Numerical scrutinization of heat transfer subject to physical quantities through bioconvective nanofluid flow via stretching permeable surfaces

Background: The mechanics of heat and mass transfer via nanofluid flow across many media are currently being discussed. “Nanofluids” are fluids that include highly heat-conductive nanoparticles, and they are essential for resolving engineering problems. Under the effects of activation energy, therma...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 12
Main Authors Shang, Shanshan, Yu, Zikai, Wang, Qiaoli, Liu, Fengwei, Jin, Limin
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 11.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: The mechanics of heat and mass transfer via nanofluid flow across many media are currently being discussed. “Nanofluids” are fluids that include highly heat-conductive nanoparticles, and they are essential for resolving engineering problems. Under the effects of activation energy, thermal radiation, and motile microorganisms, the process of heat and mass transfer through steady nanofluid flow crosses over stretched surfaces in this scenario. Methodology: For mathematical evaluation, the system of partial differential equations (PDEs) is used to describe this physical framework. By introducing suitable similarity variables with a set of boundary conditions, this mathematical system of PDEs has become a system of ordinary differential equations (ODEs). To obtain numerical results, the MATLAB built-in program “bvp4c” is used to solve the system of first-order equations. Results: In the findings and discussion section, the resulting outcomes are thoroughly examined and visually shown. The flow rate in these systems increases due to the erratic movement of microorganisms. The graphical representation shows the impacts of involving physical factors on the microorganism, thermal, concentration, and momentum profiles. Variations/changes in these profiles can be observed by adjusting the parametric values, as depicted in the graphs. Consequently, thermal transport is boosted by 25%. Additionally, the skin friction, Nusselt, Sherwood, and microbe density numbers are determined numerically. The findings demonstrate that increasing the magnetic field parameter causes the velocity profile to decrease, increasing the radiation parameter leads to an increase in temperature description, and increasing the Lewis number causes the microorganism profile’s transport rate to decrease.
AbstractList Background: The mechanics of heat and mass transfer via nanofluid flow across many media are currently being discussed. “Nanofluids” are fluids that include highly heat-conductive nanoparticles, and they are essential for resolving engineering problems. Under the effects of activation energy, thermal radiation, and motile microorganisms, the process of heat and mass transfer through steady nanofluid flow crosses over stretched surfaces in this scenario.Methodology: For mathematical evaluation, the system of partial differential equations (PDEs) is used to describe this physical framework. By introducing suitable similarity variables with a set of boundary conditions, this mathematical system of PDEs has become a system of ordinary differential equations (ODEs). To obtain numerical results, the MATLAB built-in program “bvp4c” is used to solve the system of first-order equations.Results: In the findings and discussion section, the resulting outcomes are thoroughly examined and visually shown. The flow rate in these systems increases due to the erratic movement of microorganisms. The graphical representation shows the impacts of involving physical factors on the microorganism, thermal, concentration, and momentum profiles. Variations/changes in these profiles can be observed by adjusting the parametric values, as depicted in the graphs. Consequently, thermal transport is boosted by 25%. Additionally, the skin friction, Nusselt, Sherwood, and microbe density numbers are determined numerically. The findings demonstrate that increasing the magnetic field parameter causes the velocity profile to decrease, increasing the radiation parameter leads to an increase in temperature description, and increasing the Lewis number causes the microorganism profile’s transport rate to decrease.
Background: The mechanics of heat and mass transfer via nanofluid flow across many media are currently being discussed. “Nanofluids” are fluids that include highly heat-conductive nanoparticles, and they are essential for resolving engineering problems. Under the effects of activation energy, thermal radiation, and motile microorganisms, the process of heat and mass transfer through steady nanofluid flow crosses over stretched surfaces in this scenario. Methodology: For mathematical evaluation, the system of partial differential equations (PDEs) is used to describe this physical framework. By introducing suitable similarity variables with a set of boundary conditions, this mathematical system of PDEs has become a system of ordinary differential equations (ODEs). To obtain numerical results, the MATLAB built-in program “bvp4c” is used to solve the system of first-order equations. Results: In the findings and discussion section, the resulting outcomes are thoroughly examined and visually shown. The flow rate in these systems increases due to the erratic movement of microorganisms. The graphical representation shows the impacts of involving physical factors on the microorganism, thermal, concentration, and momentum profiles. Variations/changes in these profiles can be observed by adjusting the parametric values, as depicted in the graphs. Consequently, thermal transport is boosted by 25%. Additionally, the skin friction, Nusselt, Sherwood, and microbe density numbers are determined numerically. The findings demonstrate that increasing the magnetic field parameter causes the velocity profile to decrease, increasing the radiation parameter leads to an increase in temperature description, and increasing the Lewis number causes the microorganism profile’s transport rate to decrease.
Author Shang, Shanshan
Jin, Limin
Yu, Zikai
Wang, Qiaoli
Liu, Fengwei
Author_xml – sequence: 1
  givenname: Shanshan
  surname: Shang
  fullname: Shang, Shanshan
– sequence: 2
  givenname: Zikai
  surname: Yu
  fullname: Yu, Zikai
– sequence: 3
  givenname: Qiaoli
  surname: Wang
  fullname: Wang, Qiaoli
– sequence: 4
  givenname: Fengwei
  surname: Liu
  fullname: Liu, Fengwei
– sequence: 5
  givenname: Limin
  surname: Jin
  fullname: Jin, Limin
BookMark eNpNkc9KJDEQh4Mo6Kov4CkvMGM6Sf_JUURXQdzLLuwtVNKV6Qw9yZikR9yX8JXtGUUWCqr4UfUd6vtBjkMMSMhVxZZCdOraYUirJWdcLivRsIqzI3LGuWoWter-Hv83n5LLnNeMsUrwWlbsjLw_TxtM3sJIs01T8cH_g-JjoNHRAaHQkiBkh4nmyazRzkGk2-EtH25eJgjFF4-ZliHFaTVQ46ONYTdv-h3SACG6cfI9dWN8pTsPNJeExQ4-rOgW0wbBjDjDkwOL-YKcOBgzXn71c_Ln_u737cPi6dfPx9ubp4UVrCuLunFzocNGCsMlry0z1jRtLVuFfV_xHjrXWmmdVazjVsq2QdUq080P4wbFOXn85PYR1nqb_AbSm47g9SGIaaUhFW9H1AzaljfC9DDjwYCRqmG9AGMVMqP2LP7JsinmnNB98yqm94b0wZDeG9JfhsQHtdaMyg
Cites_doi 10.1016/j.sajce.2022.10.009
10.1016/j.euromechflu.2020.11.002
10.1080/10407782.2023.2299289
10.1016/j.asej.2023.102316
10.1016/j.jmrt.2020.05.073
10.1016/j.chaos.2020.110572
10.1177/1687814021999526
10.1016/j.cjph.2022.08.008
10.1016/j.jtice.2022.104510
10.3390/mi13111986
10.1142/s0217979223501400
10.1080/17455030.2022.2108159
10.1142/s0217979224501285
10.1177/14613484231216198
10.1016/j.camwa.2018.08.039
10.1038/s41598-023-48364-2
10.1016/j.surfin.2020.100872
10.1016/j.aej.2023.06.043
10.1016/j.aej.2023.03.077
10.1088/1742-6596/1366/1/012011
10.1016/j.icheatmasstransfer.2020.104952
10.1016/j.cjph.2022.04.004
10.1016/j.icheatmasstransfer.2023.106732
10.1155/2020/9523630
10.1002/fld.5216
10.1016/j.tsep.2022.101596
10.1016/j.csite.2024.104178
10.1142/s0217979224503867
10.1080/17455030.2022.2136416
10.17762/turcomat.v12i13.8592
10.21203/rs.3.rs-2787850/v1
10.1016/j.ijheatfluidflow.2024.109322
10.1016/j.icheatmasstransfer.2022.106239
10.1016/j.physe.2016.07.020
10.12989/acc.2022.14.2.103
10.24018/ejmath.2022.3.5.133
10.1166/jon.2017.1328
10.1016/j.heliyon.2018.e00825
10.1016/j.csite.2023.102964
10.3390/en15218191
10.3390/lubricants10090209
10.1016/j.icheatmasstransfer.2022.106243
10.1038/s41598-023-32902-z
10.1166/jon.2023.1989
10.1063/1.4943398
10.1016/j.aej.2021.09.045
10.1007/s12668-023-01120-2
10.1088/0253-6102/68/3/387
10.1142/s021798492450146x
10.1016/j.tsep.2021.100887
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2024.1360120
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_0a77263bda754abab4960d3abc9e0b9e
10_3389_fenrg_2024_1360120
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c308t-56f56fefe643b2425c0bcb675479edd12da8f7c4cfc9082c4476e979b83892be3
IEDL.DBID DOA
ISSN 2296-598X
IngestDate Wed Aug 27 01:30:58 EDT 2025
Tue Jul 01 01:51:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-56f56fefe643b2425c0bcb675479edd12da8f7c4cfc9082c4476e979b83892be3
OpenAccessLink https://doaj.org/article/0a77263bda754abab4960d3abc9e0b9e
ParticipantIDs doaj_primary_oai_doaj_org_article_0a77263bda754abab4960d3abc9e0b9e
crossref_primary_10_3389_fenrg_2024_1360120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-11
PublicationDateYYYYMMDD 2024-04-11
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Maiti (B35) 2023; 12
Anwar (B7) 2023
Hussain (B26); 137
Algehyne (B4) 2022
Basit (B12); 55
Shafiq (B44); 10
Mangathai (B37) 2021; 12
Ibrahim (B28) 2020; 2020
Choi (B16) 1995
Gadelhak (B22) 2023; 13
Hayat (B24) 2017; 68
Anwar (B10)
Shafiq (B43); 80
Basit (B11); 72
Farooq (B21) 2023; 15
Dash (B19) 2022; 15
Hussain (B27) 2021; 13
Imran (B29) 2024; 14
Kiyani (B33) 2021; 23
Taj (B50) 2023; 76
Noreen (B39) 2021; 85
Sharif (B47) 2022; 14
Malik (B36) 2016; 6
Basit (B14); 38
Raza (B41) 2021; 23
Jyotshna (B31) 2022; 3
Çolak (B17) 2022; 77
Shah (B46) 2018; 4
Anwar (B8)
Basit (B15)
Kumari (B34) 2022; 13
Javadpour (B30) 2020; 119
Hussain (B25); 139
Cui (B18) 2022; 61
Nojoomizadeh (B38) 2016; 84
Singupuram (B49) 2023; 45
Abdal (B1) 2022
Khan (B32) 2017; 6
Anwar (B9); 37
Anjum (B6) 2023; 38
Shafiq (B45) 2023; 95
Basit (B13); 106
Ahmad (B3) 2023; 43
Ali (B5) 2021; 143
Rasheed (B40) 2018; 76
Salahuddin (B42) 2023; 143
Siddique (B48) 2022; 137
Abdul Basit (B2) 2023; 13
Dharmaiah (B20) 2023
Tlili (B51) 2020; 9
Hashim (B23) 2019; 1366
References_xml – volume: 43
  start-page: 135
  year: 2023
  ident: B3
  article-title: A significance of multi slip condition for inclined MHD nano-fluid flow with non linear thermal radiations, Dufuor and Sorrot, and chemically reactive bio-convection effect
  publication-title: South Afr. J. Chem. Eng.
  doi: 10.1016/j.sajce.2022.10.009
– volume: 85
  start-page: 458
  year: 2021
  ident: B39
  article-title: Entropy generation in electromagnetohydrodynamic water based three Nano fluids via porous asymmetric microchannel
  publication-title: Eur. J. Mechanics-B/Fluids
  doi: 10.1016/j.euromechflu.2020.11.002
– start-page: 1
  year: 2023
  ident: B7
  article-title: Heat transfer in MHD convective stagnation point flow over a stretching surface with thermal radiations
  publication-title: Numer. Heat. Transf. Part A Appl.
  doi: 10.1080/10407782.2023.2299289
– volume: 15
  start-page: 102316
  year: 2023
  ident: B21
  article-title: Recent progress in Cattaneo-Christov heat and mass fluxes for bioconvectional Carreau nanofluid with motile microorganisms and activation energy passing through a nonlinear stretching cylinder
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102316
– volume: 9
  start-page: 8125
  year: 2020
  ident: B51
  article-title: Thermal analysis of magnetized pseudoplastic nano fluid flow over 3D radiating non-linear surface with passive mass flux control and chemically responsive species
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.073
– volume: 143
  start-page: 110572
  year: 2021
  ident: B5
  article-title: Fractional calculus approach for the phase dynamics of Josephson junction
  publication-title: Chaos, Solit. Fractals
  doi: 10.1016/j.chaos.2020.110572
– volume: 13
  start-page: 168781402199952
  year: 2021
  ident: B27
  article-title: Effects of first-order chemical reaction and melting heat on hybrid nanoliquid flow over a nonlinear stretched curved surface with shape factors
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814021999526
– volume: 80
  start-page: 427
  ident: B43
  article-title: Significance of bioconvective flow of MHD thixotropic nanofluid passing through a vertical surface by machine learning algorithm
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.08.008
– volume: 139
  start-page: 104510
  ident: B25
  article-title: Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2022.104510
– volume: 13
  start-page: 1986
  year: 2022
  ident: B34
  article-title: A numerical investigation on hydrothermal performance of micro channel heat sink with periodic spatial modification on sidewalls
  publication-title: Micromachines
  doi: 10.3390/mi13111986
– volume: 37
  start-page: 2350140
  ident: B9
  article-title: Clay-based cementitious nanofluid flow subjected to Newtonian heating
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/s0217979223501400
– start-page: 1
  year: 2022
  ident: B4
  article-title: Numerical study of motile microorganism in Williamson MHD nanofluid flow over an elastic slender surface of an irregular thickness
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2022.2108159
– volume: 38
  start-page: 2450128
  ident: B14
  article-title: Numerical simulation of bioconvective Casson nanofluid through an exponentially permeable stretching surface
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/s0217979224501285
– start-page: 14613484231216198
  ident: B15
  article-title: An application to formable transform: novel numerical approach to study the nonlinear oscillator
  publication-title: J. Low Freq. Noise, Vib. Act. Control
  doi: 10.1177/14613484231216198
– volume: 76
  start-page: 2421
  year: 2018
  ident: B40
  article-title: Numerical computations of fractional nonlinear Hartmann flow with revised heat flux model
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.08.039
– volume: 14
  start-page: 1873
  year: 2024
  ident: B29
  article-title: A proceeding to numerical study of mathematical model of bioconvective Maxwell nanofluid flow through a porous stretching surface with nield/convective boundary constraints
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-48364-2
– volume: 23
  start-page: 100872
  year: 2021
  ident: B33
  article-title: Bidirectional Williamson nanofluid flow towards stretchable surface with modified Darcy’s law
  publication-title: Surfaces Interfaces
  doi: 10.1016/j.surfin.2020.100872
– volume: 76
  start-page: 595
  year: 2023
  ident: B50
  article-title: Analysis of viscously dissipated three-dimensional flow of Williamson fluid with nonlinear radiation and activation energy
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2023.06.043
– volume: 72
  start-page: 19
  ident: B11
  article-title: Comprehensive investigations of (Au-Ag/Blood and Cu-Fe3O4/Blood) hybrid nanofluid over two rotating disks: numerical and computational approach
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2023.03.077
– volume: 1366
  start-page: 012011
  year: 2019
  ident: B23
  article-title: Thermal radiation effect on MHD stagnation point flow of Williamson fluid over a stretching surface
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1366/1/012011
– volume: 119
  start-page: 104952
  year: 2020
  ident: B30
  article-title: Optimization of geometry and nano-fluid properties on microchannel performance using Taguchi method and genetic algorithm
  publication-title: Int. Commun. heat mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104952
– volume: 77
  start-page: 2435
  year: 2022
  ident: B17
  article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.04.004
– volume: 143
  start-page: 106732
  year: 2023
  ident: B42
  article-title: Significance of MHD Cross nanofluid analysis near a stretched surface with double stratification and activation energy
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2023.106732
– volume: 2020
  start-page: 1
  year: 2020
  ident: B28
  article-title: The investigation of MHD Williamson nanofluid over stretching cylinder with the effect of activation energy
  publication-title: Adv. Math. Phys.
  doi: 10.1155/2020/9523630
– volume: 95
  start-page: 1502
  year: 2023
  ident: B45
  article-title: Modeling of Darcy‐Forchheimer magnetohydrodynamic Williamson nanofluid flow towards nonlinear radiative stretching surface using artificial neural network
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.5216
– volume: 38
  start-page: 101596
  year: 2023
  ident: B6
  article-title: Significance of bioconvection analysis for thermally stratified 3D Cross nanofluid flow with gyrotactic microorganisms and activation energy aspects
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2022.101596
– volume: 55
  start-page: 104178
  ident: B12
  article-title: Thermally radiative bioconvective nanofluid flow on a wavy cylinder with buongiorno model: a sensitivity analysis using response surface methodology
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104178
– start-page: 2450386
  ident: B10
  article-title: MHD nanofluid flow through Darcy medium with thermal radiation and heat source
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/s0217979224503867
– start-page: 1
  year: 2022
  ident: B1
  article-title: On prescribed thermal distributions of bioconvection Williamson nanofluid transportion due to an extending sheet with non-Fourier flux and radiation
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2022.2136416
– volume: 12
  start-page: 1036
  year: 2021
  ident: B37
  article-title: Unsteady MHD Williamson and Casson nano fluid flow in the presence of radiation and viscous dissipation
  publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT)
  doi: 10.17762/turcomat.v12i13.8592
– volume-title: Simulation of Hydromagnetic Williamson nanofluid flow with melting heat transfer and Activation Energy across a porous exponential stretching surface
  year: 2023
  ident: B20
  doi: 10.21203/rs.3.rs-2787850/v1
– volume: 106
  start-page: 109322
  ident: B13
  article-title: Numerical analysis of mathematical model for heat and mass transfer through Bioconvective Maxwell nanofluid flow subject to Darcy-Forcheimer and Lorentz forces
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2024.109322
– volume: 137
  start-page: 106239
  year: 2022
  ident: B48
  article-title: Bioconvection attribution for effective thermal transportation of upper convicted Maxwell nanofluid flow due to an extending cylindrical surface
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106239
– volume-title: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29)
  year: 1995
  ident: B16
– volume: 84
  start-page: 423
  year: 2016
  ident: B38
  article-title: The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano-tubes suspended in oil (MWCNT/Oil nano-fluid) in a microchannel filled with a porous medium
  publication-title: Phys. E Low-dimensional Syst. Nanostructures
  doi: 10.1016/j.physe.2016.07.020
– volume: 14
  start-page: 103
  year: 2022
  ident: B47
  article-title: Theoretical fabrication of Williamson nanoliquid over a stretchable surface
  publication-title: Adv. Concr. Constr.
  doi: 10.12989/acc.2022.14.2.103
– volume: 3
  start-page: 16
  year: 2022
  ident: B31
  article-title: Impact of activation energy and heat source/sink on 3D flow of Williamson nanofluid with Gan nanoparticles over A stretching sheet
  publication-title: Eur. J. Math. Statistics
  doi: 10.24018/ejmath.2022.3.5.133
– volume: 6
  start-page: 243
  year: 2017
  ident: B32
  article-title: Dufour and Soret effect with thermal radiation on the nano film flow of Williamson fluid past over an unsteady stretching sheet
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2017.1328
– volume: 4
  start-page: e00825
  year: 2018
  ident: B46
  article-title: Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00825
– volume: 45
  start-page: 102964
  year: 2023
  ident: B49
  article-title: Numerical analysis of heat transfer and fluid flow in microchannel heat sinks for thermal management
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102964
– volume: 15
  start-page: 8191
  year: 2022
  ident: B19
  article-title: Impact on heat transfer rate due to an extended surface on the passage of microchannel using cylindrical ribs with varying sector angle
  publication-title: Energies
  doi: 10.3390/en15218191
– volume: 10
  start-page: 209
  ident: B44
  article-title: Optimization of bioconvective magnetized walter’s B nanofluid flow towards a cylindrical disk with artificial neural networks
  publication-title: Lubricants
  doi: 10.3390/lubricants10090209
– volume: 137
  start-page: 106243
  ident: B26
  article-title: Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106243
– volume: 13
  start-page: 6152
  year: 2023
  ident: B2
  article-title: Partial differential equations modeling of bio-convective sutterby nanofluid flow through paraboloid surface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32902-z
– volume: 12
  start-page: 1095
  year: 2023
  ident: B35
  article-title: Scrutinization of unsteady magnetohydrodynamics Williamson nanofluid flow and heat transfer past a permeable shrinking sheet
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2023.1989
– volume: 6
  year: 2016
  ident: B36
  article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption
  publication-title: AIP Adv.
  doi: 10.1063/1.4943398
– volume: 61
  start-page: 4253
  year: 2022
  ident: B18
  article-title: Impact of non-similar modeling for forced convection analysis of nano-fluid flow over stretching sheet with chemical reaction and heat generation
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2021.09.045
– volume: 13
  start-page: 1116
  year: 2023
  ident: B22
  article-title: Energy transport of Williamson nano-fluid over a curved stretching surface by means of FDM
  publication-title: BioNanoScience
  doi: 10.1007/s12668-023-01120-2
– volume: 68
  start-page: 387
  year: 2017
  ident: B24
  article-title: Darcy–Forchheimer three-dimensional flow of Williamson nanofluid over a convectively heated nonlinear stretching surface
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/68/3/387
– start-page: 2450146
  ident: B8
  article-title: Analysis of nonlinear convection and diffusion in viscoelastic fluid flow with variable thermal conductivity and thermal radiations
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/s021798492450146x
– volume: 23
  start-page: 100887
  year: 2021
  ident: B41
  article-title: Thermal transport of radiative Williamson fluid over stretchable curved surface
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2021.100887
SSID ssj0001325410
Score 2.2600155
Snippet Background: The mechanics of heat and mass transfer via nanofluid flow across many media are currently being discussed. “Nanofluids” are fluids that include...
Background: The mechanics of heat and mass transfer via nanofluid flow across many media are currently being discussed. “Nanofluids” are fluids that include...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms bioconvection
energy optimization
mathematical modeling of heat and mass transfer in multiphase flows
nanomaterials
stretching surface
thermal radiation
Title Numerical scrutinization of heat transfer subject to physical quantities through bioconvective nanofluid flow via stretching permeable surfaces
URI https://doaj.org/article/0a77263bda754abab4960d3abc9e0b9e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXc_AmoUk2j-aoYikeerLQW9jHrBRKUmuiP8O_7MwmlXryIuS0hGWZmcx832YeQtw6xFhqYwLMJREUiXnAPaADiyOVuzhE8sucbTHNJrPkeZ7Ot0Z9cU5Y1x64E9wwVIT_MqmtytNEaaUTwtxWKm0KDHWB7H0p5m2RKX-7Ion4RGFXJUMsrBg6Uscr8cE44cwuLhn9FYm2Gvb7yDI-FAc9JIT77ihHYgerY7G_1SjwRHxN2-7PyhLoMydb2ZRPQu2A3Sk0HoDiGt5bzVcr0NSw6nUAb63qW6dCP5cH9KL2Cefe3UGlqtot24UFt6w_4WOhgItIGp9oCSvy3sglVrT52nEO16mYjZ9eHidBP0ohMDIcNUGaOXrQIQEQzSzDhNpoIgtJXqC1UWzVyOUmMc7wDHSTJHmGRV7oEcku1ijPxG5VV3guIGNMhy6TjES47zgWFAnRZrSmXWoH4m4j1nLVdcwoiWmwEkqvhJKVUPZKGIgHlvzPm9zt2i-QDZS9DZR_2cDFf2xyKfb4YPynKIquxG6zbvGaAEejb7xtfQPNjtr3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+scrutinization+of+heat+transfer+subject+to+physical+quantities+through+bioconvective+nanofluid+flow+via+stretching+permeable+surfaces&rft.jtitle=Frontiers+in+energy+research&rft.au=Shanshan+Shang&rft.au=Zikai+Yu&rft.au=Qiaoli+Wang&rft.au=Fengwei+Liu&rft.date=2024-04-11&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenrg.2024.1360120&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0a77263bda754abab4960d3abc9e0b9e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon