Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences
Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions might create either positive or negative VTDs. However, no research has clearly revealed the effect of different directions of VTDs on human com...
Saved in:
Published in | Journal of thermal biology Vol. 108; p. 103276 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions might create either positive or negative VTDs. However, no research has clearly revealed the effect of different directions of VTDs on human comfort. To create environments with positive and negative VTDs in this study, the air temperature of half of the body was maintained at an air temperature of 25 °C, whereas the other half of the body (the upper or lower body part, respectively) was exposed to air temperatures of 22 °C, 25 °C, 28 °C, and 31 °C, respectively. That is two series of experiments with the same VTD value but different directions were compared, based on 16 subjects seated in a climatic box in a climate chamber. The thermal sensations, sick building syndrome (SBS) symptoms, and physiological responses of occupants were studied. The results showed that subjects were more sensitive to the VTD at the upper body part in warm environments with respect to thermal sensations, perceived air quality, and sweat intensity. The analysis indicated that there were more discomfort and heat stress for positive VTDs than negative VTDs. Thus, the criterion for acceptable negative VTDs should be different with the positive VTDs incorporated in current standards. Overall, the directions of the VTDs were suggested to be considered for evaluating the thermally stratified air distributions based on both of thermal comfort and energy efficiency in buildings.
•The effects of VTDs directions on human responses were investigated using a climatic box.•Subjects were more sensitive to VTDs at upper body in warm environments.•More discomfort and heat stress were found for positive VTDs than negative VTDs.•The standards for acceptable negative VTDs should be different with the positive VTDs.•The directions of VTDs were suggested to be considered for evaluating thermal comfort. |
---|---|
AbstractList | Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions might create either positive or negative VTDs. However, no research has clearly revealed the effect of different directions of VTDs on human comfort. To create environments with positive and negative VTDs in this study, the air temperature of half of the body was maintained at an air temperature of 25 °C, whereas the other half of the body (the upper or lower body part, respectively) was exposed to air temperatures of 22 °C, 25 °C, 28 °C, and 31 °C, respectively. That is two series of experiments with the same VTD value but different directions were compared, based on 16 subjects seated in a climatic box in a climate chamber. The thermal sensations, sick building syndrome (SBS) symptoms, and physiological responses of occupants were studied. The results showed that subjects were more sensitive to the VTD at the upper body part in warm environments with respect to thermal sensations, perceived air quality, and sweat intensity. The analysis indicated that there were more discomfort and heat stress for positive VTDs than negative VTDs. Thus, the criterion for acceptable negative VTDs should be different with the positive VTDs incorporated in current standards. Overall, the directions of the VTDs were suggested to be considered for evaluating the thermally stratified air distributions based on both of thermal comfort and energy efficiency in buildings.Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions might create either positive or negative VTDs. However, no research has clearly revealed the effect of different directions of VTDs on human comfort. To create environments with positive and negative VTDs in this study, the air temperature of half of the body was maintained at an air temperature of 25 °C, whereas the other half of the body (the upper or lower body part, respectively) was exposed to air temperatures of 22 °C, 25 °C, 28 °C, and 31 °C, respectively. That is two series of experiments with the same VTD value but different directions were compared, based on 16 subjects seated in a climatic box in a climate chamber. The thermal sensations, sick building syndrome (SBS) symptoms, and physiological responses of occupants were studied. The results showed that subjects were more sensitive to the VTD at the upper body part in warm environments with respect to thermal sensations, perceived air quality, and sweat intensity. The analysis indicated that there were more discomfort and heat stress for positive VTDs than negative VTDs. Thus, the criterion for acceptable negative VTDs should be different with the positive VTDs incorporated in current standards. Overall, the directions of the VTDs were suggested to be considered for evaluating the thermally stratified air distributions based on both of thermal comfort and energy efficiency in buildings. Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions might create either positive or negative VTDs. However, no research has clearly revealed the effect of different directions of VTDs on human comfort. To create environments with positive and negative VTDs in this study, the air temperature of half of the body was maintained at an air temperature of 25 °C, whereas the other half of the body (the upper or lower body part, respectively) was exposed to air temperatures of 22 °C, 25 °C, 28 °C, and 31 °C, respectively. That is two series of experiments with the same VTD value but different directions were compared, based on 16 subjects seated in a climatic box in a climate chamber. The thermal sensations, sick building syndrome (SBS) symptoms, and physiological responses of occupants were studied. The results showed that subjects were more sensitive to the VTD at the upper body part in warm environments with respect to thermal sensations, perceived air quality, and sweat intensity. The analysis indicated that there were more discomfort and heat stress for positive VTDs than negative VTDs. Thus, the criterion for acceptable negative VTDs should be different with the positive VTDs incorporated in current standards. Overall, the directions of the VTDs were suggested to be considered for evaluating the thermally stratified air distributions based on both of thermal comfort and energy efficiency in buildings. •The effects of VTDs directions on human responses were investigated using a climatic box.•Subjects were more sensitive to VTDs at upper body in warm environments.•More discomfort and heat stress were found for positive VTDs than negative VTDs.•The standards for acceptable negative VTDs should be different with the positive VTDs.•The directions of VTDs were suggested to be considered for evaluating thermal comfort. Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions might create either positive or negative VTDs. However, no research has clearly revealed the effect of different directions of VTDs on human comfort. To create environments with positive and negative VTDs in this study, the air temperature of half of the body was maintained at an air temperature of 25 °C, whereas the other half of the body (the upper or lower body part, respectively) was exposed to air temperatures of 22 °C, 25 °C, 28 °C, and 31 °C, respectively. That is two series of experiments with the same VTD value but different directions were compared, based on 16 subjects seated in a climatic box in a climate chamber. The thermal sensations, sick building syndrome (SBS) symptoms, and physiological responses of occupants were studied. The results showed that subjects were more sensitive to the VTD at the upper body part in warm environments with respect to thermal sensations, perceived air quality, and sweat intensity. The analysis indicated that there were more discomfort and heat stress for positive VTDs than negative VTDs. Thus, the criterion for acceptable negative VTDs should be different with the positive VTDs incorporated in current standards. Overall, the directions of the VTDs were suggested to be considered for evaluating the thermally stratified air distributions based on both of thermal comfort and energy efficiency in buildings. |
ArticleNumber | 103276 |
Author | Zhang, Sheng Cheng, Yong Wu, Yuxin Liu, Hong Liao, Chunhui |
Author_xml | – sequence: 1 givenname: Yuxin orcidid: 0000-0002-7293-0325 surname: Wu fullname: Wu, Yuxin organization: School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China – sequence: 2 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 3 givenname: Hong surname: Liu fullname: Liu, Hong organization: International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China – sequence: 4 givenname: Yong surname: Cheng fullname: Cheng, Yong email: yongcheng6@cqu.edu.cn organization: International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China – sequence: 5 givenname: Chunhui surname: Liao fullname: Liao, Chunhui organization: Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, 401331, China |
BookMark | eNqNkc1u1DAUhS1UJKaFV0BesmgG20mcRGIBqviTKrEpa8txrjt3SOzg60w1L8LzkunAhk1Z3R-d70r3nEt2EWIAxl5LsZVC6rf77T7vIPUYt0ootS5L1ehnbCPbpitE16kLthGl0EVV6_oFuyTaCyHrshYb9utuRSc7coJANmMM15zQ_eD9guOA4Z7TMQwpTrA205zjRNfchoHPuyNhHOM9upVOQHMMBMSj59G5ZbYhE8fAIRwwxTDBaX7AvOMHSPkRsph4hmmGZPOSgA_oPSQIDugle-7tSPDqT71i3z99vLv5Utx--_z15sNt4UrR5qIaqqrVSsmql1Xn675vhHJ-_V91UkGpQHe1BwDbirKRwiutGlvV3nvZ6HIor9ib8905xZ8LUDYTkoNxtAHiQkY1slWV0o38D6lo2qatSr1K352lLkWiBN44zI_m5mRxNFKYU3Jmb_4mZ07JmXNyK67_weeEk03Hp8H3ZxBWyw4IyZDDk58DJnDZDBGfOvEbdqu9Kw |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_121259 crossref_primary_10_1016_j_rser_2023_114164 crossref_primary_10_1007_s00484_023_02590_5 crossref_primary_10_1016_j_enbenv_2023_05_003 crossref_primary_10_1016_j_enbenv_2023_11_004 crossref_primary_10_1016_j_jtherbio_2024_103828 crossref_primary_10_1016_j_buildenv_2023_110614 crossref_primary_10_1016_j_jtherbio_2022_103389 crossref_primary_10_1016_j_buildenv_2024_111820 crossref_primary_10_1016_j_buildenv_2023_111034 crossref_primary_10_1016_j_buildenv_2022_109934 crossref_primary_10_1016_j_enbuild_2024_114031 crossref_primary_10_1177_1420326X241232116 |
Cites_doi | 10.1016/j.enbuild.2019.109359 10.1016/j.buildenv.2019.02.039 10.1618/jhes.14.9 10.1016/j.scitotenv.2016.04.033 10.1016/j.enbuild.2017.01.066 10.1016/j.buildenv.2011.06.017 10.1016/j.energy.2017.03.074 10.1111/j.1600-0668.2007.00516.x 10.1111/j.1600-0668.2011.00714.x 10.1016/j.enbuild.2014.11.063 10.1016/j.buildenv.2015.03.013 10.1002/0471249688.ch10 10.1016/j.buildenv.2015.11.009 10.1111/ina.12012 10.1360/TB-2020-1378 10.4103/aca.ACA_94_19 10.1016/j.enbuild.2020.110390 10.1016/j.buildenv.2020.106936 10.1111/ina.12233 10.1111/ina.12046 10.1016/j.buildenv.2015.11.036 10.1007/s004840050056 10.1111/ina.12525 10.1016/j.buildenv.2010.11.003 10.1080/09613218.2015.993536 10.3758/BRM.41.4.1149 10.1016/j.buildenv.2020.107412 10.1016/j.buildenv.2017.11.028 10.1016/j.buildenv.2006.07.014 10.1016/j.buildenv.2018.04.017 10.1016/j.buildenv.2017.09.005 10.1016/j.buildenv.2009.03.007 10.1016/S0378-7788(97)00018-2 10.1111/j.1600-0668.1998.t01-2-00003.x 10.1080/00140138608968246 10.1016/j.applthermaleng.2014.11.004 10.1111/j.1600-0668.2004.00276.x 10.1007/s00421-009-1158-7 10.1111/ina.12364 10.1016/j.jtherbio.2019.102448 10.1016/j.buildenv.2005.09.008 10.1016/j.scs.2018.10.022 10.1016/j.jtherbio.2021.103158 10.1016/j.buildenv.2021.108445 10.1016/j.buildenv.2018.03.015 10.1016/j.apenergy.2017.07.064 10.1016/j.apergo.2017.01.014 10.1016/j.enbuild.2019.109450 10.1016/j.energy.2019.05.204 10.1111/ina.12491 10.1016/j.applthermaleng.2016.08.050 10.1016/j.buildenv.2019.106489 10.1016/j.enbuild.2018.06.065 10.1016/j.icheatmasstransfer.2019.05.006 10.1016/j.buildenv.2005.09.003 10.1111/ina.12512 10.1016/j.buildenv.2021.108641 10.1016/j.scitotenv.2016.05.172 10.3758/BF03193146 10.1016/j.buildenv.2009.11.002 10.1016/j.jtherbio.2019.05.027 10.1016/j.buildenv.2010.08.011 10.1016/0160-4120(92)90209-M 10.1016/j.jtherbio.2019.01.002 10.1016/j.jobe.2020.101281 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jtherbio.2022.103276 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0992 |
ExternalDocumentID | 10_1016_j_jtherbio_2022_103276 S0306456522000912 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KCYFY KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSA SSJ SSU SSZ T5K UHS UNMZH VH1 WUQ YQT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c308t-4d44862214b149f5bb702cf3272912e32e695feeea803710f2627a45fff1763d3 |
IEDL.DBID | .~1 |
ISSN | 0306-4565 |
IngestDate | Thu Jul 10 23:14:40 EDT 2025 Fri Jul 11 08:12:10 EDT 2025 Tue Jul 01 01:02:00 EDT 2025 Thu Apr 24 23:09:29 EDT 2025 Fri Feb 23 02:38:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal direction Vertical air temperature difference Physiological response Thermal sensation Skin temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-4d44862214b149f5bb702cf3272912e32e695feeea803710f2627a45fff1763d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7293-0325 |
PQID | 2707878436 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718242671 proquest_miscellaneous_2707878436 crossref_citationtrail_10_1016_j_jtherbio_2022_103276 crossref_primary_10_1016_j_jtherbio_2022_103276 elsevier_sciencedirect_doi_10_1016_j_jtherbio_2022_103276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of thermal biology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Olesen, Schøler, Fanger (bib59) 1979 Wu, Liu, Li, Kosonen, Wei, Jokisalo, Cheng (bib77) 2021; vol. 14 Schiavon, Rim, Pasut, Nazaroff (bib64) 2016; 96 WMA (bib70) 2013 Liu, Lian, Deng, Liu (bib47) 2011; 46 Fanger (bib27) 1970 (bib36) 2007 Toftum, Jorgensen, Fanger (bib67) 1998; 28 Yang, Melikov, Kabanshi, Zhang, Bauman, Cao, Awbi, Wigö, Niu, Cheong (bib84) 2019 Yu, Li, Jia, Zhang, Wang (bib87) 2015; 88 Hashiguchi, Kumamoto, Chishaki, Tochihara (bib34) 2011; 14 Lu, Deng, Li, Sundell, Norbäck (bib52) 2016; 560–561 Möhlenkamp, Schmidt, Wesseling, Wick, Gores, Müller (bib57) 2019; 29 Son, Chun (bib65) 2018; 28 Zhu, Ouyang, Cao, Zhou, Yu (bib96) 2016; 26 Lan, Wargocki, Wyon, Lian (bib43) 2011; 21 Lu (bib51) 2020 Wu, Mäki, Jokisalo, Kosonen, Kilpeläinen, Salo, Liu, Li (bib79) 2021; 33 Zhang, Zhao (bib90) 2007; 42 Zhang, Zhu (bib91) 2022; 103 Fang, Clausen, Fanger (bib23) 1998; 8 Palonen, Ilmarinen, Seppänen, Wenzel (bib61) 1992 Mishra, Singh, Pandey, Mishra, Pandey (bib56) 2019; 22 Fang, Feng, Liu, Lin, Mak, Niu, Tse, Xu (bib26) 2019; 44 Agresti (bib1) 2002 Wu, Liu, Chen, Li, Chen (bib75) 2020 Fang, Lin, Mak, Niu, Tse (bib25) 2018; 128 Ahn, Rim, Lo (bib2) 2017; 11 Udayraj, Ke, Wang, Yang (bib68) 2018; 174 Fang, Wyon, Clausen, Fanger (bib24) 2004; 14 Wu, Liu, Li, Jokisalo, Kosonen, Cheng, Zhao, Yuan (bib76) 2020; 229 Khiavi, Maerefat, Zolfaghari (bib40) 2019; 83 Zhang, Arens, Zhai (bib92) 2015; 91 Yang, Weng, Wang, Song (bib83) 2017; 61 de Dear, Akimoto, Arens, Brager, Candido, Cheong, Li, Nishihara, Sekhar, Tanabe, Toftum, Zhang, Zhu (bib17) 2013; 23 Gilani, Khan, Ali (bib30) 2016; 109 Hashiguchi, Feng, Tochihara (bib33) 2010; 109 Zhang, Zhou, Zheng, Oladokun, Fang (bib95) 2020; 168 Lin, Chow, Tsang, Fong, Chan (bib46) 2009; 44 Li, Du, Liu, Yu, Zheng, Tan, Jin, Li, Wu, Chen, Yao (bib45) 2019; 29 Wyon, Sandberg (bib81) 1996; 6 Brager, Zhang, Arens (bib8) 2015; 43 Tanaka, Yamazaki, Ohnaka, Tochihara, Yoshida (bib66) 1986; 29 Enomoto, Kumamoto, Tochihara (bib20) 2009 Deng, Wang, Li, Miao, Zhao (bib18) 2017; 578 Yasmeen, Liu, Wu, Li (bib85) 2020 (bib4) 2013 Faul, Erdfelder, Buchner, Lang (bib29) 2009; 41 (bib5) 2020 Wu, Liu, Li, Kosonen, Kong, Zhou, Yao (bib72) 2019; 203 Kong, Liu, Wu, Li, Wei, Yuan (bib41) 2019; 155 Nielsen, Jacobsen, Hansen, Mathiesen, Topp (bib58) 2002; 108 Faul, Erdfelder, Lang, Buchner (bib28) 2007; 39 Melikov, Skwarczynski, Kaczmarczyk, Zabecky (bib55) 2013; 23 Zhang, Lin (bib89) 2021; 187 (bib21) 1991 Zhang, Cheng, Fang, Huan, Lin (bib93) 2017; 204 Kang, Wang, Udayraj (bib39) 2019; 107 Park, Hellwig, Grun, Holm (bib62) 2011; 46 Yu, Cheong, Tham, Sekhar, Kosonen (bib86) 2007; 42 Choi, Miki, Sagawa, Shiraki (bib14) 1997; 41 Liu, Wu, Li, Cheng, Yao (bib48) 2017; 140 Cheng, Wu, Gao, Liao, Cheng (bib12) 2022; 207 Cheong, Yu, Sekhar, Tham, Kosonen (bib13) 2007; 42 Marn, Chung, Iljaž (bib53) 2019; 80 Eriksson, Domier (bib22) 1975 Hagino, Hara (bib32) 1992 Liu, Schiavon, Kabanshi, Nazaroff (bib49) 2017; 27 Wu, Li, Wargocki, Peng, Li, Cui (bib74) 2019; 182 Lan, Lian (bib42) 2010; 45 van Hoof (bib69) 2008; 18 Wu, Mustakallio, Kosonen, Kaukola, Chen, Liu, Li (bib80) 2022; 209 Wu, Liu, Li, Lu, Chen, Kosonen (bib78) 2021; 66 Cui, Li, Wang, Peng, Li, Wu (bib16) 2017; 127 Chen, Raphael, Sekhar (bib11) 2016; 96 Gunnarsen, Fanger (bib31) 1992; 18 Liu, Yang, Shen, Yang (bib50) 2018; 135 Wu, Liu, Li, Cheng, Tan, Fang (bib71) 2017; 125 Da (bib6) 1980 Deng, Zhao, Liu, Li (bib19) 2018; 137 Melikov, Kaczmarczyk (bib54) 2012; 47 (bib37) 2019 (bib35) 2005 Palonen, Ilmarinen, Seppänen, Wenzel (bib60) 1991 Wu, Yuan, Li, Cheng, Liu (bib73) 2019; 86 Zhang (bib88) 2003 Cohen (bib15) 1988 Yang, Li, Liu, Tan, Yao (bib82) 2015; 76 Schiavon, Rim, Pasut, Nazaroff (bib63) 2016; 96 Bohgaki, Imagawa, Itoh, Ohnmori, Yamada (bib7) 1990; 55 Jin (bib38) 2012 Park (10.1016/j.jtherbio.2022.103276_bib62) 2011; 46 Hagino (10.1016/j.jtherbio.2022.103276_bib32) 1992 Yang (10.1016/j.jtherbio.2022.103276_bib82) 2015; 76 Schiavon (10.1016/j.jtherbio.2022.103276_bib63) 2016; 96 Nielsen (10.1016/j.jtherbio.2022.103276_bib58) 2002; 108 Zhang (10.1016/j.jtherbio.2022.103276_bib92) 2015; 91 Lu (10.1016/j.jtherbio.2022.103276_bib52) 2016; 560–561 Son (10.1016/j.jtherbio.2022.103276_bib65) 2018; 28 WMA (10.1016/j.jtherbio.2022.103276_bib70) 2013 Faul (10.1016/j.jtherbio.2022.103276_bib29) 2009; 41 Gilani (10.1016/j.jtherbio.2022.103276_bib30) 2016; 109 (10.1016/j.jtherbio.2022.103276_bib35) 2005 Wu (10.1016/j.jtherbio.2022.103276_bib75) 2020 Cheong (10.1016/j.jtherbio.2022.103276_bib13) 2007; 42 (10.1016/j.jtherbio.2022.103276_bib37) 2019 Zhang (10.1016/j.jtherbio.2022.103276_bib95) 2020; 168 Liu (10.1016/j.jtherbio.2022.103276_bib47) 2011; 46 Brager (10.1016/j.jtherbio.2022.103276_bib8) 2015; 43 Wu (10.1016/j.jtherbio.2022.103276_bib80) 2022; 209 Yang (10.1016/j.jtherbio.2022.103276_bib83) 2017; 61 Zhang (10.1016/j.jtherbio.2022.103276_bib91) 2022; 103 Lan (10.1016/j.jtherbio.2022.103276_bib42) 2010; 45 Choi (10.1016/j.jtherbio.2022.103276_bib14) 1997; 41 Deng (10.1016/j.jtherbio.2022.103276_bib19) 2018; 137 Hashiguchi (10.1016/j.jtherbio.2022.103276_bib34) 2011; 14 Wu (10.1016/j.jtherbio.2022.103276_bib78) 2021; 66 Lin (10.1016/j.jtherbio.2022.103276_bib46) 2009; 44 Wu (10.1016/j.jtherbio.2022.103276_bib76) 2020; 229 Khiavi (10.1016/j.jtherbio.2022.103276_bib40) 2019; 83 Fang (10.1016/j.jtherbio.2022.103276_bib24) 2004; 14 Wyon (10.1016/j.jtherbio.2022.103276_bib81) 1996; 6 Wu (10.1016/j.jtherbio.2022.103276_bib74) 2019; 182 Zhu (10.1016/j.jtherbio.2022.103276_bib96) 2016; 26 Melikov (10.1016/j.jtherbio.2022.103276_bib54) 2012; 47 Agresti (10.1016/j.jtherbio.2022.103276_bib1) 2002 Marn (10.1016/j.jtherbio.2022.103276_bib53) 2019; 80 Tanaka (10.1016/j.jtherbio.2022.103276_bib66) 1986; 29 Lan (10.1016/j.jtherbio.2022.103276_bib43) 2011; 21 Liu (10.1016/j.jtherbio.2022.103276_bib48) 2017; 140 Yang (10.1016/j.jtherbio.2022.103276_bib84) 2019 Wu (10.1016/j.jtherbio.2022.103276_bib71) 2017; 125 Jin (10.1016/j.jtherbio.2022.103276_bib38) 2012 Li (10.1016/j.jtherbio.2022.103276_bib45) 2019; 29 Melikov (10.1016/j.jtherbio.2022.103276_bib55) 2013; 23 Wu (10.1016/j.jtherbio.2022.103276_bib72) 2019; 203 Bohgaki (10.1016/j.jtherbio.2022.103276_bib7) 1990; 55 Kong (10.1016/j.jtherbio.2022.103276_bib41) 2019; 155 (10.1016/j.jtherbio.2022.103276_bib4) 2013 Ahn (10.1016/j.jtherbio.2022.103276_bib2) 2017; 11 Zhang (10.1016/j.jtherbio.2022.103276_bib93) 2017; 204 Eriksson (10.1016/j.jtherbio.2022.103276_bib22) 1975 Kang (10.1016/j.jtherbio.2022.103276_bib39) 2019; 107 Liu (10.1016/j.jtherbio.2022.103276_bib49) 2017; 27 Liu (10.1016/j.jtherbio.2022.103276_bib50) 2018; 135 Wu (10.1016/j.jtherbio.2022.103276_bib77) 2021; vol. 14 Cheng (10.1016/j.jtherbio.2022.103276_bib12) 2022; 207 Hashiguchi (10.1016/j.jtherbio.2022.103276_bib33) 2010; 109 Chen (10.1016/j.jtherbio.2022.103276_bib11) 2016; 96 Zhang (10.1016/j.jtherbio.2022.103276_bib90) 2007; 42 Mishra (10.1016/j.jtherbio.2022.103276_bib56) 2019; 22 Fang (10.1016/j.jtherbio.2022.103276_bib26) 2019; 44 Deng (10.1016/j.jtherbio.2022.103276_bib18) 2017; 578 Enomoto (10.1016/j.jtherbio.2022.103276_bib20) 2009 Wu (10.1016/j.jtherbio.2022.103276_bib79) 2021; 33 (10.1016/j.jtherbio.2022.103276_bib5) 2020 Toftum (10.1016/j.jtherbio.2022.103276_bib67) 1998; 28 Fanger (10.1016/j.jtherbio.2022.103276_bib27) 1970 Yu (10.1016/j.jtherbio.2022.103276_bib86) 2007; 42 Zhang (10.1016/j.jtherbio.2022.103276_bib88) 2003 Palonen (10.1016/j.jtherbio.2022.103276_bib61) 1992 Da (10.1016/j.jtherbio.2022.103276_bib6) 1980 Lu (10.1016/j.jtherbio.2022.103276_bib51) 2020 van Hoof (10.1016/j.jtherbio.2022.103276_bib69) 2008; 18 Möhlenkamp (10.1016/j.jtherbio.2022.103276_bib57) 2019; 29 Schiavon (10.1016/j.jtherbio.2022.103276_bib64) 2016; 96 (10.1016/j.jtherbio.2022.103276_bib21) 1991 Cui (10.1016/j.jtherbio.2022.103276_bib16) 2017; 127 (10.1016/j.jtherbio.2022.103276_bib36) 2007 Zhang (10.1016/j.jtherbio.2022.103276_bib89) 2021; 187 Gunnarsen (10.1016/j.jtherbio.2022.103276_bib31) 1992; 18 de Dear (10.1016/j.jtherbio.2022.103276_bib17) 2013; 23 Faul (10.1016/j.jtherbio.2022.103276_bib28) 2007; 39 Olesen (10.1016/j.jtherbio.2022.103276_bib59) 1979 Fang (10.1016/j.jtherbio.2022.103276_bib23) 1998; 8 Palonen (10.1016/j.jtherbio.2022.103276_bib60) 1991 Yasmeen (10.1016/j.jtherbio.2022.103276_bib85) 2020 Wu (10.1016/j.jtherbio.2022.103276_bib73) 2019; 86 Yu (10.1016/j.jtherbio.2022.103276_bib87) 2015; 88 Cohen (10.1016/j.jtherbio.2022.103276_bib15) 1988 Fang (10.1016/j.jtherbio.2022.103276_bib25) 2018; 128 Udayraj (10.1016/j.jtherbio.2022.103276_bib68) 2018; 174 |
References_xml | – volume: 83 start-page: 187 year: 2019 end-page: 194 ident: bib40 article-title: Assessment of overall body thermal sensation based on the thermal response of local cutaneous thermoreceptors publication-title: J. Therm. Biol. – volume: 80 start-page: 94 year: 2019 end-page: 105 ident: bib53 article-title: Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions publication-title: J. Therm. Biol. – year: 2007 ident: bib36 article-title: ISO 9920: 2007 Ergonomics of the Thermal Environment — Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble, Genevan – volume: 168 year: 2020 ident: bib95 article-title: Experimental investigation into the effects of different metabolic rates of body movement on thermal comfort publication-title: Build. Environ. – year: 2020 ident: bib75 article-title: Effect of long-term thermal history on physiological acclimatization and prediction of thermal sensation in typical winter conditions publication-title: Build. Environ. – volume: 42 start-page: 525 year: 2007 end-page: 533 ident: bib13 article-title: Local thermal sensation and comfort study in a field environment chamber served by displacement ventilation system in the tropics publication-title: Build. Environ. – start-page: 1 year: 1992 end-page: 10 ident: bib32 article-title: Development of a Method for Predicting Comfortable Airflow in the Passenger Compartment – volume: 578 start-page: 242 year: 2017 end-page: 248 ident: bib18 article-title: Human thermal sensation and comfort in a non-uniform environment with personalized heating publication-title: Sci. Total Environ. – volume: 18 start-page: 182 year: 2008 end-page: 201 ident: bib69 article-title: Forty years of Fanger's model of thermal comfort: comfort for all? publication-title: Indoor Air – volume: 108 start-page: 1097 year: 2002 end-page: 1103 ident: bib58 article-title: Measurement of thermal comfort and local discomfort by a thermal manikin publication-title: Build. Eng. – volume: 209 year: 2022 ident: bib80 article-title: Experimental study of five different VAV air terminal devices under variable heat gain conditions in simulated office and meeting rooms publication-title: Build. Environ. – start-page: 409 year: 2002 end-page: 454 ident: bib1 article-title: Models for matched pairs publication-title: Categ. Data Anal. – year: 2003 ident: bib88 article-title: Human Thermal Sensation and Comfort in Transient and Non-uniform Thermal Environment – volume: 44 start-page: 676 year: 2019 end-page: 690 ident: bib26 article-title: Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics publication-title: Sustain. Cities Soc. – volume: 22 start-page: 407 year: 2019 ident: bib56 article-title: Application of student's t-test, analysis of variance, and covariance publication-title: Ann. Card Anaesth. – volume: 29 start-page: 101 year: 2019 end-page: 111 ident: bib57 article-title: Thermal comfort in environments with different vertical air temperature gradients publication-title: Indoor Air – start-page: 561 year: 1979 end-page: 579 ident: bib59 article-title: Discomfort caused by vertical air temperature differences publication-title: Indoor Climate: Effects on Human Comfort, Performance and Health in Residential, Commercial and Light-Industry Buildings – volume: 39 start-page: 175 year: 2007 end-page: 191 ident: bib28 article-title: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences publication-title: Behav. Res. Methods – year: 2020 ident: bib51 article-title: Research on Comfortable Surface Temperature of Radiant Floor Heating in Hot Summer and Cold Winter Climate Areas – volume: 109 start-page: 35 year: 2016 end-page: 43 ident: bib30 article-title: Revisiting Fanger's thermal comfort model using mean blood pressure as a bio-marker: an experimental investigation publication-title: Appl. Therm. Eng. – volume: 14 start-page: 9 year: 2011 end-page: 17 ident: bib34 article-title: Effects of vertical air temperature gradients on physiological and psychological responses in the elderly publication-title: J. Hum. Environ. Syst. – volume: 45 start-page: 1202 year: 2010 end-page: 1213 ident: bib42 article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research publication-title: Build. Environ. – volume: 88 start-page: 135 year: 2015 end-page: 143 ident: bib87 article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design publication-title: Energy Build. – volume: 46 start-page: 1056 year: 2011 end-page: 1064 ident: bib62 article-title: Local and overall thermal comfort in an aircraft cabin and their interrelations publication-title: Build. Environ. – volume: 182 start-page: 471 year: 2019 end-page: 482 ident: bib74 article-title: Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China publication-title: Energy – volume: 203 year: 2019 ident: bib72 article-title: Thermal adaptation of the elderly during summer in a hot humid area: psychological, behavioral, and physiological responses publication-title: Energy Build. – volume: 229 year: 2020 ident: bib76 article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions publication-title: Energy Build. – volume: 135 start-page: 142 year: 2018 end-page: 152 ident: bib50 article-title: Indoor clothing insulation and thermal history: a clothing model based on logistic function and running mean outdoor temperature publication-title: Build. Environ. – volume: 23 start-page: 442 year: 2013 end-page: 461 ident: bib17 article-title: Progress in thermal comfort research over the last twenty years publication-title: Indoor Air – year: 1970 ident: bib27 article-title: Thermal Comfort: Analysis and Applications in Environmental Engineering – year: 2019 ident: bib37 article-title: ISO 10551:2019, Ergonomics of the Physical Environment — Subjective Judgement Scales for Assessing Physical Environments – volume: 96 start-page: 228 year: 2016 end-page: 236 ident: bib64 article-title: Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems publication-title: Build. Environ. – volume: 28 start-page: 15 year: 1998 end-page: 23 ident: bib67 article-title: Upper limits of air humidity for preventing warm respiratory discomfort publication-title: Energy Build. – volume: 29 start-page: 308 year: 2019 end-page: 319 ident: bib45 article-title: Regulation of sensory nerve conduction velocity of human bodies responding to annual temperature variations in natural environments publication-title: Indoor Air – volume: 125 start-page: 373 year: 2017 end-page: 382 ident: bib71 article-title: Thermal comfort criteria for personal air supply in aircraft cabins in winter publication-title: Build. Environ. – start-page: 578 year: 2009 end-page: 582 ident: bib20 article-title: Effects of lower body warming on physiological and psychological responses of humans publication-title: Proceedings of the 13th International Conference on Environmental Ergonomics – volume: 8 start-page: 80 year: 1998 end-page: 90 ident: bib23 article-title: Impact of temperature and humidity on the perception of indoor air quality publication-title: Indoor Air – volume: 42 start-page: 2737 year: 2007 end-page: 2745 ident: bib90 article-title: Effect of local exposure on human responses publication-title: Build. Environ. – year: 2005 ident: bib35 article-title: EN ISO 7730:2005, Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria – volume: 29 start-page: 131 year: 1986 end-page: 143 ident: bib66 article-title: Physiological reactions to different vertical (head-foot) air temperature differences publication-title: Ergonomics – volume: 42 start-page: 516 year: 2007 end-page: 524 ident: bib86 article-title: Thermal effect of temperature gradient in a field environment chamber served by displacement ventilation system in the tropics publication-title: Build. Environ. – volume: 187 year: 2021 ident: bib89 article-title: Predicted Mean Vote with skin wettedness from standard effective temperature model publication-title: Build. Environ. – volume: 137 start-page: 147 year: 2018 end-page: 156 ident: bib19 article-title: Heatstroke at home: prediction by thermoregulation modeling publication-title: Build. Environ. – year: 2012 ident: bib38 article-title: Study on Thermal Sensation during Step-Change in Non-uniform Thermal Environment – volume: 76 start-page: 283 year: 2015 end-page: 291 ident: bib82 article-title: A study of adaptive thermal comfort in a well-controlled climate chamber publication-title: Appl. Therm. Eng. – volume: 204 start-page: 420 year: 2017 end-page: 431 ident: bib93 article-title: Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving publication-title: Appl. Energy – start-page: 441 year: 1991 end-page: 444 ident: bib60 article-title: Thermal Comfort in Sedentary Conditions with Vertical Temperature and Velocity Gradient, Symposium on Man-Thermal Environment System – volume: 28 start-page: 916 year: 2018 end-page: 923 ident: bib65 article-title: Research on electroencephalogram to measure thermal pleasure in thermal alliesthesia in temperature step-change environment publication-title: Indoor Air – volume: 14 start-page: 74 year: 2004 end-page: 81 ident: bib24 article-title: Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance publication-title: Indoor Air – volume: 23 start-page: 250 year: 2013 end-page: 263 ident: bib55 article-title: Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity publication-title: Indoor Air – volume: 86 year: 2019 ident: bib73 article-title: The effect of indoor thermal history on human thermal responses in cold environments of early winter publication-title: J. Therm. Biol. – volume: 11 start-page: 1 year: 2017 end-page: 14 ident: bib2 article-title: Ventilation and energy performance of partitioned indoor spaces under mixing and displacement ventilation publication-title: Build. Simulat. – volume: 55 start-page: 31 year: 1990 end-page: 42 ident: bib7 article-title: The effect of vertical air temperature differences on thermal comfort and physiological responses publication-title: J. Architect. Plann. Res. – year: 2019 ident: bib84 article-title: A review of advanced air distribution methods-theory, practice, limitations and solutions publication-title: Energy Build. – volume: 26 start-page: 125 year: 2016 end-page: 137 ident: bib96 article-title: Dynamic thermal environment and thermal comfort publication-title: Indoor Air – volume: 103 year: 2022 ident: bib91 article-title: Gender differences in thermal responses to temperature ramps in moderate environments publication-title: J. Therm. Biol. – start-page: 190 year: 1992 end-page: 191 ident: bib61 article-title: Thermal comfort in sedentary conditions with vertical temperature and velocity gradient publication-title: Proceedings of 41st Nordiska Arbetsmiljömötet – start-page: 1516 year: 1975 ident: bib22 article-title: Heating and Ventilating of Tractor Cabs – volume: 207 year: 2022 ident: bib12 article-title: Experimental study of thermal comfort in a field environment chamber with stratum ventilation system in winter publication-title: Build. Environ. – volume: vol. 14 year: 2021 ident: bib77 publication-title: Individual Thermal Comfort Prediction Using Classification Tree Model Based on Physiological Parameters and Thermal History in Winter – volume: 46 start-page: 478 year: 2011 end-page: 488 ident: bib47 article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study publication-title: Build. Environ. – volume: 96 start-page: 283 year: 2016 end-page: 292 ident: bib11 article-title: Experimental and simulated energy performance of a personalized ventilation system with individual airflow control in a hot and humid climate publication-title: Build. Environ. – volume: 91 start-page: 15 year: 2015 end-page: 41 ident: bib92 article-title: A review of the corrective power of personal comfort systems in non-neutral ambient environments publication-title: Build. Environ. – volume: 21 start-page: 376 year: 2011 end-page: 390 ident: bib43 article-title: Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance publication-title: Indoor Air – volume: 174 start-page: 439 year: 2018 end-page: 451 ident: bib68 article-title: Personal cooling strategies to improve thermal comfort in warm indoor environments: comparison of a conventional desk fan and air ventilation clothing publication-title: Energy Build. – volume: 109 start-page: 41 year: 2010 end-page: 48 ident: bib33 article-title: Gender differences in thermal comfort and mental performance at different vertical air temperatures publication-title: Eur. J. Appl. Physiol. – volume: 27 start-page: 852 year: 2017 end-page: 862 ident: bib49 article-title: Predicted percentage dissatisfied with ankle draft publication-title: Indoor Air – year: 2013 ident: bib4 article-title: ASHRAE Handbook: Fundamentals-Chapter 9 Thermal Comfort – volume: 43 start-page: 274 year: 2015 end-page: 287 ident: bib8 article-title: Evolving opportunities for providing thermal comfort publication-title: Build. Res. Inf. – year: 1991 ident: bib21 article-title: Indoor Air Facts No. 4: Sick Building Syndrome – volume: 96 start-page: 228 year: 2016 end-page: 236 ident: bib63 article-title: Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems publication-title: Build. Environ. – volume: 66 year: 2021 ident: bib78 article-title: Comfortable floor temperatures for radiant floor heating in Southern China publication-title: Chin. Sci. Bull. – volume: 18 start-page: 43 year: 1992 end-page: 54 ident: bib31 article-title: Adaptation to indoor air pollution publication-title: Environ. Int. – volume: 128 start-page: 129 year: 2018 end-page: 142 ident: bib25 article-title: Investigation into sensitivities of factors in outdoor thermal comfort indices publication-title: Build. Environ. – volume: 140 start-page: 9 year: 2017 end-page: 18 ident: bib48 article-title: Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China publication-title: Energy Build. – year: 2020 ident: bib5 article-title: ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy – year: 1988 ident: bib15 article-title: Statistical Power Analysis for the Behavioral Sciences – year: 1980 ident: bib6 article-title: Indoor Climate – year: 2013 ident: bib70 article-title: WMA Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects – volume: 560–561 start-page: 186 year: 2016 end-page: 196 ident: bib52 article-title: Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China publication-title: Sci. Total Environ. – volume: 127 start-page: 30 year: 2017 end-page: 43 ident: bib16 article-title: Optimization of reversibly used cooling tower with downward spraying publication-title: Energy – volume: 155 start-page: 298 year: 2019 end-page: 307 ident: bib41 article-title: Effects of indoor humidity on building occupants' thermal comfort and evidence in terms of climate adaptation publication-title: Build. Environ. – volume: 6 start-page: 48 year: 1996 end-page: 54 ident: bib81 article-title: Discomfort due to vertical thermal gradients publication-title: Indoor Air-Int. J. Indoor Air Qual. Clim. – volume: 107 start-page: 34 year: 2019 end-page: 43 ident: bib39 article-title: An advanced three-dimensional thermoregulation model of the human body: development and validation publication-title: Int. Commun. Heat Mass Tran. – volume: 44 start-page: 2256 year: 2009 end-page: 2269 ident: bib46 article-title: Stratum ventilation – a potential solution to elevated indoor temperatures publication-title: Build. Environ. – volume: 41 start-page: 68 year: 1997 end-page: 75 ident: bib14 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. – volume: 61 start-page: 168 year: 2017 end-page: 177 ident: bib83 article-title: Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures publication-title: Appl. Ergon. – year: 2020 ident: bib85 article-title: Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China publication-title: J. Build. Eng. – volume: 47 start-page: 400 year: 2012 end-page: 409 ident: bib54 article-title: Air movement and perceived air quality publication-title: Build. Environ. – volume: 33 year: 2021 ident: bib79 article-title: Demand response of district heating using model predictive control to prevent the draught risk of cold window in an office building publication-title: J. Build. Eng. – volume: 41 start-page: 1149 year: 2009 ident: bib29 article-title: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses publication-title: Behav. Res. Methods – year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib84 article-title: A review of advanced air distribution methods-theory, practice, limitations and solutions publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109359 – volume: 155 start-page: 298 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib41 article-title: Effects of indoor humidity on building occupants' thermal comfort and evidence in terms of climate adaptation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.02.039 – volume: 14 start-page: 9 year: 2011 ident: 10.1016/j.jtherbio.2022.103276_bib34 article-title: Effects of vertical air temperature gradients on physiological and psychological responses in the elderly publication-title: J. Hum. Environ. Syst. doi: 10.1618/jhes.14.9 – volume: 560–561 start-page: 186 year: 2016 ident: 10.1016/j.jtherbio.2022.103276_bib52 article-title: Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.04.033 – volume: 140 start-page: 9 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib48 article-title: Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.066 – volume: 47 start-page: 400 year: 2012 ident: 10.1016/j.jtherbio.2022.103276_bib54 article-title: Air movement and perceived air quality publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.06.017 – volume: 127 start-page: 30 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib16 article-title: Optimization of reversibly used cooling tower with downward spraying publication-title: Energy doi: 10.1016/j.energy.2017.03.074 – volume: 18 start-page: 182 year: 2008 ident: 10.1016/j.jtherbio.2022.103276_bib69 article-title: Forty years of Fanger's model of thermal comfort: comfort for all? publication-title: Indoor Air doi: 10.1111/j.1600-0668.2007.00516.x – volume: 21 start-page: 376 year: 2011 ident: 10.1016/j.jtherbio.2022.103276_bib43 article-title: Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance publication-title: Indoor Air doi: 10.1111/j.1600-0668.2011.00714.x – volume: 88 start-page: 135 year: 2015 ident: 10.1016/j.jtherbio.2022.103276_bib87 article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.11.063 – start-page: 578 year: 2009 ident: 10.1016/j.jtherbio.2022.103276_bib20 article-title: Effects of lower body warming on physiological and psychological responses of humans – volume: 91 start-page: 15 year: 2015 ident: 10.1016/j.jtherbio.2022.103276_bib92 article-title: A review of the corrective power of personal comfort systems in non-neutral ambient environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.03.013 – start-page: 409 year: 2002 ident: 10.1016/j.jtherbio.2022.103276_bib1 article-title: Models for matched pairs publication-title: Categ. Data Anal. doi: 10.1002/0471249688.ch10 – volume: 96 start-page: 228 year: 2016 ident: 10.1016/j.jtherbio.2022.103276_bib64 article-title: Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.11.009 – volume: 23 start-page: 250 year: 2013 ident: 10.1016/j.jtherbio.2022.103276_bib55 article-title: Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity publication-title: Indoor Air doi: 10.1111/ina.12012 – volume: 66 year: 2021 ident: 10.1016/j.jtherbio.2022.103276_bib78 article-title: Comfortable floor temperatures for radiant floor heating in Southern China publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2020-1378 – volume: 22 start-page: 407 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib56 article-title: Application of student's t-test, analysis of variance, and covariance publication-title: Ann. Card Anaesth. doi: 10.4103/aca.ACA_94_19 – volume: 229 year: 2020 ident: 10.1016/j.jtherbio.2022.103276_bib76 article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110390 – year: 2020 ident: 10.1016/j.jtherbio.2022.103276_bib75 article-title: Effect of long-term thermal history on physiological acclimatization and prediction of thermal sensation in typical winter conditions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106936 – start-page: 1 year: 1992 ident: 10.1016/j.jtherbio.2022.103276_bib32 – volume: 26 start-page: 125 year: 2016 ident: 10.1016/j.jtherbio.2022.103276_bib96 article-title: Dynamic thermal environment and thermal comfort publication-title: Indoor Air doi: 10.1111/ina.12233 – volume: 23 start-page: 442 year: 2013 ident: 10.1016/j.jtherbio.2022.103276_bib17 article-title: Progress in thermal comfort research over the last twenty years publication-title: Indoor Air doi: 10.1111/ina.12046 – volume: 96 start-page: 283 year: 2016 ident: 10.1016/j.jtherbio.2022.103276_bib11 article-title: Experimental and simulated energy performance of a personalized ventilation system with individual airflow control in a hot and humid climate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.11.036 – volume: 41 start-page: 68 year: 1997 ident: 10.1016/j.jtherbio.2022.103276_bib14 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. doi: 10.1007/s004840050056 – year: 2012 ident: 10.1016/j.jtherbio.2022.103276_bib38 – volume: 29 start-page: 308 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib45 article-title: Regulation of sensory nerve conduction velocity of human bodies responding to annual temperature variations in natural environments publication-title: Indoor Air doi: 10.1111/ina.12525 – volume: 46 start-page: 1056 year: 2011 ident: 10.1016/j.jtherbio.2022.103276_bib62 article-title: Local and overall thermal comfort in an aircraft cabin and their interrelations publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.11.003 – volume: 96 start-page: 228 year: 2016 ident: 10.1016/j.jtherbio.2022.103276_bib63 article-title: Sensation of draft at uncovered ankles for women exposed to displacement ventilation and underfloor air distribution systems publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.11.009 – volume: 43 start-page: 274 year: 2015 ident: 10.1016/j.jtherbio.2022.103276_bib8 article-title: Evolving opportunities for providing thermal comfort publication-title: Build. Res. Inf. doi: 10.1080/09613218.2015.993536 – volume: 41 start-page: 1149 year: 2009 ident: 10.1016/j.jtherbio.2022.103276_bib29 article-title: Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses publication-title: Behav. Res. Methods doi: 10.3758/BRM.41.4.1149 – start-page: 190 year: 1992 ident: 10.1016/j.jtherbio.2022.103276_bib61 article-title: Thermal comfort in sedentary conditions with vertical temperature and velocity gradient – start-page: 1516 year: 1975 ident: 10.1016/j.jtherbio.2022.103276_bib22 – year: 1991 ident: 10.1016/j.jtherbio.2022.103276_bib21 – volume: vol. 14 year: 2021 ident: 10.1016/j.jtherbio.2022.103276_bib77 – volume: 187 year: 2021 ident: 10.1016/j.jtherbio.2022.103276_bib89 article-title: Predicted Mean Vote with skin wettedness from standard effective temperature model publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107412 – volume: 128 start-page: 129 year: 2018 ident: 10.1016/j.jtherbio.2022.103276_bib25 article-title: Investigation into sensitivities of factors in outdoor thermal comfort indices publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.11.028 – volume: 108 start-page: 1097 year: 2002 ident: 10.1016/j.jtherbio.2022.103276_bib58 article-title: Measurement of thermal comfort and local discomfort by a thermal manikin publication-title: Build. Eng. – year: 2013 ident: 10.1016/j.jtherbio.2022.103276_bib4 – volume: 33 year: 2021 ident: 10.1016/j.jtherbio.2022.103276_bib79 article-title: Demand response of district heating using model predictive control to prevent the draught risk of cold window in an office building publication-title: J. Build. Eng. – year: 1970 ident: 10.1016/j.jtherbio.2022.103276_bib27 – volume: 42 start-page: 2737 year: 2007 ident: 10.1016/j.jtherbio.2022.103276_bib90 article-title: Effect of local exposure on human responses publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.014 – volume: 137 start-page: 147 year: 2018 ident: 10.1016/j.jtherbio.2022.103276_bib19 article-title: Heatstroke at home: prediction by thermoregulation modeling publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.04.017 – volume: 125 start-page: 373 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib71 article-title: Thermal comfort criteria for personal air supply in aircraft cabins in winter publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.09.005 – volume: 44 start-page: 2256 year: 2009 ident: 10.1016/j.jtherbio.2022.103276_bib46 article-title: Stratum ventilation – a potential solution to elevated indoor temperatures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.03.007 – volume: 28 start-page: 15 year: 1998 ident: 10.1016/j.jtherbio.2022.103276_bib67 article-title: Upper limits of air humidity for preventing warm respiratory discomfort publication-title: Energy Build. doi: 10.1016/S0378-7788(97)00018-2 – volume: 8 start-page: 80 year: 1998 ident: 10.1016/j.jtherbio.2022.103276_bib23 article-title: Impact of temperature and humidity on the perception of indoor air quality publication-title: Indoor Air doi: 10.1111/j.1600-0668.1998.t01-2-00003.x – year: 2007 ident: 10.1016/j.jtherbio.2022.103276_bib36 – volume: 29 start-page: 131 year: 1986 ident: 10.1016/j.jtherbio.2022.103276_bib66 article-title: Physiological reactions to different vertical (head-foot) air temperature differences publication-title: Ergonomics doi: 10.1080/00140138608968246 – volume: 76 start-page: 283 year: 2015 ident: 10.1016/j.jtherbio.2022.103276_bib82 article-title: A study of adaptive thermal comfort in a well-controlled climate chamber publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.11.004 – volume: 14 start-page: 74 issue: Suppl. 7 year: 2004 ident: 10.1016/j.jtherbio.2022.103276_bib24 article-title: Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance publication-title: Indoor Air doi: 10.1111/j.1600-0668.2004.00276.x – volume: 109 start-page: 41 year: 2010 ident: 10.1016/j.jtherbio.2022.103276_bib33 article-title: Gender differences in thermal comfort and mental performance at different vertical air temperatures publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-009-1158-7 – volume: 27 start-page: 852 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib49 article-title: Predicted percentage dissatisfied with ankle draft publication-title: Indoor Air doi: 10.1111/ina.12364 – volume: 86 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib73 article-title: The effect of indoor thermal history on human thermal responses in cold environments of early winter publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2019.102448 – volume: 42 start-page: 525 year: 2007 ident: 10.1016/j.jtherbio.2022.103276_bib13 article-title: Local thermal sensation and comfort study in a field environment chamber served by displacement ventilation system in the tropics publication-title: Build. Environ. doi: 10.1016/j.buildenv.2005.09.008 – year: 2005 ident: 10.1016/j.jtherbio.2022.103276_bib35 – volume: 44 start-page: 676 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib26 article-title: Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.10.022 – volume: 103 year: 2022 ident: 10.1016/j.jtherbio.2022.103276_bib91 article-title: Gender differences in thermal responses to temperature ramps in moderate environments publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2021.103158 – volume: 11 start-page: 1 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib2 article-title: Ventilation and energy performance of partitioned indoor spaces under mixing and displacement ventilation publication-title: Build. Simulat. – volume: 207 year: 2022 ident: 10.1016/j.jtherbio.2022.103276_bib12 article-title: Experimental study of thermal comfort in a field environment chamber with stratum ventilation system in winter publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108445 – volume: 135 start-page: 142 year: 2018 ident: 10.1016/j.jtherbio.2022.103276_bib50 article-title: Indoor clothing insulation and thermal history: a clothing model based on logistic function and running mean outdoor temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.03.015 – start-page: 441 year: 1991 ident: 10.1016/j.jtherbio.2022.103276_bib60 – volume: 204 start-page: 420 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib93 article-title: Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.064 – volume: 6 start-page: 48 year: 1996 ident: 10.1016/j.jtherbio.2022.103276_bib81 article-title: Discomfort due to vertical thermal gradients publication-title: Indoor Air-Int. J. Indoor Air Qual. Clim. – volume: 61 start-page: 168 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib83 article-title: Integrating a human thermoregulatory model with a clothing model to predict core and skin temperatures publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2017.01.014 – volume: 203 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib72 article-title: Thermal adaptation of the elderly during summer in a hot humid area: psychological, behavioral, and physiological responses publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109450 – year: 2020 ident: 10.1016/j.jtherbio.2022.103276_bib5 – volume: 182 start-page: 471 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib74 article-title: Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China publication-title: Energy doi: 10.1016/j.energy.2019.05.204 – volume: 55 start-page: 31 year: 1990 ident: 10.1016/j.jtherbio.2022.103276_bib7 article-title: The effect of vertical air temperature differences on thermal comfort and physiological responses publication-title: J. Architect. Plann. Res. – volume: 28 start-page: 916 year: 2018 ident: 10.1016/j.jtherbio.2022.103276_bib65 article-title: Research on electroencephalogram to measure thermal pleasure in thermal alliesthesia in temperature step-change environment publication-title: Indoor Air doi: 10.1111/ina.12491 – volume: 109 start-page: 35 year: 2016 ident: 10.1016/j.jtherbio.2022.103276_bib30 article-title: Revisiting Fanger's thermal comfort model using mean blood pressure as a bio-marker: an experimental investigation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.050 – year: 2020 ident: 10.1016/j.jtherbio.2022.103276_bib51 – year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib37 – volume: 168 year: 2020 ident: 10.1016/j.jtherbio.2022.103276_bib95 article-title: Experimental investigation into the effects of different metabolic rates of body movement on thermal comfort publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106489 – volume: 174 start-page: 439 year: 2018 ident: 10.1016/j.jtherbio.2022.103276_bib68 article-title: Personal cooling strategies to improve thermal comfort in warm indoor environments: comparison of a conventional desk fan and air ventilation clothing publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.06.065 – volume: 107 start-page: 34 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib39 article-title: An advanced three-dimensional thermoregulation model of the human body: development and validation publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2019.05.006 – volume: 42 start-page: 516 year: 2007 ident: 10.1016/j.jtherbio.2022.103276_bib86 article-title: Thermal effect of temperature gradient in a field environment chamber served by displacement ventilation system in the tropics publication-title: Build. Environ. doi: 10.1016/j.buildenv.2005.09.003 – volume: 29 start-page: 101 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib57 article-title: Thermal comfort in environments with different vertical air temperature gradients publication-title: Indoor Air doi: 10.1111/ina.12512 – volume: 209 year: 2022 ident: 10.1016/j.jtherbio.2022.103276_bib80 article-title: Experimental study of five different VAV air terminal devices under variable heat gain conditions in simulated office and meeting rooms publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108641 – volume: 578 start-page: 242 year: 2017 ident: 10.1016/j.jtherbio.2022.103276_bib18 article-title: Human thermal sensation and comfort in a non-uniform environment with personalized heating publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.172 – volume: 39 start-page: 175 year: 2007 ident: 10.1016/j.jtherbio.2022.103276_bib28 article-title: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences publication-title: Behav. Res. Methods doi: 10.3758/BF03193146 – volume: 45 start-page: 1202 year: 2010 ident: 10.1016/j.jtherbio.2022.103276_bib42 article-title: Application of statistical power analysis – how to determine the right sample size in human health, comfort and productivity research publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.11.002 – volume: 83 start-page: 187 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib40 article-title: Assessment of overall body thermal sensation based on the thermal response of local cutaneous thermoreceptors publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2019.05.027 – volume: 46 start-page: 478 year: 2011 ident: 10.1016/j.jtherbio.2022.103276_bib47 article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.08.011 – year: 2003 ident: 10.1016/j.jtherbio.2022.103276_bib88 – volume: 18 start-page: 43 year: 1992 ident: 10.1016/j.jtherbio.2022.103276_bib31 article-title: Adaptation to indoor air pollution publication-title: Environ. Int. doi: 10.1016/0160-4120(92)90209-M – start-page: 561 year: 1979 ident: 10.1016/j.jtherbio.2022.103276_bib59 article-title: Discomfort caused by vertical air temperature differences – year: 2013 ident: 10.1016/j.jtherbio.2022.103276_bib70 – volume: 80 start-page: 94 year: 2019 ident: 10.1016/j.jtherbio.2022.103276_bib53 article-title: Relationship between metabolic rate and blood perfusion under Fanger thermal comfort conditions publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2019.01.002 – year: 1988 ident: 10.1016/j.jtherbio.2022.103276_bib15 – year: 2020 ident: 10.1016/j.jtherbio.2022.103276_bib85 article-title: Physiological responses of acclimatized construction workers during different work patterns in a hot and humid subtropical area of China publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101281 – year: 1980 ident: 10.1016/j.jtherbio.2022.103276_bib6 |
SSID | ssj0015350 |
Score | 2.3688478 |
Snippet | Vertical air temperature differences (VTDs) can have important influences on thermal comfort and the evaluation of air distributions. The air distributions... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103276 |
SubjectTerms | air air quality air temperature climate energy efficiency heat stress humans Physiological response sensation Skin temperature sweat Thermal direction Thermal sensation Vertical air temperature difference |
Title | Thermal sensation, sick building syndrome symptoms, and physiological responses of occupants in environments with vertical air temperature differences |
URI | https://dx.doi.org/10.1016/j.jtherbio.2022.103276 https://www.proquest.com/docview/2707878436 https://www.proquest.com/docview/2718242671 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQFRKXqi1FPFo0SBxJkzjvI0JFWxBcKBI3y05sKbCbrDbhwKU_o7-3M46NaIXg0FsSeSRrxh7PODPfx9hRKau8xqMvyGKVYYISqaDMkyaI6sRIwjQrLNnE5VU-u0nPb7PbNXbqe2GorNL5_smnW2_tvoROm-GybcNrinYpHuHUbVJZpuE0LWiVf_v1VOaBG9qytNLggEY_6xK-w9gPFaNaagLknPrPOWGPvHxA_eOq7flz9oG9d4EjnExz-8jWdPeJbUxUko9b7DfaG33sHAbMS622jwENcA_K8V6DxybAh8Vy7BfDMciuAXu14T0grKaSWT1Ab6C3CMTdOEDbwfOOOKDbW7BMziQk2xUQxJXDZwZPuoIu6DO7Ofv-83QWOM6FoE6icgzSBvO1nPM4VZg7mUypIuK1QcVwVLFOuM6rzGitZUlgf5HhOS9kmhljYnRVTbLN1ru-0zsMpKwtoXWsMQ0zBZdc16mqFGaURjVlvMsyr2hRO0By4sWYC195die8gQQZSEwG2mXhk9xyguR4U6LydhR_LS6B58absofe8AJ3Hv1OkZ3uHwbBCSipKNPk1TGYv2EQVMR7_zGHfbZJb1Pd4Re2Pq4e9FeMhUZ1YBf7AXt38uNidvUH48sMiA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQoqq9VPSlQks7lXok2sSJ8zgiBFoK7KUgcbPsxJZCIVltwqF_hN_LjGMjiqpy6C1KPJI144xn7JnvY-x7qaq8xq0vEokWmKDEOirztIniOrWKMM0KRzZxtswXF9mPS3G5wQ5CLwyVVXrfP_l05639m7nX5nzVtvOfFO1SPMKp26QipuFNQqcSM7a5f3yyWD5cJojUEbXS-IgEHjUKX2H4h7rRLfUBck4t6JzgR_6-Rz3x1m4LOtpir33sCPvT9N6wDdO9ZS8mNsnf79gdmhzd7DUMmJo6he8B2uAXaE99DQGeAB9uVmN_M-yB6hpwpxvBCcJ6qpo1A_QWegdC3I0DtB08booDOsAFR-ZMQqpdA6FceYhmCLwr6IXes4ujw_ODReRpF6I6jcsxyhpM2XLOk0xj-mSF1kXMa4uK4ahlk3KTV8IaY1RJeH-x5TkvVCastQl6qyb9wGZd35mPDJSqHad1YjATswVX3NSZrjQmlVY3ZbLNRFC0rD0mOVFjXMtQfHYlg4EkGUhOBtpm8we51YTK8axEFewo_1hfEreOZ2W_BcNL_PnoRkV1pr8dJCespKLM0n-OwRQO46Ai2fmPOXxlLxfnZ6fy9Hh58om9oi9TGeJnNhvXt2YXQ6NRf_FL_x4A6g85 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+sensation%2C+sick+building+syndrome+symptoms%2C+and+physiological+responses+of+occupants+in+environments+with+vertical+air+temperature+differences&rft.jtitle=Journal+of+thermal+biology&rft.au=Wu%2C+Yuxin&rft.au=Zhang%2C+Sheng&rft.au=Liu%2C+Hong&rft.au=Cheng%2C+Yong&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4565&rft.eissn=1879-0992&rft.volume=108&rft_id=info:doi/10.1016%2Fj.jtherbio.2022.103276&rft.externalDocID=S0306456522000912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4565&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4565&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4565&client=summon |