Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data
Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ens...
Saved in:
Published in | Natural resources research (New York, N.Y.) Vol. 34; no. 1; pp. 383 - 408 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R2) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R2 values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization. |
---|---|
AbstractList | Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R2) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R2 values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization. Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core analysis is time-consuming, machine learning has emerged as a valuable tool for more efficient and accurate estimation. This paper proposes an ensemble technique called adaptive boosting (AdaBoost) for porosity and permeability estimation, utilizing methods such as support vector machine (SVM), Gaussian process regression (GPR), multivariate analysis, and backpropagation neural network (BPNN) for prediction based on well logs. Performance evaluation metrics including root mean square error, mean square error, and coefficient of determination (R²) were used to compare the models. The results demonstrate that AdaBoost outperformed GPR, SVM, and BPNN models in terms of processing time and accuracy, achieving R² values of 0.980 and 0.962 for permeability and porosity during training, respectively, and 0.960 and 0.951 during testing, respectively. This study highlights AdaBoost as a robust and accurate technique that can enhance reservoir characterization. |
Author | Abdulmalik, Alaa Guanhua, Sun Naqibulla, Safi Ngata, Mbega R. Mgimba, Melckzedeck Nyakilla, Edwin E. Kasala, Erasto Silingi, Selemani N. Abelly, Elieneza N. Shanghvi, Eric R. Hongliang, Hao Ricky, Emanuel X. Dan, Li Nafouanti, Mouigni B. Said, Fatna A. Nadege, Mbula N. Kasali, Johnson J. Charles, Grant |
Author_xml | – sequence: 1 givenname: Edwin E. orcidid: 0000-0002-7402-2611 surname: Nyakilla fullname: Nyakilla, Edwin E. – sequence: 2 givenname: Sun surname: Guanhua fullname: Guanhua, Sun – sequence: 3 givenname: Hao surname: Hongliang fullname: Hongliang, Hao – sequence: 4 givenname: Grant surname: Charles fullname: Charles, Grant – sequence: 5 givenname: Mouigni B. surname: Nafouanti fullname: Nafouanti, Mouigni B. – sequence: 6 givenname: Emanuel X. surname: Ricky fullname: Ricky, Emanuel X. – sequence: 7 givenname: Selemani N. surname: Silingi fullname: Silingi, Selemani N. – sequence: 8 givenname: Elieneza N. surname: Abelly fullname: Abelly, Elieneza N. – sequence: 9 givenname: Eric R. surname: Shanghvi fullname: Shanghvi, Eric R. – sequence: 10 givenname: Safi surname: Naqibulla fullname: Naqibulla, Safi – sequence: 11 givenname: Mbega R. surname: Ngata fullname: Ngata, Mbega R. – sequence: 12 givenname: Erasto surname: Kasala fullname: Kasala, Erasto – sequence: 13 givenname: Melckzedeck surname: Mgimba fullname: Mgimba, Melckzedeck – sequence: 14 givenname: Alaa surname: Abdulmalik fullname: Abdulmalik, Alaa – sequence: 15 givenname: Fatna A. surname: Said fullname: Said, Fatna A. – sequence: 16 givenname: Mbula N. surname: Nadege fullname: Nadege, Mbula N. – sequence: 17 givenname: Johnson J. surname: Kasali fullname: Kasali, Johnson J. – sequence: 18 givenname: Li surname: Dan fullname: Dan, Li |
BookMark | eNp9UU1v1DAQtVCRaAt_gJMlLhwaasfJxuG2LFtaaSUqCuJozTqT1sWxg-0s7P_iB-LNcuqBk0fWezPv44ycOO-QkNecveOMNZeRc1aLgpVVwVnFyqJ9Rk553YhCtpKfHOaSFU0l2hfkLMZHlklC1qfkz3oHdoJkvKO-p18wYth5E-itDz6atKfgOnqLYUDYGnv46IMf6He0lm78Pf0ICegHiNjRvAIcXbuIw9YiXY5j8KAf3tMlXflhDPiALpod0rs0dXt647QPow_5uLun698jBjOgS2Av6J0ZJjurupgFXBm03S8ffsz3XpLnPdiIr_695-Tb1frr6rrYfP50s1puCi2YTIUQYgGlqLstl2yhJXKoepRMi67TUNUctRZVx7HBHqAFLHGbR97Lhpc5O3FO3h73ZiM_J4xJDSbq7Bwc-ikqwRe1bFoh2wx98wT66KfgsrqMqqtS1ow3GSWPKJ3DjQF7pU2abaYAxirO1KFOdaxT5TrVXKc6HCifUMccF4T9_0h_AcCbp4w |
CitedBy_id | crossref_primary_10_1007_s11053_025_10474_1 crossref_primary_10_2118_224438_PA |
Cites_doi | 10.62593/2090-2468.1011 10.1016/j.ecoinf.2021.101389 10.1016/j.ejpe.2016.10.013 10.1016/j.conbuildmat.2019.117000 10.1016/j.acags.2019.100004 10.1016/j.cageo.2020.104555 10.1016/S1876-3804(19)60250-8 10.1007/s00366-020-01012-z 10.1006/jcss.1997.1504 10.1088/1757-899X/671/1/012071 10.1016/j.jappgeo.2020.104207 10.1111/j.1365-2478.2012.01080.x 10.1016/j.conbuildmat.2005.01.022 10.2118/87824-PA 10.1016/j.compgeo.2011.07.008 10.1016/j.cej.2021.130069 10.1016/j.catena.2020.104777 10.1016/j.asoc.2015.04.046 10.1190/geo2018-0588.1 10.1016/j.conbuildmat.2021.125778 10.1016/j.petrol.2021.108361 10.1016/j.jappgeo.2024.105351 10.1016/j.marpetgeo.2021.105196 10.1016/j.jrmge.2018.04.003 10.1071/AJ98017 10.3390/pr12020271 10.1007/s00603-020-02323-9 10.1016/j.compchemeng.2019.06.001 10.1016/j.compositesa.2021.106323 10.1016/j.advwatres.2024.104631 10.1016/j.enggeo.2021.106059 10.1016/j.engeos.2023.100229 10.1007/s11053-021-09988-1 10.1016/j.ptlrs.2021.05.005 10.1007/s13146-021-00707-8 10.22107/JPG.2024.426878.1220 10.1016/j.conbuildmat.2020.120198 10.1016/j.ces.2017.06.041 10.1021/acsomega.3c10247 10.1016/j.petlm.2018.06.002 10.1016/j.jngse.2018.08.020 10.1016/j.eswa.2012.10.023 10.1016/j.asoc.2018.10.036 10.1016/j.gexplo.2016.08.017 10.1007/s10115-007-0114-2 10.1038/s41598-024-51479-9 10.1038/s41598-020-72085-5 10.1016/j.coal.2023.104435 10.1007/s11053-019-09576-4 10.1002/nag.3720 10.1016/j.aej.2021.06.096 10.1016/j.petrol.2017.01.003 10.1016/j.cageo.2011.06.011 10.4043/30763-MS 10.1063/5.0190078 10.1016/j.trc.2017.01.009 10.1016/j.trgeo.2020.100508 10.1016/j.geothermics.2024.103006 10.1007/s13202-024-01767-x 10.1016/j.enggeo.2010.05.005 10.1007/978-1-4471-7307-6_2 10.1016/j.measurement.2020.108161 10.1007/978-1-4757-2440-0 10.1016/j.jhydrol.2023.130600 10.1115/1.4039270 10.1016/j.marpetgeo.2021.105265 10.2523/IPTC-24124-MS 10.1007/s10489-014-0618-x 10.1016/j.jclepro.2016.03.019 10.1016/j.enggeo.2020.105876 10.1016/j.jngse.2021.103962 10.1007/s40999-016-0096-0 10.1016/j.coal.2017.02.009 10.1080/14786440109462720 10.1016/j.energy.2021.121915 10.3390/app14103956 10.1016/j.jappgeo.2023.105249 10.1016/j.petrol.2021.109154 10.1016/j.ejpe.2015.05.012 10.1038/s41598-021-99269-x |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. Feb 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. Feb 2025 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1007/s11053-024-10402-9 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1573-8981 |
EndPage | 408 |
ExternalDocumentID | 10_1007_s11053_024_10402_9 |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PHGZM PHGZT PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~A9 ~KM ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c308t-3336a235db1806c8e1a4fe80c3ddca451ecc34d1e7efaa9ae2eb7ef1f87125733 |
ISSN | 1520-7439 |
IngestDate | Fri Jul 11 08:34:23 EDT 2025 Tue Jul 29 04:10:53 EDT 2025 Tue Jul 01 04:16:52 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-3336a235db1806c8e1a4fe80c3ddca451ecc34d1e7efaa9ae2eb7ef1f87125733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7402-2611 |
PQID | 3154285017 |
PQPubID | 2043663 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_3165879389 proquest_journals_3154285017 crossref_citationtrail_10_1007_s11053_024_10402_9 crossref_primary_10_1007_s11053_024_10402_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Natural resources research (New York, N.Y.) |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | KW Liao (10402_CR44) 2011; 38 G Wu (10402_CR77) 2006; 20 P Yalamanchi (10402_CR80) 2024; 14 V Bolandi (10402_CR18) 2017; 151 L Wang (10402_CR75) 2024; 48 T Yasuda (10402_CR81) 2021; 420 F Hidayat (10402_CR35) 2021 J D’Haen (10402_CR24) 2013; 40 MME Nady (10402_CR53) 2015; 24 J Tian (10402_CR70) 2021; 37 XY Zhuang (10402_CR86) 2016; 125 DA Otchere (10402_CR56) 2024; 5 VA Dev (10402_CR26) 2019; 128 VN Vapnik (10402_CR73) 1995 Z Tong (10402_CR71) 2024; 282 DA Otchere (10402_CR57) 2021; 91 BT Pham (10402_CR60) 2021; 64 T Moussa (10402_CR51) 2018; 140 A Mahdy (10402_CR47) 2024; 220 AK Mulashani (10402_CR52) 2021; 239 S Farouk (10402_CR28) 2021; 133 P Gholizadeh (10402_CR32) 2016; 2016 S Pan (10402_CR58) 2017; 173 AF Al-Anazi (10402_CR7) 2012; 39 CR Bom (10402_CR19) 2021; 201 H Han (10402_CR34) 2021; 280 M Ali Ahmadi (10402_CR8) 2013; 61 T Babadagli (10402_CR16) 2004; 7 Y Gu (10402_CR33) 2018; 59 JG Urang (10402_CR72) 2020; 183 Z Zhong (10402_CR84) 2019; 84 X Wu (10402_CR79) 2008; 14 S Chen (10402_CR22) 2020; 166 EE Nyakilla (10402_CR54) 2022; 317 J Li (10402_CR43) 2024; 185 10402_CR11 F Amour (10402_CR13) 2021; 285 MA Ahmadi (10402_CR3) 2019; 5 A Al-Anazi (10402_CR6) 2010; 114 L Gan (10402_CR31) 2019; 46 M Bramer (10402_CR20) 2016 Y Freund (10402_CR30) 1997; 55 JJ Liu (10402_CR45) 2022; 2022 MY Matveev (10402_CR49) 2021; 143 CS Pitombo (10402_CR62) 2017; 77 S Asante-Okyere (10402_CR15) 2020; 145 H Rao (10402_CR66) 2019; 74 D Cabrera (10402_CR21) 2021; 54 J Wu (10402_CR78) 2024; 120 FA Aljuboori (10402_CR9) 2021; 36 10402_CR41 10402_CR85 Y Bashir (10402_CR17) 2024; 14 Y Sun (10402_CR68) 2024; 36 S Zaremotlagh (10402_CR82) 2016; 170 E Mohammadian (10402_CR50) 2022; 12 MA Davari (10402_CR25) 2024 B Rafik (10402_CR65) 2017; 26 DS Edwards (10402_CR27) 1999; 39 J Humadi (10402_CR36) 2024; 58 JO Adegbite (10402_CR1) 2021 MA Ahmadi (10402_CR5) 2013; 61 Z Wang (10402_CR76) 2024; 9 DC Feng (10402_CR29) 2020; 230 10402_CR39 J Qian (10402_CR64) 2024; 629 X Liu (10402_CR46) 2018; 10 K Pearson (10402_CR59) 1901; 2 HK Al-Mohair (10402_CR10) 2015; 33 C Qian (10402_CR63) 2021; 207 M Ahmadi (10402_CR4) 2017; 15 AJ Izenman (10402_CR37) 2008; 10 W Jia (10402_CR38) 2015; 43 MR Kaloop (10402_CR40) 2020; 264 A Leisi (10402_CR42) 2024; 223 BT Pham (10402_CR61) 2021; 27 A Mangione (10402_CR48) 2021; 132 XH Tan (10402_CR69) 2017; 172 S Asante-Okyere (10402_CR14) 2020; 29 EE Nyakilla (10402_CR55) 2021 M Röding (10402_CR67) 2020 W Chen (10402_CR23) 2020; 195 B Wang (10402_CR74) 2024; 12 AA Adeniran (10402_CR2) 2019; 1 AS Al-Rikaby (10402_CR12) 2024; 33 J Zhang (10402_CR83) 2024; 14 |
