Distances and Statistics of Local Molecular Clouds in the First Galactic Quadrant

We present an analysis of local molecular clouds ( km s−1, i.e., <1.5 kpc) in the first Galactic quadrant ( and ), a pilot region of the Milky Way Imaging Scroll Painting (MWISP) CO survey. Using the Spectral Clustering for Interstellar Molecular Emission Segmentation algorithm to divide large mo...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 898; no. 1; pp. 80 - 97
Main Authors Yan, Qing-Zeng, Yang, Ji, Su, Yang, Sun, Yan, Wang, Chen
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.07.2020
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an analysis of local molecular clouds ( km s−1, i.e., <1.5 kpc) in the first Galactic quadrant ( and ), a pilot region of the Milky Way Imaging Scroll Painting (MWISP) CO survey. Using the Spectral Clustering for Interstellar Molecular Emission Segmentation algorithm to divide large molecular clouds into moderate-size ones, we determined distances to 28 molecular clouds with the background-eliminated extinction-parallax method using the Gaia DR2 parallax measurements aided by AG and AV; the distance ranges from 250 to about 1.5 kpc. These incomplete distance samples indicate a linear relationship between the distance and the radial velocity (VLSR) with a scatter of 0.16 kpc, and kinematic distances may be systematically larger for local molecular clouds. In order to investigate fundamental properties of molecular clouds, such as the total sample number, the line width, the brightness temperature, the physical area, and the mass, we decompose the spectral cube using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Post-selection criteria are imposed on DBSCAN clusters to remove the noise contamination, and we found that the separation of molecular cloud individuals is reliable based on a definition of independent consecutive structures in l-b-V space. The completeness of the local molecular cloud flux collected by the MWISP CO survey is about 80%. The physical area, A, shows a power-law distribution, dN/d , while the molecular cloud mass also follows a power-law distribution but is slightly flatter, dN/dM ∝ M−1.96 0.11.
AbstractList We present an analysis of local molecular clouds (\(-6\lt {V}_{\mathrm{LSR}}\lt 30\) km s−1, i.e., <1.5 kpc) in the first Galactic quadrant (\(25\buildrel{\circ}\over{.} 8\lt l\lt 49\buildrel{\circ}\over{.} 7\) and \(| b| \lt 5^\circ \)), a pilot region of the Milky Way Imaging Scroll Painting (MWISP) CO survey. Using the Spectral Clustering for Interstellar Molecular Emission Segmentation algorithm to divide large molecular clouds into moderate-size ones, we determined distances to 28 molecular clouds with the background-eliminated extinction-parallax method using the Gaia DR2 parallax measurements aided by A G and A V ; the distance ranges from 250 to about 1.5 kpc. These incomplete distance samples indicate a linear relationship between the distance and the radial velocity (V LSR) with a scatter of 0.16 kpc, and kinematic distances may be systematically larger for local molecular clouds. In order to investigate fundamental properties of molecular clouds, such as the total sample number, the line width, the brightness temperature, the physical area, and the mass, we decompose the spectral cube using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Post-selection criteria are imposed on DBSCAN clusters to remove the noise contamination, and we found that the separation of molecular cloud individuals is reliable based on a definition of independent consecutive structures in l–b–V space. The completeness of the local molecular cloud flux collected by the MWISP CO survey is about 80%. The physical area, A, shows a power-law distribution, dN/d \(A\propto {A}^{-2.20\pm 0.18}\), while the molecular cloud mass also follows a power-law distribution but is slightly flatter, dN/dM ∝ M −1.96 ± 0.11.
We present an analysis of local molecular clouds ( km s −1 , i.e., <1.5 kpc) in the first Galactic quadrant ( and ), a pilot region of the Milky Way Imaging Scroll Painting (MWISP) CO survey. Using the Spectral Clustering for Interstellar Molecular Emission Segmentation algorithm to divide large molecular clouds into moderate-size ones, we determined distances to 28 molecular clouds with the background-eliminated extinction-parallax method using the Gaia DR2 parallax measurements aided by A G and A V ; the distance ranges from 250 to about 1.5 kpc. These incomplete distance samples indicate a linear relationship between the distance and the radial velocity ( V LSR ) with a scatter of 0.16 kpc, and kinematic distances may be systematically larger for local molecular clouds. In order to investigate fundamental properties of molecular clouds, such as the total sample number, the line width, the brightness temperature, the physical area, and the mass, we decompose the spectral cube using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Post-selection criteria are imposed on DBSCAN clusters to remove the noise contamination, and we found that the separation of molecular cloud individuals is reliable based on a definition of independent consecutive structures in l – b – V space. The completeness of the local molecular cloud flux collected by the MWISP CO survey is about 80%. The physical area, A , shows a power-law distribution, dN / d , while the molecular cloud mass also follows a power-law distribution but is slightly flatter, dN / dM ∝ M −1.96 ± 0.11 .
We present an analysis of local molecular clouds ( km s−1, i.e., <1.5 kpc) in the first Galactic quadrant ( and ), a pilot region of the Milky Way Imaging Scroll Painting (MWISP) CO survey. Using the Spectral Clustering for Interstellar Molecular Emission Segmentation algorithm to divide large molecular clouds into moderate-size ones, we determined distances to 28 molecular clouds with the background-eliminated extinction-parallax method using the Gaia DR2 parallax measurements aided by AG and AV; the distance ranges from 250 to about 1.5 kpc. These incomplete distance samples indicate a linear relationship between the distance and the radial velocity (VLSR) with a scatter of 0.16 kpc, and kinematic distances may be systematically larger for local molecular clouds. In order to investigate fundamental properties of molecular clouds, such as the total sample number, the line width, the brightness temperature, the physical area, and the mass, we decompose the spectral cube using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Post-selection criteria are imposed on DBSCAN clusters to remove the noise contamination, and we found that the separation of molecular cloud individuals is reliable based on a definition of independent consecutive structures in l-b-V space. The completeness of the local molecular cloud flux collected by the MWISP CO survey is about 80%. The physical area, A, shows a power-law distribution, dN/d , while the molecular cloud mass also follows a power-law distribution but is slightly flatter, dN/dM ∝ M−1.96 0.11.
Author Su, Yang
Wang, Chen
Yan, Qing-Zeng
Sun, Yan
Yang, Ji
Author_xml – sequence: 1
  givenname: Qing-Zeng
  orcidid: 0000-0003-4586-7751
  surname: Yan
  fullname: Yan, Qing-Zeng
  organization: Chinese Academy of Sciences Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Nanjing 210034, People's Republic of China
– sequence: 2
  givenname: Ji
  orcidid: 0000-0001-7768-7320
  surname: Yang
  fullname: Yang, Ji
  email: jiyang@pmo.ac.cn,qzyan@pmo.ac.cn
  organization: Chinese Academy of Sciences Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Nanjing 210034, People's Republic of China
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-0197-470X
  surname: Su
  fullname: Su, Yang
  organization: Chinese Academy of Sciences Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Nanjing 210034, People's Republic of China
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-3904-1622
  surname: Sun
  fullname: Sun, Yan
  organization: Chinese Academy of Sciences Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Nanjing 210034, People's Republic of China
– sequence: 5
  givenname: Chen
  orcidid: 0000-0001-8923-7757
  surname: Wang
  fullname: Wang, Chen
  organization: Chinese Academy of Sciences Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Nanjing 210034, People's Republic of China
BookMark eNp9kNFLwzAQh4MouE3ffQz4al3aNE37KNNNYSJDBd_CLUkxIyYzSR_8722pKAj6dNzx--6Ob4oOnXcaobOcXNK65POc0TorKeNz2DZtIw_Q5Ht0iCaEkDKrKH85RtMYd0NbNM0Eba5NTOCkjhicwo8JUj8wMmLf4rWXYPG9t1p2FgJeWN-piI3D6VXjpQkx4RVYkD2ANx2oAC6doKMWbNSnX3WGnpc3T4vbbP2wultcrTNJSZ2yiitaUQJNydWWK10R0EWuClqTgrZNqbXSUhNW8YYTxXLKt30OCAdNWUmAztD5uHcf_HunYxI73wXXnxRFWXDGalrXfYqMKRl8jEG3Yh_MG4QPkRMxiBODJTFYEqO4Hql-IdIMWrxLAYz9D7wYQeP3P8_8Gf8EdAmCqg
CitedBy_id crossref_primary_10_3847_1538_3881_ac77ea
crossref_primary_10_3847_1538_4357_ac63b3
crossref_primary_10_3847_1538_4365_acc1e8
crossref_primary_10_1088_1674_4527_ad849b
crossref_primary_10_1088_1674_4527_21_12_304
crossref_primary_10_1093_mnras_stac2975
crossref_primary_10_3847_1538_4357_abe5ab
crossref_primary_10_3847_1538_4365_ad8237
crossref_primary_10_1051_0004_6361_202346102
crossref_primary_10_1051_0004_6361_202347952
crossref_primary_10_3847_1538_3881_acafee
crossref_primary_10_3847_1538_4357_acf9ef
crossref_primary_10_3847_1538_4365_ac7797
crossref_primary_10_1016_j_ascom_2024_100838
crossref_primary_10_1016_j_newast_2024_102215
crossref_primary_10_3847_1538_4357_acac26
crossref_primary_10_3847_1538_4357_abe628
crossref_primary_10_3847_1538_4357_ad9b0e
crossref_primary_10_3847_1538_4365_abccd8
crossref_primary_10_3847_2041_8213_ad509d
crossref_primary_10_3847_1538_4365_ac242a
crossref_primary_10_3847_2041_8213_ad9605
crossref_primary_10_3847_1538_4365_ac739f
crossref_primary_10_3847_1538_4357_ac214f
crossref_primary_10_3847_1538_3881_ad323a
crossref_primary_10_3847_1538_3881_ad77a8
crossref_primary_10_3847_1538_4357_ac8933
crossref_primary_10_3847_1538_4365_ac11fe
crossref_primary_10_3847_1538_3881_ad2fcb
crossref_primary_10_3847_1538_4365_acd9a7
crossref_primary_10_3847_1538_4365_acde81
crossref_primary_10_3389_fspas_2021_671670
crossref_primary_10_1051_0004_6361_202039768
Cites_doi 10.1093/pasj/psx061
10.1086/429660
10.1051/0004-6361/201935236
10.1086/318388
10.1146/annurev-astro-081811-125610
10.1093/mnras/stv2063
10.3847/1538-4357/ab458e
10.1086/587685
10.1086/164304
10.1088/0067-0049/209/1/8
10.1086/152821
10.1051/0004-6361/201732516
10.1051/0004-6361/201322068
10.1088/0004-637X/783/2/130
10.3847/0004-637X/822/1/52
10.1086/180665
10.1111/j.1365-2966.2009.14956.x
10.3847/1538-4357/ab7fff
10.3847/1538-3881/ab141d
10.1088/0004-637X/723/1/492
10.1016/B978-0-08-023068-9.50009-9
10.1093/mnras/stv2808
10.3847/1538-4365/aaf1c8
10.1086/162397
10.1086/180575
10.3847/1538-4357/ab4a11
10.1146/annurev-astro-082812-140944
10.1051/0004-6361/201936145
10.1051/0004-6361/201935519
10.1086/180567
10.1051/0004-6361/201834337
10.1093/mnras/stz1820
10.1088/0004-637X/693/1/419
10.3847/1538-4357/834/1/57
10.1093/mnras/194.4.809
10.1051/0004-6361/201935765
10.1093/mnras/sty3283
10.1086/192344
10.1051/0004-6361/201936814
10.1146/annurev.astro.45.051806.110602
10.1051/0004-6361/201833051
10.1146/annurev-astro-082214-122324
10.1146/annurev-astro-091916-055235
10.3847/1538-4357/834/2/143
10.3847/1538-4365/ab1e55
10.1038/200829a0
10.1051/0004-6361/201629272
10.1086/143880
10.1086/166877
10.1051/0004-6361/201628933
10.1088/0004-637X/775/1/79
10.1051/0004-6361/201014c
10.3847/1538-4365/ab2d2e
10.1086/528710
10.1007/978-94-009-9503-1_5
10.1086/313086
10.2458/azu_uapress_9780816531240-ch001
10.1051/0004-6361/200912129
10.1051/0004-6361/201935656
10.3847/1538-4357/ab1d67
ContentType Journal Article
Copyright 2020. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jul 01, 2020
Copyright_xml – notice: 2020. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jul 01, 2020
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab9f9c
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Distances and Statistics of Local Molecular Clouds in the First Galactic Quadrant
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab9f9c
apjab9f9c
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c308t-67d3630a947db7de60ae21d238023f94eedece0567970d5137bdb7a07ae3540a3
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 13 04:27:58 EDT 2025
Tue Jul 01 03:24:24 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Wed Aug 21 03:34:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-67d3630a947db7de60ae21d238023f94eedece0567970d5137bdb7a07ae3540a3
Notes AAS22436
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4586-7751
0000-0001-8923-7757
0000-0002-0197-470X
0000-0002-3904-1622
0000-0001-7768-7320
PQID 2427558388
PQPubID 4562441
PageCount 18
ParticipantIDs iop_journals_10_3847_1538_4357_ab9f9c
crossref_citationtrail_10_3847_1538_4357_ab9f9c
proquest_journals_2427558388
crossref_primary_10_3847_1538_4357_ab9f9c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2020
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Wilson (apjab9f9cbib55) 1970; 161
Larson (apjab9f9cbib25) 1981; 194
Reid (apjab9f9cbib32) 2014; 783
Koen (apjab9f9cbib24) 2009; 397
Gaia Collaboration (apjab9f9cbib15) 2016; 595
Roman-Duval (apjab9f9cbib39) 2010; 723
Colombo (apjab9f9cbib8) 2015; 454
Wang (apjab9f9cbib53) 2019; 243
Zhang (apjab9f9cbib60) 2009; 693
Reid (apjab9f9cbib33) 2019; 885
Kennicutt (apjab9f9cbib23) 2012; 50
Dame (apjab9f9cbib9) 1986; 305
Weinreb (apjab9f9cbib54) 1963; 200
Andrae (apjab9f9cbib2) 2018; 616
Umemoto (apjab9f9cbib50) 2017; 69
Visser (apjab9f9cbib52) 2009; 503
Li (apjab9f9cbib26) 2019; 242
Ortiz-León (apjab9f9cbib31) 2017; 834
Su (apjab9f9cbib47) 2020; 893
Anders (apjab9f9cbib1) 2019; 628
Motte (apjab9f9cbib30) 2018; 56
Sault (apjab9f9cbib41) 1995
Bolatto (apjab9f9cbib4) 2013; 51
Rigby (apjab9f9cbib37) 2019; 632
Schuller (apjab9f9cbib42) 2017; 601
Swings (apjab9f9cbib49) 1937; 86
Dobbs (apjab9f9cbib12) 2014
Zhang (apjab9f9cbib61) 2005; 625
Ester (apjab9f9cbib13) 1996
Bontemps (apjab9f9cbib5) 2010; 518
Zucker (apjab9f9cbib62) 2020; 633
Yan (apjab9f9cbib56) 2019a; 885
Miville-Deschênes (apjab9f9cbib29) 2017; 834
Su (apjab9f9cbib48) 2019; 240
Gravity Collaboration (apjab9f9cbib17) 2019; 625
Grudić (apjab9f9cbib18) 2019; 488
Solomon (apjab9f9cbib46) 1979
Dame (apjab9f9cbib10) 2001; 547
Dempsey (apjab9f9cbib11) 2013; 209
Riener (apjab9f9cbib36) 2019; 628
Solomon (apjab9f9cbib44) 1971; 163
Zhang (apjab9f9cbib59) 2019; 157
Riener (apjab9f9cbib35) 2020; 633
Astropy Collaboration (apjab9f9cbib3) 2013; 558
Carruthers (apjab9f9cbib6) 1970; 161
Gutermuth (apjab9f9cbib19) 2008; 673
Rosolowsky (apjab9f9cbib40) 2008; 679
Yan (apjab9f9cbib57) 2019b; 624
Heyer (apjab9f9cbib21) 2015; 53
Magnani (apjab9f9cbib27) 1996; 106
Herczeg (apjab9f9cbib20) 2019; 878
Goldreich (apjab9f9cbib16) 1974; 189
Rice (apjab9f9cbib34) 2016; 822
van Dishoeck (apjab9f9cbib51) 1988; 334
Zhang (apjab9f9cbib58) 2013; 775
Rigby (apjab9f9cbib38) 2016; 456
Gaia Collaboration (apjab9f9cbib14) 2018; 616
Heyer (apjab9f9cbib22) 1998; 115
McKee (apjab9f9cbib28) 2007; 45
Snell (apjab9f9cbib43) 1984; 284
Colombo (apjab9f9cbib7) 2019; 483
Solomon (apjab9f9cbib45) 1980
References_xml – volume: 69
  start-page: 78
  year: 2017
  ident: apjab9f9cbib50
  publication-title: PASJ
  doi: 10.1093/pasj/psx061
– volume: 625
  start-page: 864
  year: 2005
  ident: apjab9f9cbib61
  publication-title: ApJ
  doi: 10.1086/429660
– volume: 632
  start-page: A58
  year: 2019
  ident: apjab9f9cbib37
  publication-title: A&A
  doi: 10.1051/0004-6361/201935236
– volume: 547
  start-page: 792
  year: 2001
  ident: apjab9f9cbib10
  publication-title: ApJ
  doi: 10.1086/318388
– volume: 50
  start-page: 531
  year: 2012
  ident: apjab9f9cbib23
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125610
– start-page: 226
  year: 1996
  ident: apjab9f9cbib13
– volume: 454
  start-page: 2067
  year: 2015
  ident: apjab9f9cbib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2063
– volume: 885
  start-page: 19
  year: 2019a
  ident: apjab9f9cbib56
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab458e
– volume: 679
  start-page: 1338
  year: 2008
  ident: apjab9f9cbib40
  publication-title: ApJ
  doi: 10.1086/587685
– volume: 305
  start-page: 892
  year: 1986
  ident: apjab9f9cbib9
  publication-title: ApJ
  doi: 10.1086/164304
– volume: 209
  start-page: 8
  year: 2013
  ident: apjab9f9cbib11
  publication-title: ApJS
  doi: 10.1088/0067-0049/209/1/8
– volume: 189
  start-page: 441
  year: 1974
  ident: apjab9f9cbib16
  publication-title: ApJ
  doi: 10.1086/152821
– volume: 616
  start-page: A8
  year: 2018
  ident: apjab9f9cbib2
  publication-title: A&A
  doi: 10.1051/0004-6361/201732516
– volume: 558
  start-page: A33
  year: 2013
  ident: apjab9f9cbib3
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 783
  start-page: 130
  year: 2014
  ident: apjab9f9cbib32
  publication-title: ApJ
  doi: 10.1088/0004-637X/783/2/130
– volume: 822
  start-page: 52
  year: 2016
  ident: apjab9f9cbib34
  publication-title: ApJ
  doi: 10.3847/0004-637X/822/1/52
– volume: 163
  start-page: L53
  year: 1971
  ident: apjab9f9cbib44
  publication-title: ApJL
  doi: 10.1086/180665
– volume: 397
  start-page: 495
  year: 2009
  ident: apjab9f9cbib24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14956.x
– volume: 893
  start-page: 91
  year: 2020
  ident: apjab9f9cbib47
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7fff
– volume: 157
  start-page: 200
  year: 2019
  ident: apjab9f9cbib59
  publication-title: AJ
  doi: 10.3847/1538-3881/ab141d
– volume: 723
  start-page: 492
  year: 2010
  ident: apjab9f9cbib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/1/492
– start-page: 41
  year: 1980
  ident: apjab9f9cbib45
  doi: 10.1016/B978-0-08-023068-9.50009-9
– volume: 456
  start-page: 2885
  year: 2016
  ident: apjab9f9cbib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2808
– volume: 240
  start-page: 9
  year: 2019
  ident: apjab9f9cbib48
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaf1c8
– volume: 284
  start-page: 176
  year: 1984
  ident: apjab9f9cbib43
  publication-title: ApJ
  doi: 10.1086/162397
– volume: 161
  start-page: L81
  year: 1970
  ident: apjab9f9cbib6
  publication-title: ApJL
  doi: 10.1086/180575
– volume: 885
  start-page: 131
  year: 2019
  ident: apjab9f9cbib33
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4a11
– volume: 51
  start-page: 207
  year: 2013
  ident: apjab9f9cbib4
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082812-140944
– volume: 633
  start-page: A51
  year: 2020
  ident: apjab9f9cbib62
  publication-title: A&A
  doi: 10.1051/0004-6361/201936145
– volume: 628
  start-page: A78
  year: 2019
  ident: apjab9f9cbib36
  publication-title: A&A
  doi: 10.1051/0004-6361/201935519
– volume: 161
  start-page: L43
  year: 1970
  ident: apjab9f9cbib55
  publication-title: ApJL
  doi: 10.1086/180567
– volume: 624
  start-page: A6
  year: 2019b
  ident: apjab9f9cbib57
  publication-title: A&A
  doi: 10.1051/0004-6361/201834337
– volume: 488
  start-page: 2970
  year: 2019
  ident: apjab9f9cbib18
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1820
– volume: 693
  start-page: 419
  year: 2009
  ident: apjab9f9cbib60
  publication-title: ApJ
  doi: 10.1088/0004-637X/693/1/419
– volume: 834
  start-page: 57
  year: 2017
  ident: apjab9f9cbib29
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/1/57
– volume: 194
  start-page: 809
  year: 1981
  ident: apjab9f9cbib25
  publication-title: MNRAS
  doi: 10.1093/mnras/194.4.809
– volume: 628
  start-page: A94
  year: 2019
  ident: apjab9f9cbib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201935765
– volume: 483
  start-page: 4291
  year: 2019
  ident: apjab9f9cbib7
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3283
– volume: 106
  start-page: 447
  year: 1996
  ident: apjab9f9cbib27
  publication-title: ApJS
  doi: 10.1086/192344
– volume: 633
  start-page: A14
  year: 2020
  ident: apjab9f9cbib35
  publication-title: A&A
  doi: 10.1051/0004-6361/201936814
– volume: 45
  start-page: 565
  year: 2007
  ident: apjab9f9cbib28
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.45.051806.110602
– volume: 616
  start-page: A1
  year: 2018
  ident: apjab9f9cbib14
  publication-title: A&A
  doi: 10.1051/0004-6361/201833051
– volume: 53
  start-page: 583
  year: 2015
  ident: apjab9f9cbib21
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082214-122324
– volume: 56
  start-page: 41
  year: 2018
  ident: apjab9f9cbib30
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-091916-055235
– start-page: 433
  year: 1995
  ident: apjab9f9cbib41
– volume: 834
  start-page: 143
  year: 2017
  ident: apjab9f9cbib31
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/2/143
– volume: 242
  start-page: 19
  year: 2019
  ident: apjab9f9cbib26
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab1e55
– volume: 200
  start-page: 829
  year: 1963
  ident: apjab9f9cbib54
  publication-title: Natur
  doi: 10.1038/200829a0
– volume: 595
  start-page: A1
  year: 2016
  ident: apjab9f9cbib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201629272
– volume: 86
  start-page: 483
  year: 1937
  ident: apjab9f9cbib49
  publication-title: ApJ
  doi: 10.1086/143880
– volume: 334
  start-page: 771
  year: 1988
  ident: apjab9f9cbib51
  publication-title: ApJ
  doi: 10.1086/166877
– volume: 601
  start-page: A124
  year: 2017
  ident: apjab9f9cbib42
  publication-title: A&A
  doi: 10.1051/0004-6361/201628933
– volume: 775
  start-page: 79
  year: 2013
  ident: apjab9f9cbib58
  publication-title: ApJ
  doi: 10.1088/0004-637X/775/1/79
– volume: 518
  start-page: L85
  year: 2010
  ident: apjab9f9cbib5
  publication-title: A&A
  doi: 10.1051/0004-6361/201014c
– volume: 243
  start-page: 25
  year: 2019
  ident: apjab9f9cbib53
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab2d2e
– volume: 673
  start-page: L151
  year: 2008
  ident: apjab9f9cbib19
  publication-title: ApJL
  doi: 10.1086/528710
– start-page: 35
  year: 1979
  ident: apjab9f9cbib46
  doi: 10.1007/978-94-009-9503-1_5
– volume: 115
  start-page: 241
  year: 1998
  ident: apjab9f9cbib22
  publication-title: ApJS
  doi: 10.1086/313086
– start-page: 3
  year: 2014
  ident: apjab9f9cbib12
  doi: 10.2458/azu_uapress_9780816531240-ch001
– volume: 503
  start-page: 323
  year: 2009
  ident: apjab9f9cbib52
  publication-title: A&A
  doi: 10.1051/0004-6361/200912129
– volume: 625
  start-page: L10
  year: 2019
  ident: apjab9f9cbib17
  publication-title: A&A
  doi: 10.1051/0004-6361/201935656
– volume: 878
  start-page: 111
  year: 2019
  ident: apjab9f9cbib20
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1d67
SSID ssj0004299
Score 2.5371978
Snippet We present an analysis of local molecular clouds ( km s−1, i.e., <1.5 kpc) in the first Galactic quadrant ( and ), a pilot region of the Milky Way Imaging...
We present an analysis of local molecular clouds ( km s −1 , i.e., <1.5 kpc) in the first Galactic quadrant ( and ), a pilot region of the Milky Way Imaging...
We present an analysis of local molecular clouds (\(-6\lt {V}_{\mathrm{LSR}}\lt 30\) km s−1, i.e., <1.5 kpc) in the first Galactic quadrant...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 80
SubjectTerms Algorithms
Astrophysics
Astrostatistics
Brightness temperature
Carbon monoxide
Clouds
Clustering
Image segmentation
Interstellar chemistry
Interstellar clouds
Interstellar dust extinction
Interstellar molecules
Milky Way
Molecular clouds
Parallax
Polls & surveys
Power law
Radial velocity
Statistical methods
Title Distances and Statistics of Local Molecular Clouds in the First Galactic Quadrant
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab9f9c
https://www.proquest.com/docview/2427558388
Volume 898
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2ieCL-Ikfc-RBBR_quiZtGnwa0znF-QGKeytpk8JgtmK3B_97L023IYr4lodrGi4fv9_dJXcAx2mgtEhd7jDEYoeFKnCkND54ylM3TGKflqGY4X0weGG3I39Ug4vFW5j8vTr6z7FpEwVbFZr9TfEsbZd7FHvmbRmLVCR1WKFhEBrL64G-Lh9FeqLivswJKB_ZGOWvPXzDpDr-98fBXKJNfwPWK5pIunZQm1DT2RbsdQvjuM7fPskpKdvWL1FsweqjbW3D06VhhOZyNJGZIoZM2lzMJE_JnUEuMpyXxCW9ST5TBRlnBHkg6Y-RCpJrOSkfTpGnmVSIZNMdeOlfPfcGTlU3wUmoG06dgCsaUFcKxlXMlQ5cqb2OQnBGgE4FQ1jUiUbmwwV3ld-hPEY56XKpjRdI0l1oZHmm94DEHhrPwoQyU83C2JcsToSQqsO8FMFd70N7rrkoqZKKm9oWkwiNC6PryOg6MrqOrK734WzxxbtNqPGH7AlORlTtquIPueZ8upbCODzum6BwePDPbg5hzTPWdHkZtwmN6cdMHyHlmMYtqN88PLbKBfYFWS3PQg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86UbyIn2w6NQcVPNR1TZo0x-GcU7epoLhbSZsEBrMdbjv43_vSdIoo4i2H19fw8vH75b3kPYRODFNaGJ97FLDYo5FinpTWB0-48aM0CUkRiukPWPeZ3g7DYVnntHgLk0_Krf8Cmi5RsDOhXd8E9tJGsUZBM2_IRBiRNibKLKOVkDBmazfck5evh5GBKPkv9RjhQxen_FXLN1xahn__2JwLxOlsoo2SKuKW69gWWtLZNqq2ptZ5nb--4zNctJ1vYrqNVh9cawc9ti0rtBekscwUtoTS5WPGucE9i164vyiLiy_H-VxN8SjDwAVxZwR0EF_LcfF4Cj_OpQI0m-2i587V02XXK2sneCnxo5nHuCKM-FJQrhKuNPOlDpoKABpA2ggK0KhTDeyHC-6rsEl4AnLS51JbT5Ake6iS5ZmuIpwEcIAWNpxpNI2SUNIkFUKqJg0MALyuocbCcnFaJha39S3GMRwwrK1ja-vY2jp2tq6h888vJi6pxh-ypzAYcbmypn_I1RfD9SUM3eOhDQxH-_9Uc4zWHtqduHczuDtA64E9XBd3c-uoMnub60NgILPkqJhlH1kW0ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distances+and+Statistics+of+Local+Molecular+Clouds+in+the+First+Galactic+Quadrant&rft.jtitle=The+Astrophysical+journal&rft.au=Yan%2C+Qing-Zeng&rft.au=Yang%2C+Ji&rft.au=Su%2C+Yang&rft.au=Sun%2C+Yan&rft.date=2020-07-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=898&rft.issue=1&rft.spage=80&rft_id=info:doi/10.3847%2F1538-4357%2Fab9f9c&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ab9f9c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon