Rate coefficients for C and O2 reactive collisions relevant to interstellar clouds from QCT and machine learning

The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to occur rapidly even at low astronomical temperatures, e.g., C and O2 interaction. Obtaining detailed rovibrational transition parameters for the...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 161; no. 18
Main Authors Huang, Xia, Cheng, Xin-Lu, Zhang, Hong
Format Journal Article
LanguageEnglish
Published United States 14.11.2024
Online AccessGet more information

Cover

Loading…
Abstract The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to occur rapidly even at low astronomical temperatures, e.g., C and O2 interaction. Obtaining detailed rovibrational transition parameters for the reaction between C and O2, such as state-selected rate coefficients, is crucial for studying the associated atmospheric and astronomical environments. Hence, this work presents an approach that combines quasi-classical trajectory calculations with machine learning techniques based on Neural Network (NN) and Gaussian Process Regression (GPR) to determine state-selected rate coefficients. Employing this approach, we significantly reduced the computational requirements while simultaneously obtaining the accurate state-selected reaction cross sections and rate coefficients for the collision of C and O2. Both the NN-based and GPR-based models established in this work accurately predict the results calculated from explicit numerical calculations in the explored temperature range of 50-1500 K, achieving a coefficient of determination R2 > 0.96. Most importantly, the current work provides the most comprehensive dataset of rovibrational rate coefficients of v = 0-4, j = 0-70 → v' = 0-15 for the astrophysical modeling of the C-O2 collision system.
AbstractList The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to occur rapidly even at low astronomical temperatures, e.g., C and O2 interaction. Obtaining detailed rovibrational transition parameters for the reaction between C and O2, such as state-selected rate coefficients, is crucial for studying the associated atmospheric and astronomical environments. Hence, this work presents an approach that combines quasi-classical trajectory calculations with machine learning techniques based on Neural Network (NN) and Gaussian Process Regression (GPR) to determine state-selected rate coefficients. Employing this approach, we significantly reduced the computational requirements while simultaneously obtaining the accurate state-selected reaction cross sections and rate coefficients for the collision of C and O2. Both the NN-based and GPR-based models established in this work accurately predict the results calculated from explicit numerical calculations in the explored temperature range of 50-1500 K, achieving a coefficient of determination R2 > 0.96. Most importantly, the current work provides the most comprehensive dataset of rovibrational rate coefficients of v = 0-4, j = 0-70 → v' = 0-15 for the astrophysical modeling of the C-O2 collision system.
Author Zhang, Hong
Cheng, Xin-Lu
Huang, Xia
Author_xml – sequence: 1
  givenname: Xia
  orcidid: 0000-0003-1558-9615
  surname: Huang
  fullname: Huang, Xia
  organization: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Xin-Lu
  orcidid: 0000-0002-2661-556X
  surname: Cheng
  fullname: Cheng, Xin-Lu
  organization: Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
– sequence: 3
  givenname: Hong
  orcidid: 0000-0002-9332-1203
  surname: Zhang
  fullname: Zhang, Hong
  organization: Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39513446$$D View this record in MEDLINE/PubMed
BookMark eNo1j9lKxDAYRoMozqIXvoDkBTpmbZtLKW4wMCjj9ZAmfzWSJkOSGfDtrdvVB4ePA2eBTkMMgNAVJStKan4jV4TxllN6guaUtKpqakVmaJHzByGENkycoxlXknIh6jnav-gC2EQYBmcchJLxEBPusA4WbxhOoE1xx--L9y67GPLEPBx1KLhE7EKBlAt4rxM2Ph7sJEhxxM_d9scxavPuAmAPOgUX3i7Q2aB9hsu_XaLX-7tt91itNw9P3e26Mpy0pZLC9s2gmJK1BGB9YxprRTtIQ63iU6HginDTM65bY0kvhAHWSma0EFTUgi3R9a93f-hHsLt9cqNOn7v_dPYF8DVaOA
ContentType Journal Article
Copyright 2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID NPM
DOI 10.1063/5.0238311
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 39513446
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
ID FETCH-LOGICAL-c308t-54db7f929565ee2b7c7dd48f5c1d9323843903cb23a8cd0b44ce2852ca4414642
IngestDate Mon Jul 21 06:07:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License 2024 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-54db7f929565ee2b7c7dd48f5c1d9323843903cb23a8cd0b44ce2852ca4414642
ORCID 0000-0002-9332-1203
0000-0002-2661-556X
0000-0003-1558-9615
PMID 39513446
ParticipantIDs pubmed_primary_39513446
PublicationCentury 2000
PublicationDate 2024-Nov-14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2024
SSID ssj0001724
Score 2.4696898
Snippet The chemical reactions between certain interstellar molecules are exothermic in nature and barrierless in the entrance channel, allowing these reactions to...
SourceID pubmed
SourceType Index Database
Title Rate coefficients for C and O2 reactive collisions relevant to interstellar clouds from QCT and machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/39513446
Volume 161
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYxHJB7DvygVvlksZO7BxRBaoQu1qptyp2HECii2i48PWM7bip2ARcoshW3Wjey_R56plB6BgkNDBFa5IwmRPGpSQSVClJ8yQFzog81yagf3Udtzrsoht1q390bXZJIevq7cu8kv-gCmOAq8mS_QOyk0VhAO4BX7gCwnD9Fcb3IBRNdQ9bBsKmqplDg-445k1YAz1ovVnNgG1zyMe2RwqI58JoTlMqAsSfOf_0UlPPw9ds7NJN7pptu0bfnrTUvrXEw7SSrXLKrJpVvvCAC5WMK7qUAenuU3Um6FH7sQG5fP0Uu24Ny68qoxEhM2l5Lgu0rp0HDURCeOx6gE5crCu47rkkvvTdIJbA4FHdqAjqPPAUhqO-BZGCIqTMRS1_nv1QRttPzaJZ2FCYDqkmrFP-ZIOKY77sVExPJs-wjBb95z5sO6z8aK-ildLS-NSRYA3N6ME6Wmr6dn3raOHWGX4DjQwt8DQtMNACNzFAim9C7GmBK1pgTwtcDPE0LbCjBTa0wEALu0ZJC-xpsYk652ftZouUjTWIooEoSMQyyXMQxqDmtQ4lVzzLmMgj1chAz1MBKjWgSoY0FSoLJGNKhyIKVQrimcGOdQvNDYYDvYOwEZhBIw10GHOmtU5ozrhSlHORsJjyXbTtzNYbueopPW_QvW9n9tFyRa0DNJ_D66oPQfsV8sji9g7GzFob
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rate+coefficients+for+C+and+O2+reactive+collisions+relevant+to+interstellar+clouds+from+QCT+and+machine+learning&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Huang%2C+Xia&rft.au=Cheng%2C+Xin-Lu&rft.au=Zhang%2C+Hong&rft.date=2024-11-14&rft.eissn=1089-7690&rft.volume=161&rft.issue=18&rft_id=info:doi/10.1063%2F5.0238311&rft_id=info%3Apmid%2F39513446&rft_id=info%3Apmid%2F39513446&rft.externalDocID=39513446