Pick-place of dynamic objects by robot manipulator based on deep learning and easy user interface teaching systems
Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small siz...
Saved in:
Published in | Industrial robot Vol. 44; no. 1; pp. 11 - 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bedford
Emerald Publishing Limited
01.01.2017
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0143-991X 1758-5791 |
DOI | 10.1108/IR-05-2016-0140 |
Cover
Loading…
Abstract | Purpose
Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small size robot manipulators’ presence in everyday life environments is increasing requiring non-expert operators to teach the robot; and in small size applications, the operator has to teach several different motions in a short time.
Design/methodology/approach
For object recognition, the authors propose a deep belief neural network (DBNN)-based approach. The captured camera image is used as the input of the DBNN. The DBNN extracts the object features in the intermediate layers. In addition, the authors developed three teaching systems which utilize iPhone; haptic; and Kinect devices.
Findings
The object recognition by DBNN is robust for real-time applications. The robot picks up the object required by the user and places it in the target location. Three developed teaching systems are easy to use by non-experienced subjects, and they show different performance in terms of time to complete the task and accuracy.
Practical implications
The proposed method can ease the use of robot manipulators helping non-experienced users completing different assembly tasks.
Originality/value
This work applies DBNN for object recognition and three intuitive systems for teaching robot manipulators. |
---|---|
AbstractList | Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small size robot manipulators' presence in everyday life environments is increasing requiring non-expert operators to teach the robot; and in small size applications, the operator has to teach several different motions in a short time. Design/methodology/approach For object recognition, the authors propose a deep belief neural network (DBNN)-based approach. The captured camera image is used as the input of the DBNN. The DBNN extracts the object features in the intermediate layers. In addition, the authors developed three teaching systems which utilize iPhone; haptic; and Kinect devices. Findings The object recognition by DBNN is robust for real-time applications. The robot picks up the object required by the user and places it in the target location. Three developed teaching systems are easy to use by non-experienced subjects, and they show different performance in terms of time to complete the task and accuracy. Practical implications The proposed method can ease the use of robot manipulators helping non-experienced users completing different assembly tasks. Originality/value This work applies DBNN for object recognition and three intuitive systems for teaching robot manipulators. Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot real-time object recognition is crucial. In addition, the need for simple and safe teaching techniques need to be considered, because: small size robot manipulators’ presence in everyday life environments is increasing requiring non-expert operators to teach the robot; and in small size applications, the operator has to teach several different motions in a short time. Design/methodology/approach For object recognition, the authors propose a deep belief neural network (DBNN)-based approach. The captured camera image is used as the input of the DBNN. The DBNN extracts the object features in the intermediate layers. In addition, the authors developed three teaching systems which utilize iPhone; haptic; and Kinect devices. Findings The object recognition by DBNN is robust for real-time applications. The robot picks up the object required by the user and places it in the target location. Three developed teaching systems are easy to use by non-experienced subjects, and they show different performance in terms of time to complete the task and accuracy. Practical implications The proposed method can ease the use of robot manipulators helping non-experienced users completing different assembly tasks. Originality/value This work applies DBNN for object recognition and three intuitive systems for teaching robot manipulators. |
Author | Kaneko, Shin-ichiro Hossain, Delowar Capi, Genci Jindai, Mitsuru |
Author_xml | – sequence: 1 givenname: Delowar surname: Hossain fullname: Hossain, Delowar email: delowar_cse_ru@yahoo.com – sequence: 2 givenname: Genci surname: Capi fullname: Capi, Genci email: capi@hosei.ac.jp – sequence: 3 givenname: Mitsuru surname: Jindai fullname: Jindai, Mitsuru email: jindai@eng.u-toyama.ac.jp – sequence: 4 givenname: Shin-ichiro surname: Kaneko fullname: Kaneko, Shin-ichiro email: skaneko@nc-toyama.ac.jp |
BookMark | eNp9kUFr3DAQRkVIIJu0514FPSuRVpZkH0tom4VAS2ghNzGWR622tuRK2oP_fdZsLwmhp4HhvW_gmytyHlNEQj4IfiMEb293j4wrtuVCMy4afkY2wqiWKdOJc7I5riTrOvF0Sa5K2XPOlRZ6Q_L34P6weQSHNHk6LBGm4Gjq9-hqof1Cc-pTpRPEMB9GqCnTHgoONEU6IM50RMgxxF8U4kARykIPBTMNsWL2a2xFcL9XoCyl4lTekQsPY8H3_-Y1-fnl84-7e_bw7evu7tMDc5K3lSkpPZc979qmH3zbGYGqUWYroBmc6DygcV3nwEg9GA-ea9XovnH9ViAY7uQ1-XjKnXP6e8BS7T4dcjyetKLVwrSaa3mk1IlyOZWS0VsXKtSQYs0QRiu4Xeu1u0fLlV3rtWu9R-_2lTfnMEFe_mPcnAycMMM4vCG8-KB8BoN0jUc |
CODEN | IDRBAT |
CitedBy_id | crossref_primary_10_3390_robotics9030063 crossref_primary_10_1049_ipr2_12399 crossref_primary_10_1007_s11370_019_00298_3 crossref_primary_10_1017_S0263574721000023 crossref_primary_10_1080_01691864_2018_1529620 crossref_primary_10_3390_e26050416 crossref_primary_10_1016_j_ifacol_2022_09_382 crossref_primary_10_1016_j_aei_2020_101149 crossref_primary_10_1016_j_jmsy_2023_05_008 crossref_primary_10_1109_ACCESS_2020_3027923 crossref_primary_10_1109_EMR_2022_3209891 |
Cites_doi | 10.1177/0278364914549607 10.1016/j.arcontrol.2007.01.002 10.1177/027836498600500301 10.1162/neco.2006.18.7.1527 10.1109/34.75511 10.1016/0004-3702(77)90006-6 10.1177/027836498600500302 10.1108/01439910310479612 10.1108/IR-10-2013-409 10.1287/opre.1050.0210 10.1007/978-3-319-04117-9_12 10.1080/09511920903529255 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited 2017 |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited 2017 |
DBID | AAYXX CITATION 7SC 7SP 7TB 7WY 7WZ 7XB 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO F28 FR3 F~G GNUQQ GUQSH HCIFZ JQ2 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1108/IR-05-2016-0140 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1758-5791 |
EndPage | 20 |
ExternalDocumentID | 4308142881 10_1108_IR_05_2016_0140 10.1108/IR-05-2016-0140 |
GroupedDBID | -~X .DC 0R~ 29I 3V. 4.4 490 5VS 70U 7WY 85S 8FE 8FG 8FW 8R4 8R5 9E0 AAGBP AAIKC AAMCF AAMNW AATHL AAUDR ABIJV ABJCF ABJNI ABKQV ABSDC ACGFO ACGFS ACGOD ACIWK ACZLT ADFRT ADOMW AEBZA AFKRA AFYHH AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ARAPS ASMFL AUCOK AZQEC BENPR BEZIV BGLVJ BPHCQ CCPQU CS3 DWQXO EBS ECCUG EJD F5P FNNZZ GEI GEL GNUQQ GQ. GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH H13 HCIFZ HZ~ H~9 IJT IPNFZ J1Y JI- JL0 K6V K6~ K7- KBGRL L6V M0C M0N M2O M2P M42 M7S O9- P2P P62 PQBIZ PQQKQ PRG PROAC PTHSS Q2X RIG SBBZN TN5 U5U WH7 Z5M AABYC AAYXX AFNTC AHMHQ CITATION PHGZM PHGZT PQGLB 7SC 7SP 7TB 7XB 8FD F28 FR3 JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c308t-533f03b0984bdf8971e545721a4dc19fae7c99ca736d7faf06546b4cb21ea70c3 |
IEDL.DBID | BENPR |
ISSN | 0143-991X |
IngestDate | Sat Aug 23 14:40:02 EDT 2025 Thu Jul 31 00:43:35 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Tue Feb 11 07:04:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Teaching methods Robot manipulator Object recognition Robot grasping Deep belief neural network |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-533f03b0984bdf8971e545721a4dc19fae7c99ca736d7faf06546b4cb21ea70c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1861786063 |
PQPubID | 36873 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1108_IR_05_2016_0140 proquest_journals_1861786063 crossref_citationtrail_10_1108_IR_05_2016_0140 emerald_primary_10_1108_IR-05-2016-0140 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bedford |
PublicationPlace_xml | – name: Bedford |
PublicationTitle | Industrial robot |
PublicationYear | 2017 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2020121021324837400_ref017) 2014; 8326 (key2020121021324837400_ref016) 2004; 5 (key2020121021324837400_ref002) 2005; 53 (key2020121021324837400_ref011) 2006; 18 (key2020121021324837400_ref018) 2015; 34 (key2020121021324837400_ref013) 2010; 23 (key2020121021324837400_ref022) 2009 (key2020121021324837400_ref024) 1977; 8 (key2020121021324837400_ref021) 2014; 41 (key2020121021324837400_ref030) 2006 (key2020121021324837400_ref019) 2016 (key2020121021324837400_ref026) 2012 (key2020121021324837400_ref031) 2014 (key2020121021324837400_ref007) 1992; 55 (key2020121021324837400_ref015) 1991; 13 (key2020121021324837400_ref023) 2009; 22 (key2020121021324837400_ref034) 2013 (key2020121021324837400_ref014) 2015 (key2020121021324837400_ref029) 2010 (key2020121021324837400_ref005) 2003; 1 (key2020121021324837400_ref012) 2012; 29 (key2020121021324837400_ref004) 2007; 31 (key2020121021324837400_ref008) 2007; 5 (key2020121021324837400_ref003) 1986; 5 (key2020121021324837400_ref027) 2015 (key2020121021324837400_ref028) 2015 (key2020121021324837400_ref032) 2016 (key2020121021324837400_ref010) 2012 (key2020121021324837400_ref020) 2014 (key2020121021324837400_ref033) 2002; 14 (key2020121021324837400_ref001) 1997 (key2020121021324837400_ref025) 2012 (key2020121021324837400_ref035) 2015 (key2020121021324837400_ref006) 2003; 30 (key2020121021324837400_ref009) 1986; 5 |
References_xml | – volume: 34 start-page: 705 issue: 4-5 year: 2015 ident: key2020121021324837400_ref018 article-title: Deep learning for detecting robotic grasps publication-title: International Journal of Robotics Research doi: 10.1177/0278364914549607 – volume: 31 start-page: 69 issue: 1 year: 2007 ident: key2020121021324837400_ref004 article-title: Present and future robot control development: an industrial perspective publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2007.01.002 – year: 2016 ident: key2020121021324837400_ref019 article-title: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection – volume: 5 start-page: 105 issue: 1 year: 2004 ident: key2020121021324837400_ref016 article-title: Part-level object recognition using superquadrics publication-title: Computer Vision and Image Understanding – start-page: 370 year: 2010 ident: key2020121021324837400_ref029 article-title: Sharpening haptic inputs for teaching a manipulation skill to a robot – start-page: 1 year: 2016 ident: key2020121021324837400_ref032 article-title: Robotic grasping recognition using multi-modal deep extreme learning machine publication-title: Multidimensional Systems and Signal Processing – volume: 5 start-page: 283 issue: 3 year: 2007 ident: key2020121021324837400_ref008 article-title: Two-wheeled welding mobile robot for tracking a smooth curved welding path using adaptive sliding-mode control technique publication-title: International Journal of Control, Automation, and Systems – start-page: 1526 year: 2014 ident: key2020121021324837400_ref031 article-title: A novel inference of a restricted Boltzmann machine – year: 2015 ident: key2020121021324837400_ref035 article-title: Towards vision-based deep reinforcement learning for robotic motion control – volume: 5 start-page: 3 issue: 3 year: 1986 ident: key2020121021324837400_ref003 article-title: 3DPO: a three-dimensional part orientation system publication-title: International Journal of Robotics Research doi: 10.1177/027836498600500301 – volume: 1 start-page: 395 issue: 3 year: 2003 ident: key2020121021324837400_ref005 article-title: Quantitative evaluation of an intuitive teaching method for industrial robot using a force/moment direction sensor publication-title: International Journal of Control, Automation, and Systems – volume: 14 issue: 5 year: 2002 ident: key2020121021324837400_ref033 article-title: Two-dimensional irregular parts packing with genetic algorithm publication-title: Journal of Computer Aided Design & Computer Graphics – start-page: 1175 year: 2013 ident: key2020121021324837400_ref034 article-title: A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: key2020121021324837400_ref011 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – volume: 22 start-page: 1339 year: 2009 ident: key2020121021324837400_ref023 article-title: 3D Object recognition with deep belief nets publication-title: Advances in Neural Information Processing Systems – volume: 29 start-page: 82 issue: 9 year: 2012 ident: key2020121021324837400_ref012 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Processing Magazine – start-page: 409 year: 2012 ident: key2020121021324837400_ref026 article-title: Teachless teach-repeat: toward vision-based programming of industrial robots – volume: 13 start-page: 224 issue: 3 year: 1991 ident: key2020121021324837400_ref015 article-title: 3-D object recognition using bipartite matching embedded in discrete relaxation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.75511 – start-page: 1 year: 2009 ident: key2020121021324837400_ref022 article-title: Deep belief networks for phone recognition – start-page: 1875 year: 1997 ident: key2020121021324837400_ref001 article-title: Teachingless spray-painting of sculptured surface by an industrial robot – year: 2015 ident: key2020121021324837400_ref014 article-title: A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet V2.0) – start-page: 401 year: 2014 ident: key2020121021324837400_ref020 article-title: A 3D object recognition and pose estimation system using deep learning method – volume: 8 start-page: 77 issue: 1 year: 1977 ident: key2020121021324837400_ref024 article-title: Description and recognition of curved objects publication-title: Artificial Intelligence doi: 10.1016/0004-3702(77)90006-6 – volume: 5 start-page: 27 issue: 3 year: 1986 ident: key2020121021324837400_ref009 article-title: The representation, recognition, and locating of 3-D publication-title: International Journal of Robotics Research doi: 10.1177/027836498600500302 – start-page: 1 year: 2012 ident: key2020121021324837400_ref025 article-title: Shape-primitive based object recognition and grasping – volume: 30 start-page: 345 issue: 4 year: 2003 ident: key2020121021324837400_ref006 article-title: Robotic manipulation of food products – a review publication-title: Industrial Robot: An International Journal doi: 10.1108/01439910310479612 – year: 2012 ident: key2020121021324837400_ref010 article-title: Semantic place recognition based on deep belief networks and tiny images – year: 2006 ident: key2020121021324837400_ref030 article-title: Teaching by demonstration of robotic manipulators in non-stationary environments – volume: 41 start-page: 124 issue: 2 year: 2014 ident: key2020121021324837400_ref021 article-title: Adaptive arm motion generation of humanoid robot operating in dynamic environments publication-title: Industrial Robot: An International Journal doi: 10.1108/IR-10-2013-409 – start-page: 1316 year: 2015 ident: key2020121021324837400_ref028 article-title: Real-time grasp detection using convolutional neural networks – year: 2015 ident: key2020121021324837400_ref027 article-title: Supersizing Self-supervision: learning to grasp from 50K Tries and 700 Robot Hours – volume: 53 start-page: 735 issue: 4 year: 2005 ident: key2020121021324837400_ref002 article-title: Erratum to ‘the three-dimensional bin packing problem’: robot-packable and orthogonal variants of packing problems publication-title: Operations Research doi: 10.1287/opre.1050.0210 – volume: 8326 start-page: 128 year: 2014 ident: key2020121021324837400_ref017 article-title: 3D Object classification using deep belief networks publication-title: Multi Media Modeling doi: 10.1007/978-3-319-04117-9_12 – volume: 23 start-page: 283 issue: 3 year: 2010 ident: key2020121021324837400_ref013 article-title: Metrology-assisted robotic processing of aerospace applications publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/09511920903529255 – volume: 55 start-page: 130 issue: 2 year: 1992 ident: key2020121021324837400_ref007 article-title: From volumes to views: an approach to 3-D object recognition publication-title: Computer Vision, Graphics, and Image Processing: Image Understanding |
SSID | ssj0005616 |
Score | 2.2001343 |
Snippet | Purpose
Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot... Purpose Development of autonomous robot manipulator for human-robot assembly tasks is a key component to reach high effectiveness. In such tasks, the robot... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Cameras Deep learning Experiments Haptics Methods Neural networks Robots Sensors Teaching User interface |
SummonAdditionalLinks | – databaseName: Emerald Journals dbid: GEI link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60Jy8-ULG-mIOgl7R5b3IUsVShIqLQW9inSmtSkvSgv96dTaIo6slzNkuyOzuvnfk-Qk5iFTFPShOpuoHvhMIzZ07RyOHGtnMqjd601AmTm3j8EF5Po-kKmXS9MLassknHWD39nFcYpA6xcNto4Q_AAWSvubrDa1xjwTAmDt0hJqyHT_XLfNUIekS7zt-u3iO2PKiIZ-cYp2ja4vz8MNEXE_WtT_dTV1sDNNogeffpTd3JbLCs-UC8fUN1_Ld_2yTrrasK541sbZEVlW-T8vZZzBxbyQWFBtkQ2kPBMZ9TAX-FsuBFDQirYanBihLQUkoocpBKLaDlqXgElktQrHoFTJQA4laUGqet2wJPaFCmqx3yMLq8vxg7LW-DIwI3qR3jQWo34G6ahFzqJKWeMn6aCTVZKIWXaqaoSFPBaBBLqpm2jOw8FNz3FKOuCHZJLy9ytUfAWPAgoSzytcSb5zCJ_BjTtikNtGZe0ieDbqsy0YKaI7fGPLPBjZtkV3eZG2W4kBkuZJ-cfbywaPA8fh962u7WDyO_7E6fHHaykbUqoMq8BLsvTXwY7P_9-ICs-egr2LzOIenV5VIdGU-n5sdWgt8BuQH3BQ priority: 102 providerName: Emerald |
Title | Pick-place of dynamic objects by robot manipulator based on deep learning and easy user interface teaching systems |
URI | https://www.emerald.com/insight/content/doi/10.1108/IR-05-2016-0140/full/html https://www.proquest.com/docview/1861786063 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-Ll5EUXF9LHMQ9FLtO-lJVFwfoMiisLeSp4jSrm09-O_NZLOuinpumkMmmW_my2Q-QvZynfFIKZuphkkcpDKyZ07TLBAW2wVV1m866YSb2_zyIb0eZSNPuLW-rHLqE52jVrVEjvwoYviYzYbbyfH4NUDVKLxd9RIa82TRumBmk6_F0_Pbu-GsyCN34qfYxC6wkdDIN_dB7ZurIV4CW_zDjBq5jy-49ONx7sxBO9QZrJBlHy7CycS-q2ROV2ukuXuSz4GrpoLagJqIykMtkFNpQbxDU4u6A2xt4eS56gYQrRTUFSitx-C1Ih6BVwo0b98ByQrA3hGNwWk7X2QJk07P7Tp5GJzfn10GXjshkEnIusBGcSZMRFiwVCjDChppGyvZdI-nSkaF4ZrKopCcJrmihhunii5SKeJIcxrKZIMsVHWlNwlYFE0Y5VlsFN7-piyLc6ROC5oYwyPWI4fTlSulbyyO-hYvpUswQlZeDcswK3GpS1zqHjn4_GE86anx99B9b4pfRn6zX4_sTE1V-mPYlrNNs_X_522yFCNeO25lhyx0zZvetdFGJ_pkng0u-n5j9d1r8g9dkNIU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALArWIpQXmAKKXQBInsXNACAHLLn2oqlppb8ZPhKiSJQlC-6f4jXichG1R4dZzHB9mxp6HZ76PkGeFzWVijM9UY5pGmU78mbMsj5T37YoZf28G6oSj42J2nn1a5IsN8muchcG2yvFODBe1qTXWyF8lHIfZfLhN3yy_R8gaha-rI4VGbxYHdvXTp2zt6_l7r9_naTr9cPZuFg2sApGmMe8iH9-4mKq45JkyjpcssT6K8ImQzIxOSict02WpJaOFYU66wBeuMq3SxEoWa-r3vUW2MkpLPFF8-nHdUlIEqlWEzIt83LUYoISQaWd-ik_O3tti_o6Vlkte8K9R4LU7CD5ueo_cHYJTeNtb032yYatt0px81d-i0LsFtQPTU9hDrbCC04JaQVOrugME0ghkYHUD6BsN1BUYa5cwMFN8AVkZsLJdAZZGAJEqGofbdkNLJ_S40u0OOb8RmT4gm1Vd2YcEvM-mnMk8dQbfmjOepwUWaktGnZMJn5CXo-SEHmDMkU3jQoR0JuZifiriXKCoBYp6Qvb__LDsETz-vfTFoIprVl7R34TsjaoSw6FvxdpEH_3_81Nye3Z2dCgO58cHu-ROipFCqOrskc2u-WEf-zinU0-CcQH5fNPW_Buu-Qv1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pick-place+of+dynamic+objects+by+robot+manipulator+based+on+deep+learning+and+easy+user+interface+teaching+systems&rft.jtitle=Industrial+robot&rft.au=Hossain%2C+Delowar&rft.au=Capi%2C+Genci&rft.au=Jindai%2C+Mitsuru&rft.au=Kaneko%2C+Shin-ichiro&rft.date=2017-01-01&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0143-991X&rft.eissn=1758-5791&rft.volume=44&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1108%2FIR-05-2016-0140&rft.externalDocID=4308142881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-991X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-991X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-991X&client=summon |