Magnetohydrodynamics control of capillary Z-pinch discharge by using a triangular current pulse for lasing a H-like N recombination soft x-ray laser
In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination SXRL, which requires a rapid cooling of nonequilibrium plasma. It is effective to decrease the discharge current rapidly in reducing the additi...
Saved in:
Published in | Journal of applied physics Vol. 107; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
15.04.2010
|
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/1.3311965 |
Cover
Abstract | In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination SXRL, which requires a rapid cooling of nonequilibrium plasma. It is effective to decrease the discharge current rapidly in reducing the additional heating caused by the joule heating and the magnetic compression of plasma as quickly as possible. The shaping of discharge current waveform was demonstrated with a transmission line and its effect on expanding plasma dynamics were investigated through magnetohydrodynamics (MHD) calculation, and validity of the MHD calculation in the expansion phase was shown using the discharge photographs taken by using a high speed camera. As a result, strong radiation from the H-like N ion at the maximum pinch, which is in the current decay phase of the triangular current with peak amplitude of over 70 kA and pulse width of 60 ns, has been confirmed in x-ray photodiode signals at wavelength of less than 2.5 nm, to clarify the existence of the Lyman series and continuum of the H-like N ion. Without additional heating by the discharge current after the generation of the fully stripped nitrogen ions, it might be possible to generate the population inversion between the principal quantum number n=2 and 3. |
---|---|
AbstractList | In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination SXRL, which requires a rapid cooling of nonequilibrium plasma. It is effective to decrease the discharge current rapidly in reducing the additional heating caused by the joule heating and the magnetic compression of plasma as quickly as possible. The shaping of discharge current waveform was demonstrated with a transmission line and its effect on expanding plasma dynamics were investigated through magnetohydrodynamics (MHD) calculation, and validity of the MHD calculation in the expansion phase was shown using the discharge photographs taken by using a high speed camera. As a result, strong radiation from the H-like N ion at the maximum pinch, which is in the current decay phase of the triangular current with peak amplitude of over 70 kA and pulse width of 60 ns, has been confirmed in x-ray photodiode signals at wavelength of less than 2.5 nm, to clarify the existence of the Lyman series and continuum of the H-like N ion. Without additional heating by the discharge current after the generation of the fully stripped nitrogen ions, it might be possible to generate the population inversion between the principal quantum number n=2 and 3. |
Author | Sakai, Y. Hosokai, T. Watanabe, M. Hotta, E. Kim, G-H. Takahashi, S. |
Author_xml | – sequence: 1 givenname: Y. surname: Sakai fullname: Sakai, Y. – sequence: 2 givenname: S. surname: Takahashi fullname: Takahashi, S. – sequence: 3 givenname: T. surname: Hosokai fullname: Hosokai, T. – sequence: 4 givenname: M. surname: Watanabe fullname: Watanabe, M. – sequence: 5 givenname: G-H. surname: Kim fullname: Kim, G-H. – sequence: 6 givenname: E. surname: Hotta fullname: Hotta, E. |
BookMark | eNptkLtOwzAUQC1UJEph4A_uypDWj7pJRlQBRSqwwMISOX6khtSObEci_8EHk0InxF3ucs7V1TlHE-edRuiK4DnBK7Ygc8YIKVf8BE0JLsos5xxP0BRjSrKizMszdB7jO8aEFKycoq9H0Tid_G5QwavBib2VEaR3KfgWvAEpOtu2IgzwlnXWyR0oG-VOhEZDPUAfrWtAQApWuKYfQZB9CNol6Po2ajA-QCuO1CZr7YeGJwha-n1tnUjWO4jeJPjMghgOqA4X6NSIUb487hl6vbt9WW-y7fP9w_pmm0mGi5RxltcrmqulGUdwuixxni8xFTnhmvGiYLVWijHDS8VqWjBKFeFCMco0JYazGVr83pXBxxi0qaRNPy-lIGxbEVwdolakOkYdjes_RhfsfqzzD_sNBhZ7Fg |
CitedBy_id | crossref_primary_10_1088_1742_6596_511_1_012034 crossref_primary_10_1007_s00340_017_6751_6 crossref_primary_10_1063_1_4729172 crossref_primary_10_1080_15361055_2024_2397619 crossref_primary_10_1088_1555_6611_aa684d crossref_primary_10_1063_5_0191533 crossref_primary_10_1007_s00340_016_6448_2 crossref_primary_10_1063_1_4789617 crossref_primary_10_1142_S2010194514603299 crossref_primary_10_1051_epjconf_20135914006 crossref_primary_10_1063_1_4819022 |
Cites_doi | 10.2478/BF02475613 10.1103/PhysRevE.78.056404 10.1109/TPS.2002.1024297 10.1063/1.3276705 10.1541/ieejfms.126.250 10.1117/12.134826 10.1103/PhysRevLett.81.5804 10.1016/j.optcom.2003.12.033 10.1109/TPS.2006.878366 10.1016/S0375-9601(01)00788-5 10.1103/PhysRevE.50.1376 10.1103/PhysRevLett.55.1753 10.1088/0022-3727/29/8/005 10.1134/S1054660X08120220 10.1088/0022-3727/40/16/008 10.1117/12.450574 10.1103/PhysRev.45.890 10.1103/PhysRevLett.8.376 10.1093/acprof:oso/9780198530282.001.0001 10.1103/PhysRevLett.54.110 10.1109/3.199258 10.1103/PhysRevLett.73.2192 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1063/1.3311965 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_3311965 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 6TJ 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYJJ AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS RXW SC5 TAE TN5 TWZ UHB UPT WH7 XSW YQT YZZ ZCA ZCG ~02 |
ID | FETCH-LOGICAL-c308t-537b627d4ffffa5249077402a715e35883bedd33f59d3b28322d15ad323e21f53 |
ISSN | 0021-8979 |
IngestDate | Tue Jul 01 03:48:12 EDT 2025 Thu Apr 24 23:12:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-537b627d4ffffa5249077402a715e35883bedd33f59d3b28322d15ad323e21f53 |
OpenAccessLink | http://t2r2.star.titech.ac.jp/rrws/file/CTT100604513/ATD100000413/ |
ParticipantIDs | crossref_citationtrail_10_1063_1_3311965 crossref_primary_10_1063_1_3311965 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-15 |
PublicationDateYYYYMMDD | 2010-04-15 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of applied physics |
PublicationYear | 2010 |
References | (2023070514411029200_c23) 1962 (2023070514411029200_c24) 2006; 126 (2023070514411029200_c3) 1994; 73 (2023070514411029200_c4) 1998; 81 (2023070514411029200_c18) 1934; 45 (2023070514411029200_c16) 2005; 3 (2023070514411029200_c25) 2010; 81 (2023070514411029200_c19) 1962; 8 (2023070514411029200_c10) 1991; 1551 (2023070514411029200_c1) 1985; 54 (2023070514411029200_c20) 2004 (2023070514411029200_c21) 1964 (2023070514411029200_c6) 2004; 231 (2023070514411029200_c26) 2009; 8 (2023070514411029200_c14) 2001; 292 (2023070514411029200_c8) 2007; 40 (2023070514411029200_c5) 2002; 30 (2023070514411029200_c7) 2006; 34 McWhirter (2023070514411029200_c22) 1965 (2023070514411029200_c17) 2008; 78 (2023070514411029200_c15) 1996; 29 (2023070514411029200_c12) 1994; 50 (2023070514411029200_c13) 2001; 4505 (2023070514411029200_c11) 1993; 29 (2023070514411029200_c9) 2008; 18 (2023070514411029200_c2) 1985; 55 |
References_xml | – volume: 3 start-page: 564 year: 2005 ident: 2023070514411029200_c16 publication-title: Cent. Eur. J. Phys. doi: 10.2478/BF02475613 – volume: 78 start-page: 056404 year: 2008 ident: 2023070514411029200_c17 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.056404 – volume: 30 start-page: 616 year: 2002 ident: 2023070514411029200_c5 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2002.1024297 – volume-title: Plasma Spectroscopy year: 1964 ident: 2023070514411029200_c21 – volume: 81 start-page: 013303 year: 2010 ident: 2023070514411029200_c25 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3276705 – volume: 126 start-page: 250 year: 2006 ident: 2023070514411029200_c24 publication-title: IEEJ Trans. Fundam. Mater. doi: 10.1541/ieejfms.126.250 – volume: 1551 start-page: 275 year: 1991 ident: 2023070514411029200_c10 publication-title: Proc. SPIE doi: 10.1117/12.134826 – volume: 81 start-page: 5804 year: 1998 ident: 2023070514411029200_c4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.5804 – volume-title: Plasma Diagnostic Techniques year: 1965 ident: 2023070514411029200_c22 – volume: 231 start-page: 403 year: 2004 ident: 2023070514411029200_c6 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2003.12.033 – volume: 34 start-page: 2368 year: 2006 ident: 2023070514411029200_c7 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2006.878366 – volume: 8 start-page: 1317 year: 2009 ident: 2023070514411029200_c26 publication-title: J. Plasma Fusion Res. Ser. – volume: 292 start-page: 125 year: 2001 ident: 2023070514411029200_c14 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00788-5 – volume-title: Physics of Fully Ionized Gases year: 1962 ident: 2023070514411029200_c23 – volume: 50 start-page: 1376 year: 1994 ident: 2023070514411029200_c12 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.50.1376 – volume: 55 start-page: 1753 year: 1985 ident: 2023070514411029200_c2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.1753 – volume: 29 start-page: 2091 year: 1996 ident: 2023070514411029200_c15 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/29/8/005 – volume: 18 start-page: 1526 year: 2008 ident: 2023070514411029200_c9 publication-title: Laser Phys. doi: 10.1134/S1054660X08120220 – volume: 40 start-page: 4787 year: 2007 ident: 2023070514411029200_c8 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/16/008 – volume: 4505 start-page: 1 year: 2001 ident: 2023070514411029200_c13 publication-title: Proc. SPIE doi: 10.1117/12.450574 – volume: 45 start-page: 890 year: 1934 ident: 2023070514411029200_c18 publication-title: Phys. Rev. doi: 10.1103/PhysRev.45.890 – volume: 8 start-page: 376 year: 1962 ident: 2023070514411029200_c19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.8.376 – volume-title: Plasma Spectroscopy year: 2004 ident: 2023070514411029200_c20 doi: 10.1093/acprof:oso/9780198530282.001.0001 – volume: 54 start-page: 110 year: 1985 ident: 2023070514411029200_c1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.110 – volume: 29 start-page: 182 year: 1993 ident: 2023070514411029200_c11 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.199258 – volume: 73 start-page: 2192 year: 1994 ident: 2023070514411029200_c3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.2192 |
SSID | ssj0011839 |
Score | 2.027063 |
Snippet | In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Magnetohydrodynamics control of capillary Z-pinch discharge by using a triangular current pulse for lasing a H-like N recombination soft x-ray laser |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtsgkJHhAMEBsfshAPSJFDEtf5eJz4UIVohdRODF4qO3Y21JFUbSqt_BvwB3P-mJvRPgz6EFXWJa1yP9l35_MdQq-oLKus4OCpgnVMYIWKiYhpSSj41wKIqopSxzuGo3Rw0v94yk57vV-drKVVK8Ly585zJf-jVRgDvepTsv-gWf9QGIDvoF-4gobheiMdD_lZrdrmfC1hGrSt5Zc--Vzni_O5biq0WAffiC7DcK73Y0xtJKXNzpWJE_BAd-6oz0w-aunKNc1XsGSaFER9zNJIDcjF95kKRoH2oX-AQ23RWcI8HlySBV9rUZfru23tcmft2kiKN-THfGb7YX8NNzGEmT5mZpoNB2M_PGiWjZOd-MEvHGxbLmx0PexGMPTme5_YM5z-REFM8sI2lQmVnYijvCAZs0Vp_UxtG-Q6JPOdKwCYXDoYEVLArrBtKK5X2f5r9fM5iWY3PqXTeOpuvYX2kyzTe__7x--Gn8Z-c0oblTZzyP7tq4JVKX3jf7dj5nTslcl9dM-9enxsqXmAeqo-QHc75ScP0O3PVhkP0e9dJGFHEm4q7EnCjiTsScJijQ1JmOMNSdiRhA1JGEjCliSQsiThEb5GEtYkYUMSNiQ9Qicf3k_eDojr10FKGuUtYTQTaZLJfgUfzsCxj8C5iBKexUxRludUKCkprVghqdA9shIZMy5pQlUSV4w-Rnt1U6snCGdC5lTyiqWlLjkX8ZxxRXkKQnmaSnqIXl-93mnpitnrnioX0y01HqKXXnRuK7hsCx3dROgpurPB9xnaaxcr9RxM0la8cIj8AY3rjzU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamics+control+of+capillary+Z-pinch+discharge+by+using+a+triangular+current+pulse+for+lasing+a+H-like+N+recombination+soft+x-ray+laser&rft.jtitle=Journal+of+applied+physics&rft.au=Sakai%2C+Y.&rft.au=Takahashi%2C+S.&rft.au=Hosokai%2C+T.&rft.au=Watanabe%2C+M.&rft.date=2010-04-15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=107&rft.issue=8&rft_id=info:doi/10.1063%2F1.3311965&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3311965 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |