Magnetohydrodynamics control of capillary Z-pinch discharge by using a triangular current pulse for lasing a H-like N recombination soft x-ray laser

In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination SXRL, which requires a rapid cooling of nonequilibrium plasma. It is effective to decrease the discharge current rapidly in reducing the additi...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 107; no. 8
Main Authors Sakai, Y., Takahashi, S., Hosokai, T., Watanabe, M., Kim, G-H., Hotta, E.
Format Journal Article
LanguageEnglish
Published 15.04.2010
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.3311965

Cover

Abstract In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination SXRL, which requires a rapid cooling of nonequilibrium plasma. It is effective to decrease the discharge current rapidly in reducing the additional heating caused by the joule heating and the magnetic compression of plasma as quickly as possible. The shaping of discharge current waveform was demonstrated with a transmission line and its effect on expanding plasma dynamics were investigated through magnetohydrodynamics (MHD) calculation, and validity of the MHD calculation in the expansion phase was shown using the discharge photographs taken by using a high speed camera. As a result, strong radiation from the H-like N ion at the maximum pinch, which is in the current decay phase of the triangular current with peak amplitude of over 70 kA and pulse width of 60 ns, has been confirmed in x-ray photodiode signals at wavelength of less than 2.5 nm, to clarify the existence of the Lyman series and continuum of the H-like N ion. Without additional heating by the discharge current after the generation of the fully stripped nitrogen ions, it might be possible to generate the population inversion between the principal quantum number n=2 and 3.
AbstractList In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination SXRL, which requires a rapid cooling of nonequilibrium plasma. It is effective to decrease the discharge current rapidly in reducing the additional heating caused by the joule heating and the magnetic compression of plasma as quickly as possible. The shaping of discharge current waveform was demonstrated with a transmission line and its effect on expanding plasma dynamics were investigated through magnetohydrodynamics (MHD) calculation, and validity of the MHD calculation in the expansion phase was shown using the discharge photographs taken by using a high speed camera. As a result, strong radiation from the H-like N ion at the maximum pinch, which is in the current decay phase of the triangular current with peak amplitude of over 70 kA and pulse width of 60 ns, has been confirmed in x-ray photodiode signals at wavelength of less than 2.5 nm, to clarify the existence of the Lyman series and continuum of the H-like N ion. Without additional heating by the discharge current after the generation of the fully stripped nitrogen ions, it might be possible to generate the population inversion between the principal quantum number n=2 and 3.
Author Sakai, Y.
Hosokai, T.
Watanabe, M.
Hotta, E.
Kim, G-H.
Takahashi, S.
Author_xml – sequence: 1
  givenname: Y.
  surname: Sakai
  fullname: Sakai, Y.
– sequence: 2
  givenname: S.
  surname: Takahashi
  fullname: Takahashi, S.
– sequence: 3
  givenname: T.
  surname: Hosokai
  fullname: Hosokai, T.
– sequence: 4
  givenname: M.
  surname: Watanabe
  fullname: Watanabe, M.
– sequence: 5
  givenname: G-H.
  surname: Kim
  fullname: Kim, G-H.
– sequence: 6
  givenname: E.
  surname: Hotta
  fullname: Hotta, E.
BookMark eNptkLtOwzAUQC1UJEph4A_uypDWj7pJRlQBRSqwwMISOX6khtSObEci_8EHk0InxF3ucs7V1TlHE-edRuiK4DnBK7Ygc8YIKVf8BE0JLsos5xxP0BRjSrKizMszdB7jO8aEFKycoq9H0Tid_G5QwavBib2VEaR3KfgWvAEpOtu2IgzwlnXWyR0oG-VOhEZDPUAfrWtAQApWuKYfQZB9CNol6Po2ajA-QCuO1CZr7YeGJwha-n1tnUjWO4jeJPjMghgOqA4X6NSIUb487hl6vbt9WW-y7fP9w_pmm0mGi5RxltcrmqulGUdwuixxni8xFTnhmvGiYLVWijHDS8VqWjBKFeFCMco0JYazGVr83pXBxxi0qaRNPy-lIGxbEVwdolakOkYdjes_RhfsfqzzD_sNBhZ7Fg
CitedBy_id crossref_primary_10_1088_1742_6596_511_1_012034
crossref_primary_10_1007_s00340_017_6751_6
crossref_primary_10_1063_1_4729172
crossref_primary_10_1080_15361055_2024_2397619
crossref_primary_10_1088_1555_6611_aa684d
crossref_primary_10_1063_5_0191533
crossref_primary_10_1007_s00340_016_6448_2
crossref_primary_10_1063_1_4789617
crossref_primary_10_1142_S2010194514603299
crossref_primary_10_1051_epjconf_20135914006
crossref_primary_10_1063_1_4819022
Cites_doi 10.2478/BF02475613
10.1103/PhysRevE.78.056404
10.1109/TPS.2002.1024297
10.1063/1.3276705
10.1541/ieejfms.126.250
10.1117/12.134826
10.1103/PhysRevLett.81.5804
10.1016/j.optcom.2003.12.033
10.1109/TPS.2006.878366
10.1016/S0375-9601(01)00788-5
10.1103/PhysRevE.50.1376
10.1103/PhysRevLett.55.1753
10.1088/0022-3727/29/8/005
10.1134/S1054660X08120220
10.1088/0022-3727/40/16/008
10.1117/12.450574
10.1103/PhysRev.45.890
10.1103/PhysRevLett.8.376
10.1093/acprof:oso/9780198530282.001.0001
10.1103/PhysRevLett.54.110
10.1109/3.199258
10.1103/PhysRevLett.73.2192
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1063/1.3311965
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_3311965
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYJJ
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
ZCG
~02
ID FETCH-LOGICAL-c308t-537b627d4ffffa5249077402a715e35883bedd33f59d3b28322d15ad323e21f53
ISSN 0021-8979
IngestDate Tue Jul 01 03:48:12 EDT 2025
Thu Apr 24 23:12:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-537b627d4ffffa5249077402a715e35883bedd33f59d3b28322d15ad323e21f53
OpenAccessLink http://t2r2.star.titech.ac.jp/rrws/file/CTT100604513/ATD100000413/
ParticipantIDs crossref_citationtrail_10_1063_1_3311965
crossref_primary_10_1063_1_3311965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-15
PublicationDateYYYYMMDD 2010-04-15
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of applied physics
PublicationYear 2010
References (2023070514411029200_c23) 1962
(2023070514411029200_c24) 2006; 126
(2023070514411029200_c3) 1994; 73
(2023070514411029200_c4) 1998; 81
(2023070514411029200_c18) 1934; 45
(2023070514411029200_c16) 2005; 3
(2023070514411029200_c25) 2010; 81
(2023070514411029200_c19) 1962; 8
(2023070514411029200_c10) 1991; 1551
(2023070514411029200_c1) 1985; 54
(2023070514411029200_c20) 2004
(2023070514411029200_c21) 1964
(2023070514411029200_c6) 2004; 231
(2023070514411029200_c26) 2009; 8
(2023070514411029200_c14) 2001; 292
(2023070514411029200_c8) 2007; 40
(2023070514411029200_c5) 2002; 30
(2023070514411029200_c7) 2006; 34
McWhirter (2023070514411029200_c22) 1965
(2023070514411029200_c17) 2008; 78
(2023070514411029200_c15) 1996; 29
(2023070514411029200_c12) 1994; 50
(2023070514411029200_c13) 2001; 4505
(2023070514411029200_c11) 1993; 29
(2023070514411029200_c9) 2008; 18
(2023070514411029200_c2) 1985; 55
References_xml – volume: 3
  start-page: 564
  year: 2005
  ident: 2023070514411029200_c16
  publication-title: Cent. Eur. J. Phys.
  doi: 10.2478/BF02475613
– volume: 78
  start-page: 056404
  year: 2008
  ident: 2023070514411029200_c17
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.056404
– volume: 30
  start-page: 616
  year: 2002
  ident: 2023070514411029200_c5
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2002.1024297
– volume-title: Plasma Spectroscopy
  year: 1964
  ident: 2023070514411029200_c21
– volume: 81
  start-page: 013303
  year: 2010
  ident: 2023070514411029200_c25
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3276705
– volume: 126
  start-page: 250
  year: 2006
  ident: 2023070514411029200_c24
  publication-title: IEEJ Trans. Fundam. Mater.
  doi: 10.1541/ieejfms.126.250
– volume: 1551
  start-page: 275
  year: 1991
  ident: 2023070514411029200_c10
  publication-title: Proc. SPIE
  doi: 10.1117/12.134826
– volume: 81
  start-page: 5804
  year: 1998
  ident: 2023070514411029200_c4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.5804
– volume-title: Plasma Diagnostic Techniques
  year: 1965
  ident: 2023070514411029200_c22
– volume: 231
  start-page: 403
  year: 2004
  ident: 2023070514411029200_c6
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2003.12.033
– volume: 34
  start-page: 2368
  year: 2006
  ident: 2023070514411029200_c7
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2006.878366
– volume: 8
  start-page: 1317
  year: 2009
  ident: 2023070514411029200_c26
  publication-title: J. Plasma Fusion Res. Ser.
– volume: 292
  start-page: 125
  year: 2001
  ident: 2023070514411029200_c14
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00788-5
– volume-title: Physics of Fully Ionized Gases
  year: 1962
  ident: 2023070514411029200_c23
– volume: 50
  start-page: 1376
  year: 1994
  ident: 2023070514411029200_c12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.50.1376
– volume: 55
  start-page: 1753
  year: 1985
  ident: 2023070514411029200_c2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.1753
– volume: 29
  start-page: 2091
  year: 1996
  ident: 2023070514411029200_c15
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/29/8/005
– volume: 18
  start-page: 1526
  year: 2008
  ident: 2023070514411029200_c9
  publication-title: Laser Phys.
  doi: 10.1134/S1054660X08120220
– volume: 40
  start-page: 4787
  year: 2007
  ident: 2023070514411029200_c8
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/16/008
– volume: 4505
  start-page: 1
  year: 2001
  ident: 2023070514411029200_c13
  publication-title: Proc. SPIE
  doi: 10.1117/12.450574
– volume: 45
  start-page: 890
  year: 1934
  ident: 2023070514411029200_c18
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.45.890
– volume: 8
  start-page: 376
  year: 1962
  ident: 2023070514411029200_c19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.8.376
– volume-title: Plasma Spectroscopy
  year: 2004
  ident: 2023070514411029200_c20
  doi: 10.1093/acprof:oso/9780198530282.001.0001
– volume: 54
  start-page: 110
  year: 1985
  ident: 2023070514411029200_c1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.110
– volume: 29
  start-page: 182
  year: 1993
  ident: 2023070514411029200_c11
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.199258
– volume: 73
  start-page: 2192
  year: 1994
  ident: 2023070514411029200_c3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.2192
SSID ssj0011839
Score 2.027063
Snippet In expansion cooling phase of pinched nitrogen plasma generated by fast capillary discharge, it might be possible to realize lasing a Blamer α recombination...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Magnetohydrodynamics control of capillary Z-pinch discharge by using a triangular current pulse for lasing a H-like N recombination soft x-ray laser
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtsgkJHhAMEBsfshAPSJFDEtf5eJz4UIVohdRODF4qO3Y21JFUbSqt_BvwB3P-mJvRPgz6EFXWJa1yP9l35_MdQq-oLKus4OCpgnVMYIWKiYhpSSj41wKIqopSxzuGo3Rw0v94yk57vV-drKVVK8Ly585zJf-jVRgDvepTsv-gWf9QGIDvoF-4gobheiMdD_lZrdrmfC1hGrSt5Zc--Vzni_O5biq0WAffiC7DcK73Y0xtJKXNzpWJE_BAd-6oz0w-aunKNc1XsGSaFER9zNJIDcjF95kKRoH2oX-AQ23RWcI8HlySBV9rUZfru23tcmft2kiKN-THfGb7YX8NNzGEmT5mZpoNB2M_PGiWjZOd-MEvHGxbLmx0PexGMPTme5_YM5z-REFM8sI2lQmVnYijvCAZs0Vp_UxtG-Q6JPOdKwCYXDoYEVLArrBtKK5X2f5r9fM5iWY3PqXTeOpuvYX2kyzTe__7x--Gn8Z-c0oblTZzyP7tq4JVKX3jf7dj5nTslcl9dM-9enxsqXmAeqo-QHc75ScP0O3PVhkP0e9dJGFHEm4q7EnCjiTsScJijQ1JmOMNSdiRhA1JGEjCliSQsiThEb5GEtYkYUMSNiQ9Qicf3k_eDojr10FKGuUtYTQTaZLJfgUfzsCxj8C5iBKexUxRludUKCkprVghqdA9shIZMy5pQlUSV4w-Rnt1U6snCGdC5lTyiqWlLjkX8ZxxRXkKQnmaSnqIXl-93mnpitnrnioX0y01HqKXXnRuK7hsCx3dROgpurPB9xnaaxcr9RxM0la8cIj8AY3rjzU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamics+control+of+capillary+Z-pinch+discharge+by+using+a+triangular+current+pulse+for+lasing+a+H-like+N+recombination+soft+x-ray+laser&rft.jtitle=Journal+of+applied+physics&rft.au=Sakai%2C+Y.&rft.au=Takahashi%2C+S.&rft.au=Hosokai%2C+T.&rft.au=Watanabe%2C+M.&rft.date=2010-04-15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=107&rft.issue=8&rft_id=info:doi/10.1063%2F1.3311965&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3311965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon