Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data

Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ens...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 34; no. 1; pp. 383 - 408
Main Authors Nyakilla, Edwin E., Guanhua, Sun, Hongliang, Hao, Charles, Grant, Nafouanti, Mouigni B., Ricky, Emanuel X., Silingi, Selemani N., Abelly, Elieneza N., Shanghvi, Eric R., Naqibulla, Safi, Ngata, Mbega R., Kasala, Erasto, Mgimba, Melckzedeck, Abdulmalik, Alaa, Said, Fatna A., Nadege, Mbula N., Kasali, Johnson J., Dan, Li
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R2) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R2 values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.
AbstractList Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R2) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R2 values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.
Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R²) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R² values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization.
Author Abdulmalik, Alaa
Guanhua, Sun
Naqibulla, Safi
Ngata, Mbega R.
Mgimba, Melckzedeck
Nyakilla, Edwin E.
Kasala, Erasto
Silingi, Selemani N.
Abelly, Elieneza N.
Shanghvi, Eric R.
Hongliang, Hao
Ricky, Emanuel X.
Dan, Li
Nafouanti, Mouigni B.
Said, Fatna A.
Nadege, Mbula N.
Kasali, Johnson J.
Charles, Grant
Author_xml – sequence: 1
  givenname: Edwin E.
  orcidid: 0000-0002-7402-2611
  surname: Nyakilla
  fullname: Nyakilla, Edwin E.
– sequence: 2
  givenname: Sun
  surname: Guanhua
  fullname: Guanhua, Sun
– sequence: 3
  givenname: Hao
  surname: Hongliang
  fullname: Hongliang, Hao
– sequence: 4
  givenname: Grant
  surname: Charles
  fullname: Charles, Grant
– sequence: 5
  givenname: Mouigni B.
  surname: Nafouanti
  fullname: Nafouanti, Mouigni B.
– sequence: 6
  givenname: Emanuel X.
  surname: Ricky
  fullname: Ricky, Emanuel X.
– sequence: 7
  givenname: Selemani N.
  surname: Silingi
  fullname: Silingi, Selemani N.
– sequence: 8
  givenname: Elieneza N.
  surname: Abelly
  fullname: Abelly, Elieneza N.
– sequence: 9
  givenname: Eric R.
  surname: Shanghvi
  fullname: Shanghvi, Eric R.
– sequence: 10
  givenname: Safi
  surname: Naqibulla
  fullname: Naqibulla, Safi
– sequence: 11
  givenname: Mbega R.
  surname: Ngata
  fullname: Ngata, Mbega R.
– sequence: 12
  givenname: Erasto
  surname: Kasala
  fullname: Kasala, Erasto
– sequence: 13
  givenname: Melckzedeck
  surname: Mgimba
  fullname: Mgimba, Melckzedeck
– sequence: 14
  givenname: Alaa
  surname: Abdulmalik
  fullname: Abdulmalik, Alaa
– sequence: 15
  givenname: Fatna A.
  surname: Said
  fullname: Said, Fatna A.
– sequence: 16
  givenname: Mbula N.
  surname: Nadege
  fullname: Nadege, Mbula N.
– sequence: 17
  givenname: Johnson J.
  surname: Kasali
  fullname: Kasali, Johnson J.
– sequence: 18
  givenname: Li
  surname: Dan
  fullname: Dan, Li
BookMark eNp9UU1v1DAQtVCRaAt_gJMlLhwaasfJxuG2LFtaaSUqCuJozTqT1sWxg-0s7P_iB-LNcuqBk0fWezPv44ycOO-QkNecveOMNZeRc1aLgpVVwVnFyqJ9Rk553YhCtpKfHOaSFU0l2hfkLMZHlklC1qfkz3oHdoJkvKO-p18wYth5E-itDz6atKfgOnqLYUDYGnv46IMf6He0lm78Pf0ICegHiNjRvAIcXbuIw9YiXY5j8KAf3tMlXflhDPiALpod0rs0dXt647QPow_5uLun698jBjOgS2Av6J0ZJjurupgFXBm03S8ffsz3XpLnPdiIr_695-Tb1frr6rrYfP50s1puCi2YTIUQYgGlqLstl2yhJXKoepRMi67TUNUctRZVx7HBHqAFLHGbR97Lhpc5O3FO3h73ZiM_J4xJDSbq7Bwc-ikqwRe1bFoh2wx98wT66KfgsrqMqqtS1ow3GSWPKJ3DjQF7pU2abaYAxirO1KFOdaxT5TrVXKc6HCifUMccF4T9_0h_AcCbp4w
CitedBy_id crossref_primary_10_1007_s11053_025_10474_1
crossref_primary_10_2118_224438_PA
Cites_doi 10.62593/2090-2468.1011
10.1016/j.ecoinf.2021.101389
10.1016/j.ejpe.2016.10.013
10.1016/j.conbuildmat.2019.117000
10.1016/j.acags.2019.100004
10.1016/j.cageo.2020.104555
10.1016/S1876-3804(19)60250-8
10.1007/s00366-020-01012-z
10.1006/jcss.1997.1504
10.1088/1757-899X/671/1/012071
10.1016/j.jappgeo.2020.104207
10.1111/j.1365-2478.2012.01080.x
10.1016/j.conbuildmat.2005.01.022
10.2118/87824-PA
10.1016/j.compgeo.2011.07.008
10.1016/j.cej.2021.130069
10.1016/j.catena.2020.104777
10.1016/j.asoc.2015.04.046
10.1190/geo2018-0588.1
10.1016/j.conbuildmat.2021.125778
10.1016/j.petrol.2021.108361
10.1016/j.jappgeo.2024.105351
10.1016/j.marpetgeo.2021.105196
10.1016/j.jrmge.2018.04.003
10.1071/AJ98017
10.3390/pr12020271
10.1007/s00603-020-02323-9
10.1016/j.compchemeng.2019.06.001
10.1016/j.compositesa.2021.106323
10.1016/j.advwatres.2024.104631
10.1016/j.enggeo.2021.106059
10.1016/j.engeos.2023.100229
10.1007/s11053-021-09988-1
10.1016/j.ptlrs.2021.05.005
10.1007/s13146-021-00707-8
10.22107/JPG.2024.426878.1220
10.1016/j.conbuildmat.2020.120198
10.1016/j.ces.2017.06.041
10.1021/acsomega.3c10247
10.1016/j.petlm.2018.06.002
10.1016/j.jngse.2018.08.020
10.1016/j.eswa.2012.10.023
10.1016/j.asoc.2018.10.036
10.1016/j.gexplo.2016.08.017
10.1007/s10115-007-0114-2
10.1038/s41598-024-51479-9
10.1038/s41598-020-72085-5
10.1016/j.coal.2023.104435
10.1007/s11053-019-09576-4
10.1002/nag.3720
10.1016/j.aej.2021.06.096
10.1016/j.petrol.2017.01.003
10.1016/j.cageo.2011.06.011
10.4043/30763-MS
10.1063/5.0190078
10.1016/j.trc.2017.01.009
10.1016/j.trgeo.2020.100508
10.1016/j.geothermics.2024.103006
10.1007/s13202-024-01767-x
10.1016/j.enggeo.2010.05.005
10.1007/978-1-4471-7307-6_2
10.1016/j.measurement.2020.108161
10.1007/978-1-4757-2440-0
10.1016/j.jhydrol.2023.130600
10.1115/1.4039270
10.1016/j.marpetgeo.2021.105265
10.2523/IPTC-24124-MS
10.1007/s10489-014-0618-x
10.1016/j.jclepro.2016.03.019
10.1016/j.enggeo.2020.105876
10.1016/j.jngse.2021.103962
10.1007/s40999-016-0096-0
10.1016/j.coal.2017.02.009
10.1080/14786440109462720
10.1016/j.energy.2021.121915
10.3390/app14103956
10.1016/j.jappgeo.2023.105249
10.1016/j.petrol.2021.109154
10.1016/j.ejpe.2015.05.012
10.1038/s41598-021-99269-x
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1007/s11053-024-10402-9
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1573-8981
EndPage 408
ExternalDocumentID 10_1007_s11053_024_10402_9
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PHGZM
PHGZT
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~A9
~KM
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c308t-3336a235db1806c8e1a4fe80c3ddca451ecc34d1e7efaa9ae2eb7ef1f87125733
ISSN 1520-7439
IngestDate Fri Jul 11 08:34:23 EDT 2025
Tue Jul 29 04:10:53 EDT 2025
Tue Jul 01 04:16:52 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-3336a235db1806c8e1a4fe80c3ddca451ecc34d1e7efaa9ae2eb7ef1f87125733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7402-2611
PQID 3154285017
PQPubID 2043663
PageCount 26
ParticipantIDs proquest_miscellaneous_3165879389
proquest_journals_3154285017
crossref_citationtrail_10_1007_s11053_024_10402_9
crossref_primary_10_1007_s11053_024_10402_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Natural resources research (New York, N.Y.)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References KW Liao (10402_CR44) 2011; 38
G Wu (10402_CR77) 2006; 20
P Yalamanchi (10402_CR80) 2024; 14
V Bolandi (10402_CR18) 2017; 151
L Wang (10402_CR75) 2024; 48
T Yasuda (10402_CR81) 2021; 420
F Hidayat (10402_CR35) 2021
J D’Haen (10402_CR24) 2013; 40
MME Nady (10402_CR53) 2015; 24
J Tian (10402_CR70) 2021; 37
XY Zhuang (10402_CR86) 2016; 125
DA Otchere (10402_CR56) 2024; 5
VA Dev (10402_CR26) 2019; 128
VN Vapnik (10402_CR73) 1995
Z Tong (10402_CR71) 2024; 282
DA Otchere (10402_CR57) 2021; 91
BT Pham (10402_CR60) 2021; 64
T Moussa (10402_CR51) 2018; 140
A Mahdy (10402_CR47) 2024; 220
AK Mulashani (10402_CR52) 2021; 239
S Farouk (10402_CR28) 2021; 133
P Gholizadeh (10402_CR32) 2016; 2016
S Pan (10402_CR58) 2017; 173
AF Al-Anazi (10402_CR7) 2012; 39
CR Bom (10402_CR19) 2021; 201
H Han (10402_CR34) 2021; 280
M Ali Ahmadi (10402_CR8) 2013; 61
T Babadagli (10402_CR16) 2004; 7
Y Gu (10402_CR33) 2018; 59
JG Urang (10402_CR72) 2020; 183
Z Zhong (10402_CR84) 2019; 84
X Wu (10402_CR79) 2008; 14
S Chen (10402_CR22) 2020; 166
EE Nyakilla (10402_CR54) 2022; 317
J Li (10402_CR43) 2024; 185
10402_CR11
F Amour (10402_CR13) 2021; 285
MA Ahmadi (10402_CR3) 2019; 5
A Al-Anazi (10402_CR6) 2010; 114
L Gan (10402_CR31) 2019; 46
M Bramer (10402_CR20) 2016
Y Freund (10402_CR30) 1997; 55
JJ Liu (10402_CR45) 2022; 2022
MY Matveev (10402_CR49) 2021; 143
CS Pitombo (10402_CR62) 2017; 77
S Asante-Okyere (10402_CR15) 2020; 145
H Rao (10402_CR66) 2019; 74
D Cabrera (10402_CR21) 2021; 54
J Wu (10402_CR78) 2024; 120
FA Aljuboori (10402_CR9) 2021; 36
10402_CR41
10402_CR85
Y Bashir (10402_CR17) 2024; 14
Y Sun (10402_CR68) 2024; 36
S Zaremotlagh (10402_CR82) 2016; 170
E Mohammadian (10402_CR50) 2022; 12
MA Davari (10402_CR25) 2024
B Rafik (10402_CR65) 2017; 26
DS Edwards (10402_CR27) 1999; 39
J Humadi (10402_CR36) 2024; 58
JO Adegbite (10402_CR1) 2021
MA Ahmadi (10402_CR5) 2013; 61
Z Wang (10402_CR76) 2024; 9
DC Feng (10402_CR29) 2020; 230
10402_CR39
J Qian (10402_CR64) 2024; 629
X Liu (10402_CR46) 2018; 10
K Pearson (10402_CR59) 1901; 2
HK Al-Mohair (10402_CR10) 2015; 33
C Qian (10402_CR63) 2021; 207
M Ahmadi (10402_CR4) 2017; 15
AJ Izenman (10402_CR37) 2008; 10
W Jia (10402_CR38) 2015; 43
MR Kaloop (10402_CR40) 2020; 264
A Leisi (10402_CR42) 2024; 223
BT Pham (10402_CR61) 2021; 27
A Mangione (10402_CR48) 2021; 132
XH Tan (10402_CR69) 2017; 172
S Asante-Okyere (10402_CR14) 2020; 29
EE Nyakilla (10402_CR55) 2021
M Röding (10402_CR67) 2020
W Chen (10402_CR23) 2020; 195
B Wang (10402_CR74) 2024; 12
AA Adeniran (10402_CR2) 2019; 1
AS Al-Rikaby (10402_CR12) 2024; 33
J Zhang (10402_CR83) 2024; 14
References_xml – volume: 33
  start-page: 1
  year: 2024
  ident: 10402_CR12
  publication-title: Egyptian Journal of Petroleum
  doi: 10.62593/2090-2468.1011
– volume: 64
  year: 2021
  ident: 10402_CR60
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101389
– volume: 2022
  start-page: 2263329
  year: 2022
  ident: 10402_CR45
  publication-title: Geofluids
– volume: 26
  start-page: 763
  year: 2017
  ident: 10402_CR65
  publication-title: Algeria. Egypt. J. Pet.
  doi: 10.1016/j.ejpe.2016.10.013
– volume: 230
  year: 2020
  ident: 10402_CR29
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 1
  year: 2019
  ident: 10402_CR2
  publication-title: Applied Computing and Geosciences
  doi: 10.1016/j.acags.2019.100004
– volume: 145
  year: 2020
  ident: 10402_CR15
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2020.104555
– volume: 46
  start-page: 935
  year: 2019
  ident: 10402_CR31
  publication-title: Petroleum Exploration and Development
  doi: 10.1016/S1876-3804(19)60250-8
– volume: 37
  start-page: 3455
  year: 2021
  ident: 10402_CR70
  publication-title: Engineering Computations
  doi: 10.1007/s00366-020-01012-z
– volume: 55
  start-page: 119
  year: 1997
  ident: 10402_CR30
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– ident: 10402_CR39
  doi: 10.1088/1757-899X/671/1/012071
– volume: 183
  year: 2020
  ident: 10402_CR72
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2020.104207
– volume: 61
  start-page: 582
  year: 2013
  ident: 10402_CR8
  publication-title: Geophysical Prospecting
  doi: 10.1111/j.1365-2478.2012.01080.x
– volume: 20
  start-page: 134
  year: 2006
  ident: 10402_CR77
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2005.01.022
– volume: 7
  start-page: 75
  year: 2004
  ident: 10402_CR16
  publication-title: SPE Reservoir Evaluation and Engineering
  doi: 10.2118/87824-PA
– volume: 38
  start-page: 978
  year: 2011
  ident: 10402_CR44
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2011.07.008
– volume: 420
  year: 2021
  ident: 10402_CR81
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.130069
– volume: 195
  year: 2020
  ident: 10402_CR23
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104777
– volume: 33
  start-page: 337
  year: 2015
  ident: 10402_CR10
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.046
– volume: 10
  start-page: 970
  year: 2008
  ident: 10402_CR37
  publication-title: Regression Classification, and Manifold Learning
– volume: 84
  start-page: B363
  year: 2019
  ident: 10402_CR84
  publication-title: Geophysics
  doi: 10.1190/geo2018-0588.1
– volume: 317
  start-page: 125778
  year: 2022
  ident: 10402_CR54
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2021.125778
– volume: 201
  year: 2021
  ident: 10402_CR19
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2021.108361
– volume: 223
  year: 2024
  ident: 10402_CR42
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2024.105351
– volume: 132
  year: 2021
  ident: 10402_CR48
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2021.105196
– volume: 10
  start-page: 694
  year: 2018
  ident: 10402_CR46
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2018.04.003
– volume: 39
  start-page: 297
  year: 1999
  ident: 10402_CR27
  publication-title: APPEA J.
  doi: 10.1071/AJ98017
– volume: 12
  start-page: 271
  year: 2024
  ident: 10402_CR74
  publication-title: Processes
  doi: 10.3390/pr12020271
– volume: 54
  start-page: 1171
  year: 2021
  ident: 10402_CR21
  publication-title: Rock Mechanics and Rock Engineering
  doi: 10.1007/s00603-020-02323-9
– volume: 128
  start-page: 392
  year: 2019
  ident: 10402_CR26
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.06.001
– volume: 143
  year: 2021
  ident: 10402_CR49
  publication-title: Composites Part A, Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2021.106323
– volume: 185
  year: 2024
  ident: 10402_CR43
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2024.104631
– volume: 285
  year: 2021
  ident: 10402_CR13
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2021.106059
– volume: 5
  year: 2024
  ident: 10402_CR56
  publication-title: Energy Geosci.
  doi: 10.1016/j.engeos.2023.100229
– year: 2021
  ident: 10402_CR55
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09988-1
– volume: 2016
  start-page: 2699
  year: 2016
  ident: 10402_CR32
  publication-title: Construction Research Congress
– year: 2021
  ident: 10402_CR1
  publication-title: Petroleum Research
  doi: 10.1016/j.ptlrs.2021.05.005
– ident: 10402_CR41
– volume: 36
  start-page: 1
  year: 2021
  ident: 10402_CR9
  publication-title: Carbonates and Evaporites
  doi: 10.1007/s13146-021-00707-8
– volume: 58
  start-page: 115
  year: 2024
  ident: 10402_CR36
  publication-title: Journal of Chemical and Petroleum Engineering.
– year: 2024
  ident: 10402_CR25
  publication-title: Journal of Petroleum Geomechanics
  doi: 10.22107/JPG.2024.426878.1220
– volume: 264
  year: 2020
  ident: 10402_CR40
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2020.120198
– volume: 172
  start-page: 230
  year: 2017
  ident: 10402_CR69
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2017.06.041
– volume: 9
  start-page: 15357
  year: 2024
  ident: 10402_CR76
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c10247
– volume: 5
  start-page: 271
  year: 2019
  ident: 10402_CR3
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2018.06.002
– volume: 59
  start-page: 97
  year: 2018
  ident: 10402_CR33
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2018.08.020
– volume: 61
  start-page: 582
  year: 2013
  ident: 10402_CR5
  publication-title: Geophysical Prospecting
  doi: 10.1111/j.1365-2478.2012.01080.x
– volume: 40
  start-page: 2007
  year: 2013
  ident: 10402_CR24
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.10.023
– volume: 74
  start-page: 634
  year: 2019
  ident: 10402_CR66
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.10.036
– volume: 170
  start-page: 94
  year: 2016
  ident: 10402_CR82
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2016.08.017
– volume: 14
  start-page: 1
  year: 2008
  ident: 10402_CR79
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-007-0114-2
– volume: 14
  start-page: 930
  year: 2024
  ident: 10402_CR80
  publication-title: Scientific Repoorts
  doi: 10.1038/s41598-024-51479-9
– year: 2020
  ident: 10402_CR67
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-72085-5
– volume: 282
  year: 2024
  ident: 10402_CR71
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2023.104435
– volume: 29
  start-page: 2257
  year: 2020
  ident: 10402_CR14
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09576-4
– volume: 48
  start-page: 2000
  year: 2024
  ident: 10402_CR75
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
  doi: 10.1002/nag.3720
– year: 2021
  ident: 10402_CR35
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.06.096
– volume: 151
  start-page: 224
  year: 2017
  ident: 10402_CR18
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.01.003
– volume: 39
  start-page: 64
  year: 2012
  ident: 10402_CR7
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2011.06.011
– ident: 10402_CR11
  doi: 10.4043/30763-MS
– volume: 36
  start-page: 026604
  year: 2024
  ident: 10402_CR68
  publication-title: Physics of Fluids
  doi: 10.1063/5.0190078
– volume: 77
  start-page: 16
  year: 2017
  ident: 10402_CR62
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2017.01.009
– volume: 27
  year: 2021
  ident: 10402_CR61
  publication-title: Transportation Geotechnics
  doi: 10.1016/j.trgeo.2020.100508
– volume: 120
  year: 2024
  ident: 10402_CR78
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2024.103006
– volume: 14
  start-page: 1173
  issue: 5
  year: 2024
  ident: 10402_CR17
  publication-title: Journal of Petroleum Exploration and Production Technology
  doi: 10.1007/s13202-024-01767-x
– volume: 114
  start-page: 267
  year: 2010
  ident: 10402_CR6
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2010.05.005
– start-page: 9
  volume-title: Principles of data mining
  year: 2016
  ident: 10402_CR20
  doi: 10.1007/978-1-4471-7307-6_2
– volume: 166
  year: 2020
  ident: 10402_CR22
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108161
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 10402_CR73
  doi: 10.1007/978-1-4757-2440-0
– volume: 629
  year: 2024
  ident: 10402_CR64
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2023.130600
– volume: 140
  start-page: 072903
  year: 2018
  ident: 10402_CR51
  publication-title: Journal of Energy Resources Technology
  doi: 10.1115/1.4039270
– volume: 133
  year: 2021
  ident: 10402_CR28
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2021.105265
– ident: 10402_CR85
  doi: 10.2523/IPTC-24124-MS
– volume: 43
  start-page: 176
  year: 2015
  ident: 10402_CR38
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-014-0618-x
– volume: 125
  start-page: 253
  year: 2016
  ident: 10402_CR86
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2016.03.019
– volume: 280
  year: 2021
  ident: 10402_CR34
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2020.105876
– volume: 91
  year: 2021
  ident: 10402_CR57
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.103962
– volume: 15
  start-page: 213
  year: 2017
  ident: 10402_CR4
  publication-title: International Journal of Civil Engineering
  doi: 10.1007/s40999-016-0096-0
– volume: 173
  start-page: 51
  year: 2017
  ident: 10402_CR58
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2017.02.009
– volume: 2
  start-page: 559
  year: 1901
  ident: 10402_CR59
  publication-title: Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 239
  start-page: 121915
  year: 2021
  ident: 10402_CR52
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121915
– volume: 14
  start-page: 3956
  year: 2024
  ident: 10402_CR83
  publication-title: Applied Sciences
  doi: 10.3390/app14103956
– volume: 220
  year: 2024
  ident: 10402_CR47
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2023.105249
– volume: 207
  year: 2021
  ident: 10402_CR63
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2021.109154
– volume: 24
  start-page: 203
  year: 2015
  ident: 10402_CR53
  publication-title: Egyptian Journal of Petroleum
  doi: 10.1016/j.ejpe.2015.05.012
– volume: 12
  start-page: 1
  year: 2022
  ident: 10402_CR50
  publication-title: Science and Reports
  doi: 10.1038/s41598-021-99269-x
SSID ssj0007385
Score 2.3796065
Snippet Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 383
SubjectTerms Artificial neural networks
Back propagation networks
Core analysis
Fieldwork
Gaussian process
geophysical logging
Machine learning
Mathematical models
Mean square errors
Multivariate analysis
Neural networks
normal distribution
Performance evaluation
Permeability
Porosity
prediction
Reservoirs
Support vector machines
Well logs
Title Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data
URI https://www.proquest.com/docview/3154285017
https://www.proquest.com/docview/3165879389
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IaTxgGCAKBvISLx1mZI4SR3eCupWEFRIrGJvkZ04WyWaTFmqqfxd_IHc2c5Hx0CMlypKUyfV_XJfvvsdIW9kHKYjMNROmkruBCKWjpQ8dzKwFa5kKnYVdiN_nkXTefDxLDzb2t7tVS2tanmU_ri1r-R_pArnQK7YJXsHybaLwgk4BvnCJ0gYPv9JxpOWqttwimCGtVxUwy9lVepaC90KALpXGTbutekm-Yb5uk_lOYi8FsN3YMeyoS5KHk6KK7XEXqqxpRpvGteXl5W6sLXuXzUP9QckwNQkyJhsmPQGBeiE6mJp54I15aHHWCqHVWD6rn2feCYM90dldxJwI8MmY24ZFdRLXczW4P4CjLU-z64X8PxHbT3RShQXK2EKj9oXYFpi17JNkU9F2StuqOzw7xMw3nU_F-KHTfl0p74hGMYQy1g3e27EHB6bwTCNzrcJ1D62jQJnZqyO9QUCzTnxu5lxbds1OKe4Cx6AMYM43Ik7o9oUEtywtW0FZMcWjWsksEai10jibXLPh5AHp3HM_XHrVSDrkOb-tf_QNoCZNtCbz7HpZG36GNpxOn1EHtqIh44NfB-TLVXskQc9Hsw9cv9Ez5dePyE_O0jTMqctpGkDaQpYon1IU4Q0RUhTgDRFcFENaQpLiII2kKYNpN_SMd0ANNWAphuApn1AH9IOzof6AVow6_s9JfPjyen7qWMHizgpc3ntMMYi4bMwkx53o5QrTwS54m7KsiwVQeiBXmNB5qmRygXS1_tKwqGX8xHEAyPGnpGdoizUc0JZ6KYyj3OJ-_m5TIWn8oj7MhaRiGKeDYjXSCJJLes-Dn_5nvwZAQMybH9zaThn_nr1QSPgxOqmq4RBZOTzEMztgLxuvwbLgduBolDlCq-B6APMM49f3OmG-2S3e_cOyE5drdRL8Mxr-UpD9hckm-MM
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Reservoir+Porosity+and+Permeability+from+Well+Log+Data+Based+on+an+Ensemble+Approach%3A+A+Comprehensive+Study+Incorporating+Experimental%2C+Simulation%2C+and+Fieldwork+Data&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Nyakilla%2C+Edwin+E.&rft.au=Guanhua%2C+Sun&rft.au=Hongliang%2C+Hao&rft.au=Charles%2C+Grant&rft.date=2025-02-01&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=34&rft.issue=1&rft.spage=383&rft.epage=408&rft_id=info:doi/10.1007%2Fs11053-024-10402-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11053_024_10402_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon