Quantum cluster equilibrium theory applied to liquid ammonia

Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the li...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 45; no. 15; pp. 1279 - 1288
Main Authors Maya, Josué, Malloum, Alhadji, Fifen, Jean Jules, Dhaouadi, Zoubeida, Fouda, Henri Paul Ekobena, Conradie, Jeanet
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 05.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment.
AbstractList Abstract Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6‐31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190–260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small‐sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment.
Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment.
Author Fifen, Jean Jules
Conradie, Jeanet
Malloum, Alhadji
Maya, Josué
Fouda, Henri Paul Ekobena
Dhaouadi, Zoubeida
Author_xml – sequence: 1
  givenname: Josué
  surname: Maya
  fullname: Maya, Josué
  organization: National Radiation Protection Agency, Yaounde, Cameroon
– sequence: 2
  givenname: Alhadji
  orcidid: 0000-0002-3013-3029
  surname: Malloum
  fullname: Malloum, Alhadji
  organization: Department of Chemistry, University of the Free State, Bloemfontein, South Africa
– sequence: 3
  givenname: Jean Jules
  orcidid: 0000-0003-3338-3469
  surname: Fifen
  fullname: Fifen, Jean Jules
  organization: Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
– sequence: 4
  givenname: Zoubeida
  surname: Dhaouadi
  fullname: Dhaouadi, Zoubeida
  organization: Laboratoire de Spectroscopie Atomique Moléculaire et Application, Université de Tunis El Manar, Tunis, Tunisie
– sequence: 5
  givenname: Henri Paul Ekobena
  surname: Fouda
  fullname: Fouda, Henri Paul Ekobena
  organization: Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
– sequence: 6
  givenname: Jeanet
  orcidid: 0000-0002-8120-6830
  surname: Conradie
  fullname: Conradie, Jeanet
  organization: Department of Chemistry, University of the Free State, Bloemfontein, South Africa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38353541$$D View this record in MEDLINE/PubMed
BookMark eNpdkEtLxDAUhYOMOA9d-Aek4EYXHfNuCm5k8AUDIszCXUiTFDO0TSdpFvPvrc7owtWFcz8Oh28OJp3vLACXCC4RhPhuq_USFwQXJ2CGYMnzUhQfEzCDqMS54AxNwTzGLYSQME7PwJQIwgijaAbu35PqhtRmuklxsCGzu-QaVwU3ZsOn9WGfqb5vnDXZ4LPGjW-Tqbb1nVPn4LRWTbQXx7sAm6fHzeolX789v64e1rkmUAw5MtooWhHBqcVKiIqLgmljjagN4ooKgyi1lLC6LHlVQ2UEthQSZJUWCpMFuDnU9sHvko2DbF3UtmlUZ32KEpeYMwwp4iN6_Q_d-hS6cZwkkEKGS8boSN0eKB18jMHWsg-uVWEvEZTfRuVoVP4YHdmrY2OqWmv-yF-F5Av4X3Jr
Cites_doi 10.1021/ar800019z
10.1039/D0CP01393E
10.1021/j100138a028
10.1093/nsr/nwad128
10.1146/annurev-physchem-040412-110040
10.1021/j100593a032
10.1021/jp057342h
10.1063/5.0005078
10.1016/j.molliq.2021.116199
10.1039/D1CP00427A
10.1021/acs.jcim.2c01244
10.1021/acs.jpclett.2c02576
10.1021/acs.jpcb.0c06313
10.1021/acs.jpclett.2c01608
10.1021/acs.jctc.8b00908
10.1080/00268978700102931
10.1021/jp7106796
10.1063/1.3418567
10.1063/1.469016
10.1039/C6SC00705H
10.1016/j.molliq.2023.122562
10.1016/j.comptc.2021.113236
10.1063/1.434330
10.1039/C5CP04060D
10.1002/bbpc.19981020210
10.1063/1.432065
10.1002/jcc.540151009
10.1051/jcp/1967640665
10.1002/open.202000171
10.3390/molecules27041286
10.1039/C5CP06313B
10.1021/jp971575u
10.1016/j.jmgm.2021.108102
10.1063/1.4978958
10.1063/1.3662071
10.1063/1.476574
10.1021/je000236i
10.1002/qua.26553
10.1021/ja00530a001
10.1063/5.0061187
10.1063/1.3159398
10.1002/qua.26222
10.1016/j.molliq.2021.118301
10.1063/1.479194
10.1039/C5CP03374H
10.1021/jp109950h
10.1016/j.cpc.2011.03.011
10.1063/5.0138367
10.1016/j.theochem.2010.07.003
10.1063/1.5010791
10.1039/C8CP02694G
10.1039/D2CP03712B
10.1016/S0009-2614(01)00107-5
10.1103/PhysRevB.100.224104
10.1063/1.1725978
10.1039/D1SC00621E
10.1063/1.4941278
ContentType Journal Article
Copyright 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.27327
DatabaseName PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1288
ExternalDocumentID 10_1002_jcc_27327
38353541
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation
  grantid: 145414
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
NPM
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
JQ2
7X8
ID FETCH-LOGICAL-c308t-1dcda4b3864e2a88b6875cded8fd16a48d144e435f996bf0ad82e4031eac8a23
ISSN 0192-8651
IngestDate Sat Aug 17 05:24:15 EDT 2024
Thu Oct 10 17:29:50 EDT 2024
Fri Aug 23 01:46:54 EDT 2024
Sat Nov 02 12:30:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords ammonia clusters
thermodynamic properties
liquid ammonia
infrared spectra
liquid's clusters distribution
Language English
License 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-1dcda4b3864e2a88b6875cded8fd16a48d144e435f996bf0ad82e4031eac8a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3338-3469
0000-0002-3013-3029
0000-0002-8120-6830
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.27327
PMID 38353541
PQID 3040529554
PQPubID 48816
PageCount 10
ParticipantIDs proquest_miscellaneous_2926520416
proquest_journals_3040529554
crossref_primary_10_1002_jcc_27327
pubmed_primary_38353541
PublicationCentury 2000
PublicationDate 2024-06-05
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Hospital A. (e_1_2_8_4_1) 2015; 8
e_1_2_8_26_1
Frisch M. J. (e_1_2_8_49_1) 2016
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_2_1
  doi: 10.1021/ar800019z
– ident: e_1_2_8_48_1
  doi: 10.1039/D0CP01393E
– ident: e_1_2_8_31_1
  doi: 10.1021/j100138a028
– ident: e_1_2_8_46_1
  doi: 10.1093/nsr/nwad128
– ident: e_1_2_8_3_1
  doi: 10.1146/annurev-physchem-040412-110040
– ident: e_1_2_8_7_1
  doi: 10.1021/j100593a032
– ident: e_1_2_8_8_1
  doi: 10.1021/jp057342h
– ident: e_1_2_8_57_1
  doi: 10.1063/5.0005078
– volume: 8
  start-page: 37
  year: 2015
  ident: e_1_2_8_4_1
  publication-title: Adv. Appl. Bioinform. Chem.
  contributor:
    fullname: Hospital A.
– ident: e_1_2_8_19_1
  doi: 10.1016/j.molliq.2021.116199
– ident: e_1_2_8_18_1
  doi: 10.1039/D1CP00427A
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.jcim.2c01244
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.jpclett.2c02576
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.jpcb.0c06313
– ident: e_1_2_8_52_1
  doi: 10.1021/acs.jpclett.2c01608
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.jctc.8b00908
– ident: e_1_2_8_29_1
  doi: 10.1080/00268978700102931
– ident: e_1_2_8_44_1
  doi: 10.1021/jp7106796
– ident: e_1_2_8_24_1
  doi: 10.1063/1.3418567
– ident: e_1_2_8_27_1
  doi: 10.1063/1.469016
– ident: e_1_2_8_47_1
  doi: 10.1039/C6SC00705H
– ident: e_1_2_8_12_1
  doi: 10.1016/j.molliq.2023.122562
– ident: e_1_2_8_20_1
  doi: 10.1016/j.comptc.2021.113236
– ident: e_1_2_8_26_1
  doi: 10.1063/1.434330
– ident: e_1_2_8_37_1
  doi: 10.1039/C5CP04060D
– volume-title: Gaussian1̃6 Revision C.01
  year: 2016
  ident: e_1_2_8_49_1
  contributor:
    fullname: Frisch M. J.
– ident: e_1_2_8_34_1
  doi: 10.1002/bbpc.19981020210
– ident: e_1_2_8_6_1
  doi: 10.1063/1.432065
– ident: e_1_2_8_36_1
  doi: 10.1002/jcc.540151009
– ident: e_1_2_8_60_1
  doi: 10.1051/jcp/1967640665
– ident: e_1_2_8_21_1
  doi: 10.1002/open.202000171
– ident: e_1_2_8_50_1
  doi: 10.3390/molecules27041286
– ident: e_1_2_8_38_1
  doi: 10.1039/C5CP06313B
– ident: e_1_2_8_10_1
  doi: 10.1021/jp971575u
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jmgm.2021.108102
– ident: e_1_2_8_15_1
  doi: 10.1063/1.4978958
– ident: e_1_2_8_13_1
  doi: 10.1063/1.3662071
– ident: e_1_2_8_9_1
  doi: 10.1063/1.476574
– ident: e_1_2_8_59_1
  doi: 10.1021/je000236i
– ident: e_1_2_8_39_1
  doi: 10.1002/qua.26553
– ident: e_1_2_8_5_1
  doi: 10.1021/ja00530a001
– ident: e_1_2_8_16_1
  doi: 10.1063/5.0061187
– ident: e_1_2_8_45_1
  doi: 10.1063/1.3159398
– ident: e_1_2_8_40_1
  doi: 10.1002/qua.26222
– ident: e_1_2_8_41_1
  doi: 10.1016/j.molliq.2021.118301
– ident: e_1_2_8_25_1
  doi: 10.1063/1.479194
– ident: e_1_2_8_28_1
  doi: 10.1039/C5CP03374H
– ident: e_1_2_8_58_1
  doi: 10.1021/jp109950h
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cpc.2011.03.011
– ident: e_1_2_8_53_1
  doi: 10.1063/5.0138367
– ident: e_1_2_8_35_1
  doi: 10.1016/j.theochem.2010.07.003
– ident: e_1_2_8_32_1
  doi: 10.1063/1.5010791
– ident: e_1_2_8_55_1
  doi: 10.1039/C8CP02694G
– ident: e_1_2_8_11_1
  doi: 10.1039/D2CP03712B
– ident: e_1_2_8_43_1
  doi: 10.1016/S0009-2614(01)00107-5
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevB.100.224104
– ident: e_1_2_8_23_1
  doi: 10.1063/1.1725978
– ident: e_1_2_8_17_1
  doi: 10.1039/D1SC00621E
– ident: e_1_2_8_14_1
  doi: 10.1063/1.4941278
SSID ssj0003564
Score 2.4908824
Snippet Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia...
Abstract Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 1279
SubjectTerms Ammonia
Boiling points
Clusters
Configurations
Enthalpy
Heat of vaporization
Infrared radiation
Liquid ammonia
Liquid phases
Melting points
Thermodynamic properties
Vapor phases
Title Quantum cluster equilibrium theory applied to liquid ammonia
URI https://www.ncbi.nlm.nih.gov/pubmed/38353541
https://www.proquest.com/docview/3040529554
https://search.proquest.com/docview/2926520416
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_X-aAv4rd3Toni26WzbdKYgi9jbIwxJkoHF19CmqSso7vVrXmY7_7fnjRpbwebOF9KaSAt5_x6cj6S30HoAyHGEJnSiMqURJSzKpKUxFFpEs2pcQwqPdvnMTs4oYfLbDmb_Z7sWrJdua1-3Xiu5H-0Cs9Ar-6U7B00O04KD-Ae9AtX0DBc_0nHXy3IxZ4vVGMd38HC_LR1v4ffnvsTilcLGbxMcDGbGob1Qrrvq-UtXqnquzwMGUI1tINbJ66vZCgcWF9jX480TeubJu80p1Kf1SM06iqcAHFZ_0PbTJrZn8rWSt3vKPje2tLUIUEQ8hCgXZeKyO5g7aZZzBzMMAtMs8ZbXoilopx_Wk5Ns2eaHCCYTQxtkvoeNGHRhlWW37ggeILZM6W2AXWeheA66fbxF7F_cnQkir1lcQ_dh2lJX-3_tmYhI5lnIRu-eiCoitOP48TX3ZpbYpXeZykeo0dBrXjHI-cJmpnVU_Rgd1DqM_Q5IAgHBOEJgrBHEA4Iwl2LPYJwQNBzVOzvFbsHUeinESkS8y5KtNKSloQzalLJeckgWFXaaF7phEnKNUTXBvznCoLgsoql5qmhYPVhcebwK79AG6t2ZV4hnKmEuUZkVOacysR1PGOllgaii1zrvJqj94M0xA_PmiI8P3YqQGSiF9kcbQ1yEuGnuhQEFhVXe87oHL0bh0Eqro4lV6a1lwJex7I0hlBijl56-Y5vIRBRkIwmm3-f_DV6uMbwFtroLqx5A95lV77tdf8HUqx91g
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+cluster+equilibrium+theory+applied+to+liquid+ammonia&rft.jtitle=Journal+of+computational+chemistry&rft.au=Maya%2C+Josu%C3%A9&rft.au=Malloum%2C+Alhadji&rft.au=Fifen%2C+Jean+Jules&rft.au=Dhaouadi%2C+Zoubeida&rft.date=2024-06-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=45&rft.issue=15&rft.spage=1279&rft.epage=1288&rft_id=info:doi/10.1002%2Fjcc.27327&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon