2022; 157
Lin, Zhang, Zhang, Jiang (c50) 2021; 17
Togo (c62) 2023; 92
References_xml – volume: 157
  start-page: 194112
  year: 2022
  ident: c30
  article-title: Effect of surface temperature on quantum dynamics of D on Cu(111) using a chemically accurate potential energy surface
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 2131
  year: 2017
  ident: c46
  article-title: Accurate neural network description of surface phonons in reactive gas–surface dynamics: N + Ru(0001)
  publication-title: J. Phys. Chem. Lett.
– volume: 83
  start-page: 134118
  year: 2011
  ident: c68
  article-title: Highly optimized embedded-atom-method potentials for fourteen fcc metals
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 15
  year: 1996
  ident: c67
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 102
  start-page: 4625
  year: 1995
  ident: c5
  article-title: Quantum-state-specific dynamics of the dissociative adsorption and associative desorption of H at a Cu(111) surface
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 4576
  year: 2016
  ident: c37
  article-title: Effects of lattice motion on dissociative chemisorption: Toward a rigorous comparison of theory with molecular beam experiments
  publication-title: J. Phys. Chem. Lett.
– volume: 154
  start-page: 074710
  year: 2021
  ident: c24
  article-title: Beyond the static corrugation model: Dynamic surfaces with the embedded atom method
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 7641
  year: 2000
  ident: c59
  article-title: Representation of the 6D potential energy surface for a diatomic molecule near a solid surface
  publication-title: J. Chem. Phys.
– volume: 137
  start-page: 054703
  year: 2012
  ident: c15
  article-title: Static surface temperature effects on the dissociation of H and D on Cu(111)
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 014704
  year: 2010
  ident: c41
  article-title: Reactive force fields for surface chemical reactions: A case study with hydrogen dissociation on Pd surfaces
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 8770
  year: 2013
  ident: c18
  article-title: Thermal lattice expansion effect on reactive scattering of H from Cu(111) at T = 925 K
  publication-title: J. Phys. Chem. A
– volume: 271
  start-page: 108171
  year: 2022
  ident: c64
  article-title: LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
  publication-title: Comput. Phys. Commun.
– volume: 141
  start-page: 124705
  year: 2014
  ident: c16
  article-title: Dissociation and recombination of D on Cu(111): molecular dynamics calculations and improved analysis of desorption experiments
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 10652
  year: 1997
  ident: c53
  article-title: The influence of surface motion on the direct subsurface absorption of H on Pd(111)
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 236104
  year: 2012
  ident: c60
  article-title: Effect of surface motion on the rotational quadrupole alignment parameter of D reacting on Cu(111)
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 11169
  year: 1996
  ident: c66
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 227
  start-page: 130617035227002
  year: 2013
  ident: c17
  article-title: 7D quantum dynamics of H scattering from Cu(111): The accuracy of the phonon sudden approximation
  publication-title: Z. Phys. Chem.
– volume: 149
  start-page: 234702
  year: 2018
  ident: c21
  article-title: An improved static corrugation model
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 412
  year: 1982
  ident: c54
  article-title: Solution of the Schrödinger equation by a spectral method
  publication-title: J. Comput. Phys.
– volume: 61
  start-page: 1575
  year: 1998
  ident: c70
  article-title: Atomic beam diffraction from solid surfaces
  publication-title: Rep. Prog. Phys.
– volume: 175
  start-page: 425
  year: 1990
  ident: c3
  article-title: A search for vibrational contributions to the activated adsorption of H on copper
  publication-title: Chem. Phys. Lett.
– volume: 98
  start-page: 8294
  year: 1993
  ident: c4
  article-title: Effect of rotation on the translational and vibrational energy dependence of the dissociative adsorption of D on Cu(111)
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 194703
  year: 2018
  ident: c9
  article-title: Associative desorption of hydrogen isotopologues from copper surfaces: Characterization of two reaction mechanisms
  publication-title: J. Chem. Phys.
– volume: 96
  start-page: 8712
  year: 1992
  ident: c55
  article-title: Parametrization of complex absorbing potentials for time-dependent quantum dynamics
  publication-title: J. Phys. Chem.
– volume: 120
  start-page: 8488
  year: 2016
  ident: c52
  article-title: Chemical reaction rate coefficients from ring polymer molecular dynamics: Theory and practical applications
  publication-title: J. Phys. Chem. A
– volume: 122
  start-page: 23470
  year: 2018
  ident: c47
  article-title: Analysis of energy dissipation channels in a benchmark system of activated dissociation: N on Ru(0001)
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 134702
  year: 2010
  ident: c36
  article-title: The temperature dependence of methane dissociation on Ni(111) and Pt(111): Mixed quantum-classical studies of the lattice response
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 4552
  year: 2011
  ident: c14
  article-title: Hydrogen dissociation on Cu(111): The influence of lattice motion. Part I
  publication-title: Phys. Chem. Chem. Phys.
– volume: 17
  start-page: 2691
  year: 2021
  ident: c50
  article-title: Searching configurations in uncertainty space: Active learning of high-dimensional neural network reactive potentials
  publication-title: J. Chem. Theory Comput.
– volume: 559
  start-page: 111516
  year: 2022
  ident: c40
  article-title: Quantum studies of methane-metal inelastic diffraction and trapping: The variation with molecular orientation and phonon coupling
  publication-title: Chem. Phys.
– volume: 23
  start-page: 8962
  year: 2021
  ident: c35
  article-title: Computational approaches to dissociative chemisorption on metals: Towards chemical accuracy
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45
  start-page: 3658
  year: 2016
  ident: c34
  article-title: Quantum and classical dynamics of reactive scattering of H from metal surfaces
  publication-title: Chem. Soc. Rev.
– volume: 62
  start-page: 1044
  year: 2019
  ident: c43
  article-title: Molecular dynamics study of molecular and dissociative adsorption using system-specific force fields based on ab initio calculations: CO/Cu(110) and CH /Pt(110)
  publication-title: Top. Catal.
– volume: 22
  start-page: 13958
  year: 2020
  ident: c22
  article-title: Unified and transferable description of dynamics of H dissociative adsorption on multiple copper surfaces machine learning
  publication-title: Phys. Chem. Chem. Phys.
– volume: 326
  start-page: 832
  year: 2009
  ident: c12
  article-title: Chemically accurate simulation of a prototypical surface reaction: H dissociation on Cu(111)
  publication-title: Science
– volume: 157
  start-page: 134704
  year: 2022
  ident: c29
  article-title: The quantum dynamics of H on Cu(111) at a surface temperature of 925 K: Comparing state-of-the-art theory to state-of-the-art experiments
  publication-title: J. Chem. Phys.
– volume: 147
  start-page: 244705
  year: 2017
  ident: c44
  article-title: Possible effect of static surface disorder on diffractive scattering of H from Ru(0001): Comparison between theory and experiment
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 2287
  year: 2022
  ident: c10
  article-title: Stopping molecular rotation using coherent ultra-low-energy magnetic manipulations
  publication-title: Nat. Commun.
– volume: 35
  start-page: 353001
  year: 2023
  ident: c63
  article-title: Implementation strategies in phonopy and phono3py
  publication-title: J. Phys.: Condens. Matter
– volume: 155
  start-page: 044705
  year: 2021
  ident: c39
  article-title: The trapping of methane on Ir(111): A first-principles quantum study
  publication-title: J. Chem. Phys.
– volume: 154
  start-page: 104103
  year: 2021
  ident: c27
  article-title: Effect of surface temperature on quantum dynamics of H on Cu(111) using a chemically accurate potential energy surface
  publication-title: J. Chem. Phys.
– volume: 640
  start-page: 25
  year: 2015
  ident: c42
  article-title: Cutting a chemical bond with demon’s scissors: Mode- and bond-selective reactivity of methane on metal surfaces
  publication-title: Surf. Sci.
– volume: 78
  start-page: 963
  year: 1997
  ident: c6
  article-title: Rotational excitationand vibrational relaxation of H scattered from Cu(111)
  publication-title: Phys. Rev. Lett.
– volume: 277
  start-page: 80
  year: 1997
  ident: c7
  article-title: The stereodynamics of a gas-surface reaction
  publication-title: Science
– volume: 125
  start-page: 8993
  year: 2021
  ident: c26
  article-title: Performance of made simple meta-GGA functionals with rVV10 nonlocal correlation for H + Cu(111), D + Ag(111), H + Au(111), and D + Pt(111)
  publication-title: J. Phys. Chem. C
– volume: 158
  start-page: 014704
  year: 2023
  ident: c31
  article-title: The quantum dynamics of H on Cu(111) at a surface temperature of 925 K: Comparing state-of-the-art theory to state-of-the-art experiments 2
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 12828
  year: 2017
  ident: c48
  article-title: First principles neural network potentials for reactive simulations of large molecular and condensed systems
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 1
  year: 1999
  ident: c58
  article-title: Six-dimensional quantum dynamics of dissociative chemisorption of H on metal surfaces
  publication-title: Prog. Surf. Sci.
– volume: 251
  start-page: 76
  year: 2024
  ident: c11
  article-title: Temperature dependent stereodynamics in surface scattering measured through subtle changes in the molecular wave function
  publication-title: Faraday Discuss.
– volume: 12
  start-page: 6499
  year: 2010
  ident: c13
  article-title: Six-dimensional dynamics study of reactive and non reactive scattering of H from Cu(111) using a chemically accurate potential energy surface
  publication-title: Phys. Chem. Chem. Phys.
– volume: 92
  start-page: 012001
  year: 2023
  ident: c62
  article-title: First-principles phonon calculations with phonopy and Phono3py
  publication-title: J. Phys. Soc. Jpn.
– volume: 121
  start-page: 3368
  year: 2004
  ident: c51
  article-title: Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 17532
  year: 2020
  ident: c23
  article-title: First principles rates for surface chemistry employing exact transition state theory: Application to recombinative desorption of hydrogen from Cu(111)
  publication-title: Phys. Chem. Chem. Phys.
– volume: 04
  start-page: 493
  year: 2005
  ident: c57
  article-title: Six-dimensional dynamics of dissociative chemisorption of H on metal surfaces
  publication-title: J. Theor. Comput. Chem.
– volume: 14
  start-page: 6037
  year: 2002
  ident: c71
  article-title: Probing gas-surface potential energy surfaces with diffraction of hydrogen molecules
  publication-title: J. Phys.: Condens. Matter
– volume: 161
  start-page: 014306
  year: 2024
  ident: c32
  article-title: On the quantum dynamical treatment of surface vibrational modes for reactive scattering of H from Cu(111) at 925 K
  publication-title: J. Chem. Phys.
– volume: 156
  start-page: 214706
  year: 2022
  ident: c28
  article-title: Accurate description of the quantum dynamical surface temperature effects on the dissociative chemisorption of H from Cu(111)
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 273002
  year: 2017
  ident: c61
  article-title: The atomic simulation environment – A python library for working with atoms
  publication-title: J. Phys.: Condens. Matter
– volume: 85
  start-page: 045439
  year: 2012
  ident: c49
  article-title: High-dimensional neural network potentials for metal surfaces: A prototype study for copper
  publication-title: Phys. Rev. B
– volume: 53
  start-page: 4721
  year: 2014
  ident: c45
  article-title: Modeling heat dissipation at the nanoscale: An embedding approach for chemical reaction dynamics on metal surfaces
  publication-title: Angew. Chem., Int. Ed.
– volume: 108
  start-page: 4199
  year: 1998
  ident: c8
  article-title: Adsorption and desorption dynamics of H and D on Cu(111): The role of surface temperature and evidence for corrugation of the dissociation barrier
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 1131
  year: 1998
  ident: c38
  article-title: Reduced density matrix description of gas–solid interactions: Scattering, trapping, and desorption
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 558
  year: 1993
  ident: c65
  article-title: molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 7629
  year: 2019
  ident: c73
  article-title: When classical trajectories get to quantum accuracy: The scattering of H on Pd(111)
  publication-title: J. Phys. Chem. Lett.
– volume: 32
  start-page: 171
  year: 2013
  ident: c72
  article-title: Classical dynamics of chemical reactions in a quantum spirit
  publication-title: Int. Rev. Phys. Chem.
– volume: 13
  start-page: 331
  year: 2020
  ident: c1
  article-title: Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 317
  year: 1992
  ident: c56
  article-title: Grid methods for solving the Schrödinger equation and time dependent quantum dynamics of molecular photofragmentation and reactive scattering processes
  publication-title: Int. Rev. Phys. Chem.
– volume: 23
  start-page: 7875
  year: 2021
  ident: c25
  article-title: Designing new SRP density functionals including non-local vdW-DF correlation for H + Cu(111) and their transferability to H + Ag(111), Au(111) and Pt(111)
  publication-title: Phys. Chem. Chem. Phys.
– volume: 121
  start-page: 13617
  year: 2017
  ident: c19
  article-title: Vibrational excitation of H scattering from Cu(111): Effects of surface temperature and of allowing energy exchange with the surface
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 1803
  year: 2018
  ident: c20
  article-title: Testing electronic friction models: Vibrational de-excitation in scattering of H and D from cu(111)
  publication-title: J. Phys. Chem. Lett.
SSID ssj0001724
Score 2.4675272
Snippet We present new quantum dynamical results for the reactive scattering of hydrogen molecules from a Cu(111) surface at a surface temperature of 925 K. Reaction,...
SourceID pubmed
scitation
SourceType Index Database
Publisher
Title Reactive scattering of H2 on Cu(111) at 925 K: Effective Hartree potential vs sudden approximation
URI http://dx.doi.org/10.1063/5.0231559
https://www.ncbi.nlm.nih.gov/pubmed/39404207
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NSwMxEIaHWhG9iN_WjxKoBz2s7ibZbOOtVGWpKCoVeitJNgEvbWm34s_xt_jLnOxuSy-C500ITJZ5XpjMOwAXTlDpTOKCtpUq4DYWgZIZD5xmzCmnEfm-OfnpWaTvvDeIBzVo_VHBF-wmvvYWZSh812Cdojhu12G907t7fVkmXGRwZbYcBV6QLwyEVjevAGYT2VKWuVdI8rAD25UEJJ3yznahZkd7sNldTF7bg43iWaaZ7YN5s6pISGRmCiNMBA0ZO5JSMh6R7vwSc8gVUTmRNP75frwlpRmx35DiPzG1lkzGuX8QhAd-zshs7vMMKYzEvz7KrsUD6D_c97tpUI1FCAwL23mQMJYYxArVmaLOt0BmoeZaSeZix3jGjVA6ymjoEFCGOSZErKiKhQ21QcV1CPXReGSPgXDURllkmLRIaiGN1JHLDHXScEoxFTTgqAzacFJaXwz9HHVOw6QBrWUUlx-LerZgw3hYBf3kX6tOYYvi-R4INDqDej6d23Mkfa6b1U03Ye355ekXOaajLg
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3Bomq5IKAUltJiqT3AwWxiO951b6ttUfhUi7YSt8h2bImq2o1IFvFz-C38MsZJWPbIObEymUjvvWhm3gB895IpbweeDp3SVLhEUq1yQb3h3GtvkPLDcPLVtUz_ivPb5LbtzQmzMBhEeaLvirqI_88W_TaB9D9qznnxZjggeT85CeZlKIlXYQ3_xuWwA2uj859_fi-gGNm5tWGOaZDqr9ZCy4eXqKeLrNMUwJc45nQTNlpxSEZNMFuw4qbb0B2_7mTbhg91w6YtP4K9cbqGKlLa2iITKYjMPEkZmU3JeH6E6HJMdEUUS56fLn6QxqY4HEjxZe-dI8WsCq1C-MCHkpTzgECkthh_vGvmGXdgcvprMk5puzCBWh4NKzrgfGCRcJjJNfNhODKPjDBacZ94LnJhpTZxziKP1GW551ImmulEushY1GKfoDOdTd0eEIGqKY8tVw45XCqrTOxzy7yygjEEiR7sNknLisYUIwsb1gWLBj34tsji4mJd6ZY8S7I26fvvuusQuunk6jK7PLu--AzrDGMJtMHiA-hU93P3BfVAZb62X_0FzmOvIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+scattering+of+H2+on+Cu%28111%29+at+925%C2%A0K%3A+Effective+Hartree+potential+vs+sudden+approximation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Smits%2C+Bauke&rft.au=Sah%2C+Mantu+Kumar&rft.au=Naskar%2C+Koushik&rft.au=Adhikari%2C+Satrajit&rft.date=2024-10-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=161&rft.issue=15&rft_id=info:doi/10.1063%2F5.0231559&rft.externalDocID=jcp
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon