Rate coefficients for C and O2 reactive collisions relevant to interstellar clouds from QCT and machine learning
The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to occur rapidly even at low astronomical temperatures, e.g., C and O2 interaction. Obtaining detailed rovibrational transition parameters for the...
Saved in:
Published in | The Journal of chemical physics Vol. 161; no. 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
14.11.2024
|
Online Access | Get more information |
Cover
Loading…
Abstract | The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to occur rapidly even at low astronomical temperatures, e.g., C and O2 interaction. Obtaining detailed rovibrational transition parameters for the reaction between C and O2, such as state-selected rate coefficients, is crucial for studying the associated atmospheric and astronomical environments. Hence, this work presents an approach that combines quasi-classical trajectory calculations with machine learning techniques based on Neural Network (NN) and Gaussian Process Regression (GPR) to determine state-selected rate coefficients. Employing this approach, we significantly reduced the computational requirements while simultaneously obtaining the accurate state-selected reaction cross sections and rate coefficients for the collision of C and O2. Both the NN-based and GPR-based models established in this work accurately predict the results calculated from explicit numerical calculations in the explored temperature range of 50-1500 K, achieving a coefficient of determination R2 > 0.96. Most importantly, the current work provides the most comprehensive dataset of rovibrational rate coefficients of v = 0-4, j = 0-70 → v' = 0-15 for the astrophysical modeling of the C-O2 collision system. |
---|---|
AbstractList | The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to occur rapidly even at low astronomical temperatures, e.g., C and O2 interaction. Obtaining detailed rovibrational transition parameters for the reaction between C and O2, such as state-selected rate coefficients, is crucial for studying the associated atmospheric and astronomical environments. Hence, this work presents an approach that combines quasi-classical trajectory calculations with machine learning techniques based on Neural Network (NN) and Gaussian Process Regression (GPR) to determine state-selected rate coefficients. Employing this approach, we significantly reduced the computational requirements while simultaneously obtaining the accurate state-selected reaction cross sections and rate coefficients for the collision of C and O2. Both the NN-based and GPR-based models established in this work accurately predict the results calculated from explicit numerical calculations in the explored temperature range of 50-1500 K, achieving a coefficient of determination R2 > 0.96. Most importantly, the current work provides the most comprehensive dataset of rovibrational rate coefficients of v = 0-4, j = 0-70 → v' = 0-15 for the astrophysical modeling of the C-O2 collision system. |
Author | Zhang, Hong Cheng, Xin-Lu Huang, Xia |
Author_xml | – sequence: 1 givenname: Xia orcidid: 0000-0003-1558-9615 surname: Huang fullname: Huang, Xia organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China – sequence: 2 givenname: Xin-Lu orcidid: 0000-0002-2661-556X surname: Cheng fullname: Cheng, Xin-Lu organization: Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China – sequence: 3 givenname: Hong orcidid: 0000-0002-9332-1203 surname: Zhang fullname: Zhang, Hong organization: Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39513446$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j9lKxDAYRoMozqIXvoDkBTpmbZtLKW4wMCjj9ZAmfzWSJkOSGfDtrdvVB4ePA2eBTkMMgNAVJStKan4jV4TxllN6guaUtKpqakVmaJHzByGENkycoxlXknIh6jnav-gC2EQYBmcchJLxEBPusA4WbxhOoE1xx--L9y67GPLEPBx1KLhE7EKBlAt4rxM2Ph7sJEhxxM_d9scxavPuAmAPOgUX3i7Q2aB9hsu_XaLX-7tt91itNw9P3e26Mpy0pZLC9s2gmJK1BGB9YxprRTtIQ63iU6HginDTM65bY0kvhAHWSma0EFTUgi3R9a93f-hHsLt9cqNOn7v_dPYF8DVaOA |
ContentType | Journal Article |
Copyright | 2024 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | NPM |
DOI | 10.1063/5.0238311 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 39513446 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH ABJGX ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CS3 D-I DU5 EBS F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPM NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 |
ID | FETCH-LOGICAL-c308t-54db7f929565ee2b7c7dd48f5c1d9323843903cb23a8cd0b44ce2852ca4414642 |
IngestDate | Mon Jul 21 06:07:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | 2024 Author(s). Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-54db7f929565ee2b7c7dd48f5c1d9323843903cb23a8cd0b44ce2852ca4414642 |
ORCID | 0000-0002-9332-1203 0000-0002-2661-556X 0000-0003-1558-9615 |
PMID | 39513446 |
ParticipantIDs | pubmed_primary_39513446 |
PublicationCentury | 2000 |
PublicationDate | 2024-Nov-14 |
PublicationDateYYYYMMDD | 2024-11-14 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2024 |
SSID | ssj0001724 |
Score | 2.4696898 |
Snippet | The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to... |
SourceID | pubmed |
SourceType | Index Database |
Title | Rate coefficients for C and O2 reactive collisions relevant to interstellar clouds from QCT and machine learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39513446 |
Volume | 161 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYxHJB7DvygVvlksZO7BxRBaoQu1qptyp2HECii2i48PWM7bip2ARcoshW3Wjey_R56plB6BgkNDBFa5IwmRPGpSQSVClJ8yQFzog81yagf3Udtzrsoht1q390bXZJIevq7cu8kv-gCmOAq8mS_QOyk0VhAO4BX7gCwnD9Fcb3IBRNdQ9bBsKmqplDg-445k1YAz1ovVnNgG1zyMe2RwqI58JoTlMqAsSfOf_0UlPPw9ds7NJN7pptu0bfnrTUvrXEw7SSrXLKrJpVvvCAC5WMK7qUAenuU3Um6FH7sQG5fP0Uu24Ny68qoxEhM2l5Lgu0rp0HDURCeOx6gE5crCu47rkkvvTdIJbA4FHdqAjqPPAUhqO-BZGCIqTMRS1_nv1QRttPzaJZ2FCYDqkmrFP-ZIOKY77sVExPJs-wjBb95z5sO6z8aK-ildLS-NSRYA3N6ME6Wmr6dn3raOHWGX4DjQwt8DQtMNACNzFAim9C7GmBK1pgTwtcDPE0LbCjBTa0wEALu0ZJC-xpsYk652ftZouUjTWIooEoSMQyyXMQxqDmtQ4lVzzLmMgj1chAz1MBKjWgSoY0FSoLJGNKhyIKVQrimcGOdQvNDYYDvYOwEZhBIw10GHOmtU5ozrhSlHORsJjyXbTtzNYbueopPW_QvW9n9tFyRa0DNJ_D66oPQfsV8sji9g7GzFob |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rate+coefficients+for+C+and+O2+reactive+collisions+relevant+to+interstellar+clouds+from+QCT+and+machine+learning&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Huang%2C+Xia&rft.au=Cheng%2C+Xin-Lu&rft.au=Zhang%2C+Hong&rft.date=2024-11-14&rft.eissn=1089-7690&rft.volume=161&rft.issue=18&rft_id=info:doi/10.1063%2F5.0238311&rft_id=info%3Apmid%2F39513446&rft_id=info%3Apmid%2F39513446&rft.externalDocID=39513446 |