References_xml | – volume: 33 start-page: 1 year: 2024 ident: 10402_CR12 publication-title: Egyptian Journal of Petroleum doi: 10.62593/2090-2468.1011 – volume: 64 year: 2021 ident: 10402_CR60 publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101389 – volume: 2022 start-page: 2263329 year: 2022 ident: 10402_CR45 publication-title: Geofluids – volume: 26 start-page: 763 year: 2017 ident: 10402_CR65 publication-title: Algeria. Egypt. J. Pet. doi: 10.1016/j.ejpe.2016.10.013 – volume: 230 year: 2020 ident: 10402_CR29 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2019.117000 – volume: 1 year: 2019 ident: 10402_CR2 publication-title: Applied Computing and Geosciences doi: 10.1016/j.acags.2019.100004 – volume: 145 year: 2020 ident: 10402_CR15 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2020.104555 – volume: 46 start-page: 935 year: 2019 ident: 10402_CR31 publication-title: Petroleum Exploration and Development doi: 10.1016/S1876-3804(19)60250-8 – volume: 37 start-page: 3455 year: 2021 ident: 10402_CR70 publication-title: Engineering Computations doi: 10.1007/s00366-020-01012-z – volume: 55 start-page: 119 year: 1997 ident: 10402_CR30 publication-title: Journal of Computer and System Sciences doi: 10.1006/jcss.1997.1504 – ident: 10402_CR39 doi: 10.1088/1757-899X/671/1/012071 – volume: 183 year: 2020 ident: 10402_CR72 publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2020.104207 – volume: 61 start-page: 582 year: 2013 ident: 10402_CR8 publication-title: Geophysical Prospecting doi: 10.1111/j.1365-2478.2012.01080.x – volume: 20 start-page: 134 year: 2006 ident: 10402_CR77 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2005.01.022 – volume: 7 start-page: 75 year: 2004 ident: 10402_CR16 publication-title: SPE Reservoir Evaluation and Engineering doi: 10.2118/87824-PA – volume: 38 start-page: 978 year: 2011 ident: 10402_CR44 publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2011.07.008 – volume: 420 year: 2021 ident: 10402_CR81 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.130069 – volume: 195 year: 2020 ident: 10402_CR23 publication-title: Catena doi: 10.1016/j.catena.2020.104777 – volume: 33 start-page: 337 year: 2015 ident: 10402_CR10 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.04.046 – volume: 10 start-page: 970 year: 2008 ident: 10402_CR37 publication-title: Regression Classification, and Manifold Learning – volume: 84 start-page: B363 year: 2019 ident: 10402_CR84 publication-title: Geophysics doi: 10.1190/geo2018-0588.1 – volume: 317 start-page: 125778 year: 2022 ident: 10402_CR54 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2021.125778 – volume: 201 year: 2021 ident: 10402_CR19 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2021.108361 – volume: 223 year: 2024 ident: 10402_CR42 publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2024.105351 – volume: 132 year: 2021 ident: 10402_CR48 publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2021.105196 – volume: 10 start-page: 694 year: 2018 ident: 10402_CR46 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2018.04.003 – volume: 39 start-page: 297 year: 1999 ident: 10402_CR27 publication-title: APPEA J. doi: 10.1071/AJ98017 – volume: 12 start-page: 271 year: 2024 ident: 10402_CR74 publication-title: Processes doi: 10.3390/pr12020271 – volume: 54 start-page: 1171 year: 2021 ident: 10402_CR21 publication-title: Rock Mechanics and Rock Engineering doi: 10.1007/s00603-020-02323-9 – volume: 128 start-page: 392 year: 2019 ident: 10402_CR26 publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2019.06.001 – volume: 143 year: 2021 ident: 10402_CR49 publication-title: Composites Part A, Applied Science and Manufacturing doi: 10.1016/j.compositesa.2021.106323 – volume: 185 year: 2024 ident: 10402_CR43 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2024.104631 – volume: 285 year: 2021 ident: 10402_CR13 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2021.106059 – volume: 5 year: 2024 ident: 10402_CR56 publication-title: Energy Geosci. doi: 10.1016/j.engeos.2023.100229 – year: 2021 ident: 10402_CR55 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09988-1 – volume: 2016 start-page: 2699 year: 2016 ident: 10402_CR32 publication-title: Construction Research Congress – year: 2021 ident: 10402_CR1 publication-title: Petroleum Research doi: 10.1016/j.ptlrs.2021.05.005 – ident: 10402_CR41 – volume: 36 start-page: 1 year: 2021 ident: 10402_CR9 publication-title: Carbonates and Evaporites doi: 10.1007/s13146-021-00707-8 – volume: 58 start-page: 115 year: 2024 ident: 10402_CR36 publication-title: Journal of Chemical and Petroleum Engineering. – year: 2024 ident: 10402_CR25 publication-title: Journal of Petroleum Geomechanics doi: 10.22107/JPG.2024.426878.1220 – volume: 264 year: 2020 ident: 10402_CR40 publication-title: Construction and Building Materials doi: 10.1016/j.conbuildmat.2020.120198 – volume: 172 start-page: 230 year: 2017 ident: 10402_CR69 publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2017.06.041 – volume: 9 start-page: 15357 year: 2024 ident: 10402_CR76 publication-title: ACS Omega doi: 10.1021/acsomega.3c10247 – volume: 5 start-page: 271 year: 2019 ident: 10402_CR3 publication-title: Petroleum doi: 10.1016/j.petlm.2018.06.002 – volume: 59 start-page: 97 year: 2018 ident: 10402_CR33 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2018.08.020 – volume: 61 start-page: 582 year: 2013 ident: 10402_CR5 publication-title: Geophysical Prospecting doi: 10.1111/j.1365-2478.2012.01080.x – volume: 40 start-page: 2007 year: 2013 ident: 10402_CR24 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.10.023 – volume: 74 start-page: 634 year: 2019 ident: 10402_CR66 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.10.036 – volume: 170 start-page: 94 year: 2016 ident: 10402_CR82 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2016.08.017 – volume: 14 start-page: 1 year: 2008 ident: 10402_CR79 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-007-0114-2 – volume: 14 start-page: 930 year: 2024 ident: 10402_CR80 publication-title: Scientific Repoorts doi: 10.1038/s41598-024-51479-9 – year: 2020 ident: 10402_CR67 publication-title: Scientific Reports doi: 10.1038/s41598-020-72085-5 – volume: 282 year: 2024 ident: 10402_CR71 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2023.104435 – volume: 29 start-page: 2257 year: 2020 ident: 10402_CR14 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09576-4 – volume: 48 start-page: 2000 year: 2024 ident: 10402_CR75 publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.3720 – year: 2021 ident: 10402_CR35 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.06.096 – volume: 151 start-page: 224 year: 2017 ident: 10402_CR18 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.01.003 – volume: 39 start-page: 64 year: 2012 ident: 10402_CR7 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2011.06.011 – ident: 10402_CR11 doi: 10.4043/30763-MS – volume: 36 start-page: 026604 year: 2024 ident: 10402_CR68 publication-title: Physics of Fluids doi: 10.1063/5.0190078 – volume: 77 start-page: 16 year: 2017 ident: 10402_CR62 publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2017.01.009 – volume: 27 year: 2021 ident: 10402_CR61 publication-title: Transportation Geotechnics doi: 10.1016/j.trgeo.2020.100508 – volume: 120 year: 2024 ident: 10402_CR78 publication-title: Geothermics doi: 10.1016/j.geothermics.2024.103006 – volume: 14 start-page: 1173 issue: 5 year: 2024 ident: 10402_CR17 publication-title: Journal of Petroleum Exploration and Production Technology doi: 10.1007/s13202-024-01767-x – volume: 114 start-page: 267 year: 2010 ident: 10402_CR6 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2010.05.005 – start-page: 9 volume-title: Principles of data mining year: 2016 ident: 10402_CR20 doi: 10.1007/978-1-4471-7307-6_2 – volume: 166 year: 2020 ident: 10402_CR22 publication-title: Measurement doi: 10.1016/j.measurement.2020.108161 – volume-title: The nature of statistical learning theory year: 1995 ident: 10402_CR73 doi: 10.1007/978-1-4757-2440-0 – volume: 629 year: 2024 ident: 10402_CR64 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2023.130600 – volume: 140 start-page: 072903 year: 2018 ident: 10402_CR51 publication-title: Journal of Energy Resources Technology doi: 10.1115/1.4039270 – volume: 133 year: 2021 ident: 10402_CR28 publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2021.105265 – ident: 10402_CR85 doi: 10.2523/IPTC-24124-MS – volume: 43 start-page: 176 year: 2015 ident: 10402_CR38 publication-title: Applied Intelligence doi: 10.1007/s10489-014-0618-x – volume: 125 start-page: 253 year: 2016 ident: 10402_CR86 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2016.03.019 – volume: 280 year: 2021 ident: 10402_CR34 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2020.105876 – volume: 91 year: 2021 ident: 10402_CR57 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103962 – volume: 15 start-page: 213 year: 2017 ident: 10402_CR4 publication-title: International Journal of Civil Engineering doi: 10.1007/s40999-016-0096-0 – volume: 173 start-page: 51 year: 2017 ident: 10402_CR58 publication-title: International Journal of Coal Geology doi: 10.1016/j.coal.2017.02.009 – volume: 2 start-page: 559 year: 1901 ident: 10402_CR59 publication-title: Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440109462720 – volume: 239 start-page: 121915 year: 2021 ident: 10402_CR52 publication-title: Energy doi: 10.1016/j.energy.2021.121915 – volume: 14 start-page: 3956 year: 2024 ident: 10402_CR83 publication-title: Applied Sciences doi: 10.3390/app14103956 – volume: 220 year: 2024 ident: 10402_CR47 publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2023.105249 – volume: 207 year: 2021 ident: 10402_CR63 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2021.109154 – volume: 24 start-page: 203 year: 2015 ident: 10402_CR53 publication-title: Egyptian Journal of Petroleum doi: 10.1016/j.ejpe.2015.05.012 – volume: 12 start-page: 1 year: 2022 ident: 10402_CR50 publication-title: Science and Reports doi: 10.1038/s41598-021-99269-x |
SSID | ssj0007385 |
Score | 2.3796065 |
Snippet | Permeability and porosity are key parameters in reservoir characterization for understanding hydrocarbon flow behavior. While traditional laboratory core... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 383 |
SubjectTerms | Artificial neural networks Back propagation networks Core analysis Fieldwork Gaussian process geophysical logging Machine learning Mathematical models Mean square errors Multivariate analysis Neural networks normal distribution Performance evaluation Permeability Porosity prediction Reservoirs Support vector machines Well logs |
Title | Evaluation of Reservoir Porosity and Permeability from Well Log Data Based on an Ensemble Approach: A Comprehensive Study Incorporating Experimental, Simulation, and Fieldwork Data |
URI | https://www.proquest.com/docview/3154285017 https://www.proquest.com/docview/3165879389 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IaTxgGCAKBvISLx1mZI4SR3eCupWEFRIrGJvkZ04WyWaTFmqqfxd_IHc2c5Hx0CMlypKUyfV_XJfvvsdIW9kHKYjMNROmkruBCKWjpQ8dzKwFa5kKnYVdiN_nkXTefDxLDzb2t7tVS2tanmU_ri1r-R_pArnQK7YJXsHybaLwgk4BvnCJ0gYPv9JxpOWqttwimCGtVxUwy9lVepaC90KALpXGTbutekm-Yb5uk_lOYi8FsN3YMeyoS5KHk6KK7XEXqqxpRpvGteXl5W6sLXuXzUP9QckwNQkyJhsmPQGBeiE6mJp54I15aHHWCqHVWD6rn2feCYM90dldxJwI8MmY24ZFdRLXczW4P4CjLU-z64X8PxHbT3RShQXK2EKj9oXYFpi17JNkU9F2StuqOzw7xMw3nU_F-KHTfl0p74hGMYQy1g3e27EHB6bwTCNzrcJ1D62jQJnZqyO9QUCzTnxu5lxbds1OKe4Cx6AMYM43Ik7o9oUEtywtW0FZMcWjWsksEai10jibXLPh5AHp3HM_XHrVSDrkOb-tf_QNoCZNtCbz7HpZG36GNpxOn1EHtqIh44NfB-TLVXskQc9Hsw9cv9Ez5dePyE_O0jTMqctpGkDaQpYon1IU4Q0RUhTgDRFcFENaQpLiII2kKYNpN_SMd0ANNWAphuApn1AH9IOzof6AVow6_s9JfPjyen7qWMHizgpc3ntMMYi4bMwkx53o5QrTwS54m7KsiwVQeiBXmNB5qmRygXS1_tKwqGX8xHEAyPGnpGdoizUc0JZ6KYyj3OJ-_m5TIWn8oj7MhaRiGKeDYjXSCJJLes-Dn_5nvwZAQMybH9zaThn_nr1QSPgxOqmq4RBZOTzEMztgLxuvwbLgduBolDlCq-B6APMM49f3OmG-2S3e_cOyE5drdRL8Mxr-UpD9hckm-MM |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Reservoir+Porosity+and+Permeability+from+Well+Log+Data+Based+on+an+Ensemble+Approach%3A+A+Comprehensive+Study+Incorporating+Experimental%2C+Simulation%2C+and+Fieldwork+Data&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Nyakilla%2C+Edwin+E.&rft.au=Guanhua%2C+Sun&rft.au=Hongliang%2C+Hao&rft.au=Charles%2C+Grant&rft.date=2025-02-01&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=34&rft.issue=1&rft.spage=383&rft.epage=408&rft_id=info:doi/10.1007%2Fs11053-024-10402-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11053_024_10402_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |