Engineering Hierarchical Symmetries

The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A particularly promising route is the use of driving protocols to engineer specific desired properties with a high degree of control and flexib...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 14; no. 4; p. 041070
Main Authors Fu, Zhanpeng, Moessner, Roderich, Zhao, Hongzheng, Bukov, Marin
Format Journal Article
LanguageEnglish
Published American Physical Society 01.12.2024
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.14.041070

Cover

Loading…
Abstract The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A particularly promising route is the use of driving protocols to engineer specific desired properties with a high degree of control and flexibility. Here, we present such a program for the tunable generation of sequences of symmetries on controllable timescales. Concretely, our general driving protocol for many-body systems generates a sequence of prethermal regimes, each exhibiting a lower symmetry than the preceding one. We provide an explicit construction of effective Hamiltonians exhibiting these symmetries, which imprints emergent quasiconservation laws hierarchically, enabling us to engineer the respective symmetries and concomitant orders in nonequilibrium matter. We provide explicit examples, including spatiotemporal and topological phenomena, as well as a spin chain realizing the symmetry ladder SU ( 2 ) → U ( 1 ) → Z 2 → E . Our results have direct applications in experiments with quantum simulators.
AbstractList The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A particularly promising route is the use of driving protocols to engineer specific desired properties with a high degree of control and flexibility. Here, we present such a program for the tunable generation of sequences of symmetries on controllable timescales. Concretely, our general driving protocol for many-body systems generates a sequence of prethermal regimes, each exhibiting a lower symmetry than the preceding one. We provide an explicit construction of effective Hamiltonians exhibiting these symmetries, which imprints emergent quasiconservation laws hierarchically, enabling us to engineer the respective symmetries and concomitant orders in nonequilibrium matter. We provide explicit examples, including spatiotemporal and topological phenomena, as well as a spin chain realizing the symmetry ladder SU ( 2 ) → U ( 1 ) → Z 2 → E . Our results have direct applications in experiments with quantum simulators.
The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A particularly promising route is the use of driving protocols to engineer specific desired properties with a high degree of control and flexibility. Here, we present such a program for the tunable generation of sequences of symmetries on controllable timescales. Concretely, our general driving protocol for many-body systems generates a sequence of prethermal regimes, each exhibiting a lower symmetry than the preceding one. We provide an explicit construction of effective Hamiltonians exhibiting these symmetries, which imprints emergent quasiconservation laws hierarchically, enabling us to engineer the respective symmetries and concomitant orders in nonequilibrium matter. We provide explicit examples, including spatiotemporal and topological phenomena, as well as a spin chain realizing the symmetry ladder SU(2)→U(1)→Z_{2}→E. Our results have direct applications in experiments with quantum simulators.
ArticleNumber 041070
Author Zhao, Hongzheng
Moessner, Roderich
Bukov, Marin
Fu, Zhanpeng
Author_xml – sequence: 1
  givenname: Zhanpeng
  surname: Fu
  fullname: Fu, Zhanpeng
– sequence: 2
  givenname: Roderich
  surname: Moessner
  fullname: Moessner, Roderich
– sequence: 3
  givenname: Hongzheng
  surname: Zhao
  fullname: Zhao, Hongzheng
– sequence: 4
  givenname: Marin
  orcidid: 0000-0002-3688-9599
  surname: Bukov
  fullname: Bukov, Marin
BookMark eNpN0E1LAzEQgOEgCtbaP-Cp4HnrTJJNukcp1RYKih_gLeRj0qa0u5IUof_ealWcywxzeA7vBTttu5YYu0IYIYK4eVztyxN9vI1QjkAiaDhhPY4KKiFgfPrvPmeDUtZwGAUote6x62m7TC1RTu1yOEuUbfar5O1m-LzfbmmXE5VLdhbtptDgZ_fZ6930ZTKrFg_388ntovIHeldx3TgVnUZB2HgU0onYcD8OQGhrTwSBO1vXrrZBSk8-gPMxas4VUFNr0Wfzoxs6uzbvOW1t3pvOJvP96PLS2LxLfkMmNF4EHgSKupFKOqskt-gbyYnzqOLB4kfL566UTPHPQzBf1cxvNYPSHKuJTwcsYuA
Cites_doi 10.1016/0370-2693(81)90590-6
10.1103/PhysRevLett.131.200201
10.1103/PhysRevResearch.4.043060
10.1103/PhysRevB.97.245122
10.1103/PhysRevLett.125.020504
10.1103/RevModPhys.93.025003
10.1103/PhysRevX.11.041054
10.1103/PhysRevLett.120.050507
10.3390/sym2020609
10.1088/1367-2630/14/7/073007
10.1103/PhysRevB.109.075126
10.1103/PhysRevLett.126.230501
10.1103/PhysRevA.106.022209
10.1103/PhysRevX.9.021013
10.1103/PhysRevLett.116.250401
10.1103/PhysRevX.12.041002
10.1103/PhysRevB.105.144204
10.1103/PhysRevB.85.075125
10.1103/PhysRevX.10.031002
10.1103/PhysRevLett.126.040601
10.1103/PhysRevResearch.6.L042033
10.1038/s41586-021-04257-w
10.1038/s41467-018-03481-9
10.1017/CBO9780511813467
10.1038/nphys3743
10.1103/PhysRevA.89.022118
10.1126/science.aah6442
10.1088/1742-5468/2016/06/064007
10.1038/s41586-022-04854-3
10.1103/PhysRevX.10.041018
10.1038/s41567-021-01277-1
10.1103/PRXQuantum.4.020329
10.1103/PhysRev.86.694
10.1103/PhysRevLett.130.226701
10.1103/PhysRevX.6.021013
10.1103/PhysRevB.104.134308
10.1038/s41567-022-01891-7
10.1103/PhysRevB.100.134302
10.1038/s41467-022-33471-x
10.1103/PRXQuantum.4.020318
10.1103/PhysRevResearch.5.043019
10.1103/PhysRevLett.123.090403
10.1103/PhysRevLett.115.256803
10.1103/PhysRevB.87.155114
10.1103/PhysRevLett.130.140402
10.1038/s41586-022-04853-4
10.1146/annurev-conmatphys-040721-015537
10.1080/00018732.2015.1055918
10.1038/s41534-023-00742-4
10.1103/PhysRevLett.127.140602
10.1038/nature18318
10.1126/science.abd9547
10.1103/PhysRevLett.122.010602
10.1103/PhysRevX.13.031008
10.1103/PhysRevLett.131.130401
10.1080/00018732.2016.1198134
10.1103/PhysRevB.109.064305
10.1103/PhysRevLett.117.090402
10.1103/PhysRevB.95.014112
10.1103/PhysRevB.99.245151
10.1038/s41586-019-1177-4
10.1126/sciadv.aat0346
10.1103/PhysRevB.108.075112
10.1103/PhysRevB.99.104303
10.1103/PhysRevLett.118.030401
10.1103/PhysRevX.10.021032
10.1103/PhysRevLett.131.056502
10.1038/s41567-019-0649-7
10.1103/PhysRevResearch.2.033461
10.1103/PhysRevB.82.235114
10.1103/PRXQuantum.2.010323
10.1103/PRXQuantum.3.020303
10.1103/PhysRevLett.127.050602
10.1103/PhysRevLett.111.021601
10.1016/j.aop.2016.01.012
10.1103/PhysRevX.10.021046
10.1103/PhysRevX.8.031070
10.1146/annurev-conmatphys-031218-013423
10.1103/PhysRevB.103.144307
10.1103/PhysRevB.98.104303
10.1103/PhysRevX.6.041001
10.1103/PhysRevResearch.3.023044
10.1146/annurev-conmatphys-020911-125058
10.1103/PhysRevLett.116.120401
10.1103/PhysRevLett.127.140603
10.1103/PRXQuantum.4.030319
10.1103/PhysRevLett.125.240405
10.1126/science.abk2397
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevX.14.041070
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_d9c3d2d31359464ba642a1c942e22f6f
10_1103_PhysRevX_14_041070
GroupedDBID 3MX
5VS
88I
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
ROL
S7W
PQGLB
PUEGO
ID FETCH-LOGICAL-c308t-279b6fb713e19c134b3f92c8d0e1a5cee0d2ba55b5ad44cecd0bcff72260e9573
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Wed Aug 27 00:45:26 EDT 2025
Tue Jul 01 01:33:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-279b6fb713e19c134b3f92c8d0e1a5cee0d2ba55b5ad44cecd0bcff72260e9573
ORCID 0000-0002-3688-9599
OpenAccessLink https://doaj.org/article/d9c3d2d31359464ba642a1c942e22f6f
ParticipantIDs doaj_primary_oai_doaj_org_article_d9c3d2d31359464ba642a1c942e22f6f
crossref_primary_10_1103_PhysRevX_14_041070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review. X
PublicationYear 2024
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.14.041070Cc10R1
PhysRevX.14.041070Cc33R1
PhysRevX.14.041070Cc56R1
PhysRevX.14.041070Cc79R1
PhysRevX.14.041070Cc31R1
PhysRevX.14.041070Cc80R1
PhysRevX.14.041070Cc4R1
PhysRevX.14.041070Cc84R1
PhysRevX.14.041070Cc28R1
PhysRevX.14.041070Cc40R1
PhysRevX.14.041070Cc61R1
PhysRevX.14.041070Cc82R1
L. D. Landau (PhysRevX.14.041070Cc1R1) 2013
PhysRevX.14.041070Cc26R1
PhysRevX.14.041070Cc8R1
PhysRevX.14.041070Cc42R1
PhysRevX.14.041070Cc63R1
PhysRevX.14.041070Cc88R1
PhysRevX.14.041070Cc24R1
PhysRevX.14.041070Cc6R1
PhysRevX.14.041070Cc44R1
PhysRevX.14.041070Cc86R1
PhysRevX.14.041070Cc45R1
PhysRevX.14.041070Cc21R1
PhysRevX.14.041070Cc47R1
PhysRevX.14.041070Cc89R1
PhysRevX.14.041070Cc49R1
PhysRevX.14.041070Cc90R1
PhysRevX.14.041070Cc18R1
PhysRevX.14.041070Cc71R1
PhysRevX.14.041070Cc94R1
PhysRevX.14.041070Cc16R1
PhysRevX.14.041070Cc39R1
PhysRevX.14.041070Cc50R1
PhysRevX.14.041070Cc73R1
PhysRevX.14.041070Cc92R1
PhysRevX.14.041070Cc14R1
PhysRevX.14.041070Cc37R1
PhysRevX.14.041070Cc52R1
PhysRevX.14.041070Cc98R1
PhysRevX.14.041070Cc12R1
PhysRevX.14.041070Cc35R1
PhysRevX.14.041070Cc54R1
PhysRevX.14.041070Cc96R1
PhysRevX.14.041070Cc11R1
PhysRevX.14.041070Cc32R1
PhysRevX.14.041070Cc57R1
PhysRevX.14.041070Cc78R1
PhysRevX.14.041070Cc30R1
PhysRevX.14.041070Cc59R1
PhysRevX.14.041070Cc9R1
PhysRevX.14.041070Cc3R1
PhysRevX.14.041070Cc60R1
PhysRevX.14.041070Cc83R1
PhysRevX.14.041070Cc29R1
PhysRevX.14.041070Cc81R1
PhysRevX.14.041070Cc27R1
PhysRevX.14.041070Cc7R1
PhysRevX.14.041070Cc41R1
PhysRevX.14.041070Cc64R1
PhysRevX.14.041070Cc25R1
PhysRevX.14.041070Cc5R1
PhysRevX.14.041070Cc43R1
PhysRevX.14.041070Cc85R1
PhysRevX.14.041070Cc23R1
PhysRevX.14.041070Cc22R1
PhysRevX.14.041070Cc46R1
PhysRevX.14.041070Cc20R1
PhysRevX.14.041070Cc48R1
PhysRevX.14.041070Cc69R1
PhysRevX.14.041070Cc91R1
PhysRevX.14.041070Cc19R1
PhysRevX.14.041070Cc70R1
PhysRevX.14.041070Cc95R1
PhysRevX.14.041070Cc17R1
PhysRevX.14.041070Cc38R1
PhysRevX.14.041070Cc51R1
PhysRevX.14.041070Cc72R1
PhysRevX.14.041070Cc93R1
PhysRevX.14.041070Cc15R1
PhysRevX.14.041070Cc36R1
PhysRevX.14.041070Cc53R1
PhysRevX.14.041070Cc74R1
P. M. Chaikin (PhysRevX.14.041070Cc2R1) 1995
PhysRevX.14.041070Cc13R1
PhysRevX.14.041070Cc34R1
PhysRevX.14.041070Cc55R1
PhysRevX.14.041070Cc76R1
PhysRevX.14.041070Cc97R1
References_xml – ident: PhysRevX.14.041070Cc6R1
  doi: 10.1016/0370-2693(81)90590-6
– ident: PhysRevX.14.041070Cc80R1
  doi: 10.1103/PhysRevLett.131.200201
– ident: PhysRevX.14.041070Cc54R1
  doi: 10.1103/PhysRevResearch.4.043060
– ident: PhysRevX.14.041070Cc35R1
  doi: 10.1103/PhysRevB.97.245122
– ident: PhysRevX.14.041070Cc13R1
  doi: 10.1103/PhysRevLett.125.020504
– ident: PhysRevX.14.041070Cc11R1
  doi: 10.1103/RevModPhys.93.025003
– ident: PhysRevX.14.041070Cc14R1
  doi: 10.1103/PhysRevX.11.041054
– ident: PhysRevX.14.041070Cc63R1
  doi: 10.1103/PhysRevLett.120.050507
– ident: PhysRevX.14.041070Cc7R1
  doi: 10.3390/sym2020609
– ident: PhysRevX.14.041070Cc93R1
  doi: 10.1088/1367-2630/14/7/073007
– ident: PhysRevX.14.041070Cc18R1
  doi: 10.1103/PhysRevB.109.075126
– ident: PhysRevX.14.041070Cc46R1
  doi: 10.1103/PhysRevLett.126.230501
– ident: PhysRevX.14.041070Cc57R1
  doi: 10.1103/PhysRevA.106.022209
– ident: PhysRevX.14.041070Cc70R1
  doi: 10.1103/PhysRevX.9.021013
– ident: PhysRevX.14.041070Cc25R1
  doi: 10.1103/PhysRevLett.116.250401
– ident: PhysRevX.14.041070Cc36R1
  doi: 10.1103/PhysRevX.12.041002
– ident: PhysRevX.14.041070Cc53R1
  doi: 10.1103/PhysRevB.105.144204
– ident: PhysRevX.14.041070Cc3R1
  doi: 10.1103/PhysRevB.85.075125
– ident: PhysRevX.14.041070Cc44R1
  doi: 10.1103/PhysRevX.10.031002
– ident: PhysRevX.14.041070Cc56R1
  doi: 10.1103/PhysRevLett.126.040601
– ident: PhysRevX.14.041070Cc76R1
  doi: 10.1103/PhysRevResearch.6.L042033
– ident: PhysRevX.14.041070Cc31R1
  doi: 10.1038/s41586-021-04257-w
– ident: PhysRevX.14.041070Cc34R1
  doi: 10.1038/s41467-018-03481-9
– volume-title: Principles of Condensed Matter Physics
  year: 1995
  ident: PhysRevX.14.041070Cc2R1
  doi: 10.1017/CBO9780511813467
– ident: PhysRevX.14.041070Cc41R1
  doi: 10.1038/nphys3743
– ident: PhysRevX.14.041070Cc84R1
  doi: 10.1103/PhysRevA.89.022118
– ident: PhysRevX.14.041070Cc98R1
  doi: 10.1126/science.aah6442
– ident: PhysRevX.14.041070Cc33R1
  doi: 10.1088/1742-5468/2016/06/064007
– ident: PhysRevX.14.041070Cc30R1
  doi: 10.1038/s41586-022-04854-3
– ident: PhysRevX.14.041070Cc78R1
  doi: 10.1103/PhysRevX.10.041018
– ident: PhysRevX.14.041070Cc81R1
  doi: 10.1038/s41567-021-01277-1
– ident: PhysRevX.14.041070Cc21R1
  doi: 10.1103/PRXQuantum.4.020329
– ident: PhysRevX.14.041070Cc5R1
  doi: 10.1103/PhysRev.86.694
– ident: PhysRevX.14.041070Cc20R1
  doi: 10.1103/PhysRevLett.130.226701
– ident: PhysRevX.14.041070Cc24R1
  doi: 10.1103/PhysRevX.6.021013
– ident: PhysRevX.14.041070Cc95R1
  doi: 10.1103/PhysRevB.104.134308
– ident: PhysRevX.14.041070Cc40R1
  doi: 10.1038/s41567-022-01891-7
– ident: PhysRevX.14.041070Cc49R1
  doi: 10.1103/PhysRevB.100.134302
– ident: PhysRevX.14.041070Cc74R1
  doi: 10.1038/s41467-022-33471-x
– ident: PhysRevX.14.041070Cc38R1
  doi: 10.1103/PRXQuantum.4.020318
– ident: PhysRevX.14.041070Cc94R1
  doi: 10.1103/PhysRevResearch.5.043019
– ident: PhysRevX.14.041070Cc42R1
  doi: 10.1103/PhysRevLett.123.090403
– ident: PhysRevX.14.041070Cc9R1
  doi: 10.1103/PhysRevLett.115.256803
– ident: PhysRevX.14.041070Cc4R1
  doi: 10.1103/PhysRevB.87.155114
– ident: PhysRevX.14.041070Cc37R1
  doi: 10.1103/PhysRevLett.130.140402
– ident: PhysRevX.14.041070Cc29R1
  doi: 10.1038/s41586-022-04853-4
– ident: PhysRevX.14.041070Cc86R1
  doi: 10.1146/annurev-conmatphys-040721-015537
– ident: PhysRevX.14.041070Cc59R1
  doi: 10.1080/00018732.2015.1055918
– ident: PhysRevX.14.041070Cc47R1
  doi: 10.1038/s41534-023-00742-4
– ident: PhysRevX.14.041070Cc89R1
  doi: 10.1103/PhysRevLett.127.140602
– ident: PhysRevX.14.041070Cc12R1
  doi: 10.1038/nature18318
– ident: PhysRevX.14.041070Cc17R1
  doi: 10.1126/science.abd9547
– ident: PhysRevX.14.041070Cc88R1
  doi: 10.1103/PhysRevLett.122.010602
– ident: PhysRevX.14.041070Cc19R1
  doi: 10.1103/PhysRevX.13.031008
– ident: PhysRevX.14.041070Cc55R1
  doi: 10.1103/PhysRevLett.131.130401
– ident: PhysRevX.14.041070Cc32R1
  doi: 10.1080/00018732.2016.1198134
– ident: PhysRevX.14.041070Cc92R1
  doi: 10.1103/PhysRevB.109.064305
– ident: PhysRevX.14.041070Cc26R1
  doi: 10.1103/PhysRevLett.117.090402
– ident: PhysRevX.14.041070Cc61R1
  doi: 10.1103/PhysRevB.95.014112
– ident: PhysRevX.14.041070Cc71R1
  doi: 10.1103/PhysRevB.99.245151
– ident: PhysRevX.14.041070Cc43R1
  doi: 10.1038/s41586-019-1177-4
– ident: PhysRevX.14.041070Cc73R1
  doi: 10.1126/sciadv.aat0346
– ident: PhysRevX.14.041070Cc96R1
  doi: 10.1103/PhysRevB.108.075112
– ident: PhysRevX.14.041070Cc69R1
  doi: 10.1103/PhysRevB.99.104303
– ident: PhysRevX.14.041070Cc27R1
  doi: 10.1103/PhysRevLett.118.030401
– ident: PhysRevX.14.041070Cc28R1
  doi: 10.1103/PhysRevX.10.021032
– ident: PhysRevX.14.041070Cc91R1
  doi: 10.1103/PhysRevLett.131.056502
– volume-title: Statistical Physics
  year: 2013
  ident: PhysRevX.14.041070Cc1R1
– ident: PhysRevX.14.041070Cc16R1
  doi: 10.1038/s41567-019-0649-7
– ident: PhysRevX.14.041070Cc50R1
  doi: 10.1103/PhysRevResearch.2.033461
– ident: PhysRevX.14.041070Cc22R1
  doi: 10.1103/PhysRevB.82.235114
– ident: PhysRevX.14.041070Cc45R1
  doi: 10.1103/PRXQuantum.2.010323
– ident: PhysRevX.14.041070Cc64R1
  doi: 10.1103/PRXQuantum.3.020303
– ident: PhysRevX.14.041070Cc52R1
  doi: 10.1103/PhysRevLett.127.050602
– ident: PhysRevX.14.041070Cc83R1
  doi: 10.1103/PhysRevLett.111.021601
– ident: PhysRevX.14.041070Cc10R1
  doi: 10.1016/j.aop.2016.01.012
– ident: PhysRevX.14.041070Cc39R1
  doi: 10.1103/PhysRevX.10.021046
– ident: PhysRevX.14.041070Cc72R1
  doi: 10.1103/PhysRevX.8.031070
– ident: PhysRevX.14.041070Cc15R1
  doi: 10.1146/annurev-conmatphys-031218-013423
– ident: PhysRevX.14.041070Cc97R1
  doi: 10.1103/PhysRevB.103.144307
– ident: PhysRevX.14.041070Cc85R1
  doi: 10.1103/PhysRevB.98.104303
– ident: PhysRevX.14.041070Cc23R1
  doi: 10.1103/PhysRevX.6.041001
– ident: PhysRevX.14.041070Cc51R1
  doi: 10.1103/PhysRevResearch.3.023044
– ident: PhysRevX.14.041070Cc8R1
  doi: 10.1146/annurev-conmatphys-020911-125058
– ident: PhysRevX.14.041070Cc60R1
  doi: 10.1103/PhysRevLett.116.120401
– ident: PhysRevX.14.041070Cc90R1
  doi: 10.1103/PhysRevLett.127.140603
– ident: PhysRevX.14.041070Cc48R1
  doi: 10.1103/PRXQuantum.4.030319
– ident: PhysRevX.14.041070Cc79R1
  doi: 10.1103/PhysRevLett.125.240405
– ident: PhysRevX.14.041070Cc82R1
  doi: 10.1126/science.abk2397
SSID ssj0000601477
Score 2.3876505
Snippet The capacity to custom tailor the properties of quantum matter and materials is a central requirement for enlarging their range of possible functionalities. A...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 041070
Title Engineering Hierarchical Symmetries
URI https://doaj.org/article/d9c3d2d31359464ba642a1c942e22f6f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9YXC3qT2Gwem81RxVIEPaiF3pY8JiDYKrYK_nsn2VbWkxevYQnZGfi-b2DmG0LObM2U00pT7SWjkjtBrbGGIveAUAEqztKg8N19NRzJ27Ead1Z9pZ6w1h64DVw_GC8CD6IUyshKOouC2ZbeSA6cxyom9EXO6xRTLQaj9Nd6OSXDRD81VD7A5xih4YJJLHrYLybqGPZnZhlsko2FJCwu26dskRWYbpO13JrpZzvktGMZWAyf08Bw3l_yUjx-TSZ5IdZsl4wGN0_XQ7pYbUC9YPWccm1cFR1WiFAaXwrpRDTc14FBaRUSFwvcWaWcskFKDz4w52PUKJYYGKXFHlmdvk5hnxR1kFaH6CrNQXofLKKvKSNwA8jHWvTI-fI3m7fWwaLJyp-JZhkULACaNig9cpUi8fNlcp_OB5iTZpGT5q-cHPzHJYdknaOAaFtHjsjq_P0DjlEAzN1JzvU3gcGtrA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Hierarchical+Symmetries&rft.jtitle=Physical+review.+X&rft.au=Fu%2C+Zhanpeng&rft.au=Moessner%2C+Roderich&rft.au=Zhao%2C+Hongzheng&rft.au=Bukov%2C+Marin&rft.date=2024-12-01&rft.issn=2160-3308&rft.eissn=2160-3308&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevX.14.041070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevX_14_041070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon