Pick-place of dynamic objects by robot manipulator based on deep learning and easy user interface teaching systems

Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small siz...

Full description

Saved in:
Bibliographic Details
Published inIndustrial robot Vol. 44; no. 1; pp. 11 - 20
Main Authors Hossain, Delowar, Capi, Genci, Jindai, Mitsuru, Kaneko, Shin-ichiro
Format Journal Article
LanguageEnglish
Published Bedford Emerald Publishing Limited 01.01.2017
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN0143-991X
1758-5791
DOI10.1108/IR-05-2016-0140

Cover

Loading…
Abstract Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small size robot manipulators’ presence in everyday life environments is increasing requiring non-expert operators to teach the robot; and in small size applications, the operator has to teach several different motions in a short time. Design/methodology/approach For object recognition, the authors propose a deep belief neural network (DBNN)-based approach. The captured camera image is used as the input of the DBNN. The DBNN extracts the object features in the intermediate layers. In addition, the authors developed three teaching systems which utilize iPhone; haptic; and Kinect devices. Findings The object recognition by DBNN is robust for real-time applications. The robot picks up the object required by the user and places it in the target location. Three developed teaching systems are easy to use by non-experienced subjects, and they show different performance in terms of time to complete the task and accuracy. Practical implications The proposed method can ease the use of robot manipulators helping non-experienced users completing different assembly tasks. Originality/value This work applies DBNN for object recognition and three intuitive systems for teaching robot manipulators.
AbstractList Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small size robot manipulators' presence in everyday life environments is increasing requiring non-expert operators to teach the robot; and in small size applications, the operator has to teach several different motions in a short time. Design/methodology/approach For object recognition, the authors propose a deep belief neural network (DBNN)-based approach. The captured camera image is used as the input of the DBNN. The DBNN extracts the object features in the intermediate layers. In addition, the authors developed three teaching systems which utilize iPhone; haptic; and Kinect devices. Findings The object recognition by DBNN is robust for real-time applications. The robot picks up the object required by the user and places it in the target location. Three developed teaching systems are easy to use by non-experienced subjects, and they show different performance in terms of time to complete the task and accuracy. Practical implications The proposed method can ease the use of robot manipulators helping non-experienced users completing different assembly tasks. Originality/value This work applies DBNN for object recognition and three intuitive systems for teaching robot manipulators.
Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small size robot manipulators’ presence in everyday life environments is increasing requiring non-expert operators to teach the robot; and in small size applications, the operator has to teach several different motions in a short time. Design/methodology/approach For object recognition, the authors propose a deep belief neural network (DBNN)-based approach. The captured camera image is used as the input of the DBNN. The DBNN extracts the object features in the intermediate layers. In addition, the authors developed three teaching systems which utilize iPhone; haptic; and Kinect devices. Findings The object recognition by DBNN is robust for real-time applications. The robot picks up the object required by the user and places it in the target location. Three developed teaching systems are easy to use by non-experienced subjects, and they show different performance in terms of time to complete the task and accuracy. Practical implications The proposed method can ease the use of robot manipulators helping non-experienced users completing different assembly tasks. Originality/value This work applies DBNN for object recognition and three intuitive systems for teaching robot manipulators.
Author Kaneko, Shin-ichiro
Hossain, Delowar
Capi, Genci
Jindai, Mitsuru
Author_xml – sequence: 1
  givenname: Delowar
  surname: Hossain
  fullname: Hossain, Delowar
  email: delowar_cse_ru@yahoo.com
– sequence: 2
  givenname: Genci
  surname: Capi
  fullname: Capi, Genci
  email: capi@hosei.ac.jp
– sequence: 3
  givenname: Mitsuru
  surname: Jindai
  fullname: Jindai, Mitsuru
  email: jindai@eng.u-toyama.ac.jp
– sequence: 4
  givenname: Shin-ichiro
  surname: Kaneko
  fullname: Kaneko, Shin-ichiro
  email: skaneko@nc-toyama.ac.jp
BookMark eNp9kUFr3DAQRkVIIJu0514FPSuRVpZkH0tom4VAS2ghNzGWR622tuRK2oP_fdZsLwmhp4HhvW_gmytyHlNEQj4IfiMEb293j4wrtuVCMy4afkY2wqiWKdOJc7I5riTrOvF0Sa5K2XPOlRZ6Q_L34P6weQSHNHk6LBGm4Gjq9-hqof1Cc-pTpRPEMB9GqCnTHgoONEU6IM50RMgxxF8U4kARykIPBTMNsWL2a2xFcL9XoCyl4lTekQsPY8H3_-Y1-fnl84-7e_bw7evu7tMDc5K3lSkpPZc979qmH3zbGYGqUWYroBmc6DygcV3nwEg9GA-ea9XovnH9ViAY7uQ1-XjKnXP6e8BS7T4dcjyetKLVwrSaa3mk1IlyOZWS0VsXKtSQYs0QRiu4Xeu1u0fLlV3rtWu9R-_2lTfnMEFe_mPcnAycMMM4vCG8-KB8BoN0jUc
CODEN IDRBAT
CitedBy_id crossref_primary_10_3390_robotics9030063
crossref_primary_10_1049_ipr2_12399
crossref_primary_10_1007_s11370_019_00298_3
crossref_primary_10_1017_S0263574721000023
crossref_primary_10_1080_01691864_2018_1529620
crossref_primary_10_3390_e26050416
crossref_primary_10_1016_j_ifacol_2022_09_382
crossref_primary_10_1016_j_aei_2020_101149
crossref_primary_10_1016_j_jmsy_2023_05_008
crossref_primary_10_1109_ACCESS_2020_3027923
crossref_primary_10_1109_EMR_2022_3209891
Cites_doi 10.1177/0278364914549607
10.1016/j.arcontrol.2007.01.002
10.1177/027836498600500301
10.1162/neco.2006.18.7.1527
10.1109/34.75511
10.1016/0004-3702(77)90006-6
10.1177/027836498600500302
10.1108/01439910310479612
10.1108/IR-10-2013-409
10.1287/opre.1050.0210
10.1007/978-3-319-04117-9_12
10.1080/09511920903529255
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2017
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2017
DBID AAYXX
CITATION
7SC
7SP
7TB
7WY
7WZ
7XB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F28
FR3
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/IR-05-2016-0140
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1758-5791
EndPage 20
ExternalDocumentID 4308142881
10_1108_IR_05_2016_0140
10.1108/IR-05-2016-0140
GroupedDBID -~X
.DC
0R~
29I
3V.
4.4
490
5VS
70U
7WY
85S
8FE
8FG
8FW
8R4
8R5
9E0
AAGBP
AAIKC
AAMCF
AAMNW
AATHL
AAUDR
ABIJV
ABJCF
ABJNI
ABKQV
ABSDC
ACGFO
ACGFS
ACGOD
ACIWK
ACZLT
ADFRT
ADOMW
AEBZA
AFKRA
AFYHH
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CS3
DWQXO
EBS
ECCUG
EJD
F5P
FNNZZ
GEI
GEL
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
HCIFZ
HZ~
H~9
IJT
IPNFZ
J1Y
JI-
JL0
K6V
K6~
K7-
KBGRL
L6V
M0C
M0N
M2O
M2P
M42
M7S
O9-
P2P
P62
PQBIZ
PQQKQ
PRG
PROAC
PTHSS
Q2X
RIG
SBBZN
TN5
U5U
WH7
Z5M
AABYC
AAYXX
AFNTC
AHMHQ
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
7XB
8FD
F28
FR3
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c308t-533f03b0984bdf8971e545721a4dc19fae7c99ca736d7faf06546b4cb21ea70c3
IEDL.DBID BENPR
ISSN 0143-991X
IngestDate Sat Aug 23 14:40:02 EDT 2025
Thu Jul 31 00:43:35 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Tue Feb 11 07:04:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Teaching methods
Robot manipulator
Object recognition
Robot grasping
Deep belief neural network
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-533f03b0984bdf8971e545721a4dc19fae7c99ca736d7faf06546b4cb21ea70c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1861786063
PQPubID 36873
PageCount 10
ParticipantIDs crossref_primary_10_1108_IR_05_2016_0140
proquest_journals_1861786063
crossref_citationtrail_10_1108_IR_05_2016_0140
emerald_primary_10_1108_IR-05-2016-0140
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Bedford
PublicationPlace_xml – name: Bedford
PublicationTitle Industrial robot
PublicationYear 2017
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2020121021324837400_ref017) 2014; 8326
(key2020121021324837400_ref016) 2004; 5
(key2020121021324837400_ref002) 2005; 53
(key2020121021324837400_ref011) 2006; 18
(key2020121021324837400_ref018) 2015; 34
(key2020121021324837400_ref013) 2010; 23
(key2020121021324837400_ref022) 2009
(key2020121021324837400_ref024) 1977; 8
(key2020121021324837400_ref021) 2014; 41
(key2020121021324837400_ref030) 2006
(key2020121021324837400_ref019) 2016
(key2020121021324837400_ref026) 2012
(key2020121021324837400_ref031) 2014
(key2020121021324837400_ref007) 1992; 55
(key2020121021324837400_ref015) 1991; 13
(key2020121021324837400_ref023) 2009; 22
(key2020121021324837400_ref034) 2013
(key2020121021324837400_ref014) 2015
(key2020121021324837400_ref029) 2010
(key2020121021324837400_ref005) 2003; 1
(key2020121021324837400_ref012) 2012; 29
(key2020121021324837400_ref004) 2007; 31
(key2020121021324837400_ref008) 2007; 5
(key2020121021324837400_ref003) 1986; 5
(key2020121021324837400_ref027) 2015
(key2020121021324837400_ref028) 2015
(key2020121021324837400_ref032) 2016
(key2020121021324837400_ref010) 2012
(key2020121021324837400_ref020) 2014
(key2020121021324837400_ref033) 2002; 14
(key2020121021324837400_ref001) 1997
(key2020121021324837400_ref025) 2012
(key2020121021324837400_ref035) 2015
(key2020121021324837400_ref006) 2003; 30
(key2020121021324837400_ref009) 1986; 5
References_xml – volume: 34
  start-page: 705
  issue: 4-5
  year: 2015
  ident: key2020121021324837400_ref018
  article-title: Deep learning for detecting robotic grasps
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364914549607
– volume: 31
  start-page: 69
  issue: 1
  year: 2007
  ident: key2020121021324837400_ref004
  article-title: Present and future robot control development: an industrial perspective
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2007.01.002
– year: 2016
  ident: key2020121021324837400_ref019
  article-title: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection
– volume: 5
  start-page: 105
  issue: 1
  year: 2004
  ident: key2020121021324837400_ref016
  article-title: Part-level object recognition using superquadrics
  publication-title: Computer Vision and Image Understanding
– start-page: 370
  year: 2010
  ident: key2020121021324837400_ref029
  article-title: Sharpening haptic inputs for teaching a manipulation skill to a robot
– start-page: 1
  year: 2016
  ident: key2020121021324837400_ref032
  article-title: Robotic grasping recognition using multi-modal deep extreme learning machine
  publication-title: Multidimensional Systems and Signal Processing
– volume: 5
  start-page: 283
  issue: 3
  year: 2007
  ident: key2020121021324837400_ref008
  article-title: Two-wheeled welding mobile robot for tracking a smooth curved welding path using adaptive sliding-mode control technique
  publication-title: International Journal of Control, Automation, and Systems
– start-page: 1526
  year: 2014
  ident: key2020121021324837400_ref031
  article-title: A novel inference of a restricted Boltzmann machine
– year: 2015
  ident: key2020121021324837400_ref035
  article-title: Towards vision-based deep reinforcement learning for robotic motion control
– volume: 5
  start-page: 3
  issue: 3
  year: 1986
  ident: key2020121021324837400_ref003
  article-title: 3DPO: a three-dimensional part orientation system
  publication-title: International Journal of Robotics Research
  doi: 10.1177/027836498600500301
– volume: 1
  start-page: 395
  issue: 3
  year: 2003
  ident: key2020121021324837400_ref005
  article-title: Quantitative evaluation of an intuitive teaching method for industrial robot using a force/moment direction sensor
  publication-title: International Journal of Control, Automation, and Systems
– volume: 14
  issue: 5
  year: 2002
  ident: key2020121021324837400_ref033
  article-title: Two-dimensional irregular parts packing with genetic algorithm
  publication-title: Journal of Computer Aided Design & Computer Graphics
– start-page: 1175
  year: 2013
  ident: key2020121021324837400_ref034
  article-title: A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: key2020121021324837400_ref011
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 22
  start-page: 1339
  year: 2009
  ident: key2020121021324837400_ref023
  article-title: 3D Object recognition with deep belief nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 29
  start-page: 82
  issue: 9
  year: 2012
  ident: key2020121021324837400_ref012
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Processing Magazine
– start-page: 409
  year: 2012
  ident: key2020121021324837400_ref026
  article-title: Teachless teach-repeat: toward vision-based programming of industrial robots
– volume: 13
  start-page: 224
  issue: 3
  year: 1991
  ident: key2020121021324837400_ref015
  article-title: 3-D object recognition using bipartite matching embedded in discrete relaxation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.75511
– start-page: 1
  year: 2009
  ident: key2020121021324837400_ref022
  article-title: Deep belief networks for phone recognition
– start-page: 1875
  year: 1997
  ident: key2020121021324837400_ref001
  article-title: Teachingless spray-painting of sculptured surface by an industrial robot
– year: 2015
  ident: key2020121021324837400_ref014
  article-title: A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet V2.0)
– start-page: 401
  year: 2014
  ident: key2020121021324837400_ref020
  article-title: A 3D object recognition and pose estimation system using deep learning method
– volume: 8
  start-page: 77
  issue: 1
  year: 1977
  ident: key2020121021324837400_ref024
  article-title: Description and recognition of curved objects
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(77)90006-6
– volume: 5
  start-page: 27
  issue: 3
  year: 1986
  ident: key2020121021324837400_ref009
  article-title: The representation, recognition, and locating of 3-D
  publication-title: International Journal of Robotics Research
  doi: 10.1177/027836498600500302
– start-page: 1
  year: 2012
  ident: key2020121021324837400_ref025
  article-title: Shape-primitive based object recognition and grasping
– volume: 30
  start-page: 345
  issue: 4
  year: 2003
  ident: key2020121021324837400_ref006
  article-title: Robotic manipulation of food products – a review
  publication-title: Industrial Robot: An International Journal
  doi: 10.1108/01439910310479612
– year: 2012
  ident: key2020121021324837400_ref010
  article-title: Semantic place recognition based on deep belief networks and tiny images
– year: 2006
  ident: key2020121021324837400_ref030
  article-title: Teaching by demonstration of robotic manipulators in non-stationary environments
– volume: 41
  start-page: 124
  issue: 2
  year: 2014
  ident: key2020121021324837400_ref021
  article-title: Adaptive arm motion generation of humanoid robot operating in dynamic environments
  publication-title: Industrial Robot: An International Journal
  doi: 10.1108/IR-10-2013-409
– start-page: 1316
  year: 2015
  ident: key2020121021324837400_ref028
  article-title: Real-time grasp detection using convolutional neural networks
– year: 2015
  ident: key2020121021324837400_ref027
  article-title: Supersizing Self-supervision: learning to grasp from 50K Tries and 700 Robot Hours
– volume: 53
  start-page: 735
  issue: 4
  year: 2005
  ident: key2020121021324837400_ref002
  article-title: Erratum to ‘the three-dimensional bin packing problem’: robot-packable and orthogonal variants of packing problems
  publication-title: Operations Research
  doi: 10.1287/opre.1050.0210
– volume: 8326
  start-page: 128
  year: 2014
  ident: key2020121021324837400_ref017
  article-title: 3D Object classification using deep belief networks
  publication-title: Multi Media Modeling
  doi: 10.1007/978-3-319-04117-9_12
– volume: 23
  start-page: 283
  issue: 3
  year: 2010
  ident: key2020121021324837400_ref013
  article-title: Metrology-assisted robotic processing of aerospace applications
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/09511920903529255
– volume: 55
  start-page: 130
  issue: 2
  year: 1992
  ident: key2020121021324837400_ref007
  article-title: From volumes to views: an approach to 3-D object recognition
  publication-title: Computer Vision, Graphics, and Image Processing: Image Understanding
SSID ssj0005616
Score 2.2001343
Snippet Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot...
Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Cameras
Deep learning
Experiments
Haptics
Methods
Neural networks
Robots
Sensors
Teaching
User interface
SummonAdditionalLinks – databaseName: Emerald Journals
  dbid: GEI
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60Jy8-ULG-mIOgl7R5b3IUsVShIqLQW9inSmtSkvSgv96dTaIo6slzNkuyOzuvnfk-Qk5iFTFPShOpuoHvhMIzZ07RyOHGtnMqjd601AmTm3j8EF5Po-kKmXS9MLassknHWD39nFcYpA6xcNto4Q_AAWSvubrDa1xjwTAmDt0hJqyHT_XLfNUIekS7zt-u3iO2PKiIZ-cYp2ja4vz8MNEXE_WtT_dTV1sDNNogeffpTd3JbLCs-UC8fUN1_Ld_2yTrrasK541sbZEVlW-T8vZZzBxbyQWFBtkQ2kPBMZ9TAX-FsuBFDQirYanBihLQUkoocpBKLaDlqXgElktQrHoFTJQA4laUGqet2wJPaFCmqx3yMLq8vxg7LW-DIwI3qR3jQWo34G6ahFzqJKWeMn6aCTVZKIWXaqaoSFPBaBBLqpm2jOw8FNz3FKOuCHZJLy9ytUfAWPAgoSzytcSb5zCJ_BjTtikNtGZe0ieDbqsy0YKaI7fGPLPBjZtkV3eZG2W4kBkuZJ-cfbywaPA8fh962u7WDyO_7E6fHHaykbUqoMq8BLsvTXwY7P_9-ICs-egr2LzOIenV5VIdGU-n5sdWgt8BuQH3BQ
  priority: 102
  providerName: Emerald
Title Pick-place of dynamic objects by robot manipulator based on deep learning and easy user interface teaching systems
URI https://www.emerald.com/insight/content/doi/10.1108/IR-05-2016-0140/full/html
https://www.proquest.com/docview/1861786063
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-Ll5EUXF9LHMQ9FLtO-lJVFwfoMiisLeSp4jSrm09-O_NZLOuinpumkMmmW_my2Q-QvZynfFIKZuphkkcpDKyZ07TLBAW2wVV1m866YSb2_zyIb0eZSNPuLW-rHLqE52jVrVEjvwoYviYzYbbyfH4NUDVKLxd9RIa82TRumBmk6_F0_Pbu-GsyCN34qfYxC6wkdDIN_dB7ZurIV4CW_zDjBq5jy-49ONx7sxBO9QZrJBlHy7CycS-q2ROV2ukuXuSz4GrpoLagJqIykMtkFNpQbxDU4u6A2xt4eS56gYQrRTUFSitx-C1Ih6BVwo0b98ByQrA3hGNwWk7X2QJk07P7Tp5GJzfn10GXjshkEnIusBGcSZMRFiwVCjDChppGyvZdI-nSkaF4ZrKopCcJrmihhunii5SKeJIcxrKZIMsVHWlNwlYFE0Y5VlsFN7-piyLc6ROC5oYwyPWI4fTlSulbyyO-hYvpUswQlZeDcswK3GpS1zqHjn4_GE86anx99B9b4pfRn6zX4_sTE1V-mPYlrNNs_X_522yFCNeO25lhyx0zZvetdFGJ_pkng0u-n5j9d1r8g9dkNIU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALArWIpQXmAKKXQBInsXNACAHLLn2oqlppb8ZPhKiSJQlC-6f4jXichG1R4dZzHB9mxp6HZ76PkGeFzWVijM9UY5pGmU78mbMsj5T37YoZf28G6oSj42J2nn1a5IsN8muchcG2yvFODBe1qTXWyF8lHIfZfLhN3yy_R8gaha-rI4VGbxYHdvXTp2zt6_l7r9_naTr9cPZuFg2sApGmMe8iH9-4mKq45JkyjpcssT6K8ImQzIxOSict02WpJaOFYU66wBeuMq3SxEoWa-r3vUW2MkpLPFF8-nHdUlIEqlWEzIt83LUYoISQaWd-ik_O3tti_o6Vlkte8K9R4LU7CD5ueo_cHYJTeNtb032yYatt0px81d-i0LsFtQPTU9hDrbCC04JaQVOrugME0ghkYHUD6BsN1BUYa5cwMFN8AVkZsLJdAZZGAJEqGofbdkNLJ_S40u0OOb8RmT4gm1Vd2YcEvM-mnMk8dQbfmjOepwUWaktGnZMJn5CXo-SEHmDMkU3jQoR0JuZifiriXKCoBYp6Qvb__LDsETz-vfTFoIprVl7R34TsjaoSw6FvxdpEH_3_81Nye3Z2dCgO58cHu-ROipFCqOrskc2u-WEf-zinU0-CcQH5fNPW_Buu-Qv1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pick-place+of+dynamic+objects+by+robot+manipulator+based+on+deep+learning+and+easy+user+interface+teaching+systems&rft.jtitle=Industrial+robot&rft.au=Hossain%2C+Delowar&rft.au=Capi%2C+Genci&rft.au=Jindai%2C+Mitsuru&rft.au=Kaneko%2C+Shin-ichiro&rft.date=2017-01-01&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0143-991X&rft.eissn=1758-5791&rft.volume=44&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1108%2FIR-05-2016-0140&rft.externalDocID=4308142881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-991X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-991X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-991X&client=summon