Quantum cluster equilibrium theory applied to liquid ammonia
Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the li...
Saved in:
Published in | Journal of computational chemistry Vol. 45; no. 15; pp. 1279 - 1288 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
05.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment. |
---|---|
AbstractList | Abstract
Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6‐31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190–260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small‐sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment. Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment. |
Author | Fifen, Jean Jules Conradie, Jeanet Malloum, Alhadji Maya, Josué Fouda, Henri Paul Ekobena Dhaouadi, Zoubeida |
Author_xml | – sequence: 1 givenname: Josué surname: Maya fullname: Maya, Josué organization: National Radiation Protection Agency, Yaounde, Cameroon – sequence: 2 givenname: Alhadji orcidid: 0000-0002-3013-3029 surname: Malloum fullname: Malloum, Alhadji organization: Department of Chemistry, University of the Free State, Bloemfontein, South Africa – sequence: 3 givenname: Jean Jules orcidid: 0000-0003-3338-3469 surname: Fifen fullname: Fifen, Jean Jules organization: Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon – sequence: 4 givenname: Zoubeida surname: Dhaouadi fullname: Dhaouadi, Zoubeida organization: Laboratoire de Spectroscopie Atomique Moléculaire et Application, Université de Tunis El Manar, Tunis, Tunisie – sequence: 5 givenname: Henri Paul Ekobena surname: Fouda fullname: Fouda, Henri Paul Ekobena organization: Department of Physics, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon – sequence: 6 givenname: Jeanet orcidid: 0000-0002-8120-6830 surname: Conradie fullname: Conradie, Jeanet organization: Department of Chemistry, University of the Free State, Bloemfontein, South Africa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38353541$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkEtLxDAUhYOMOA9d-Aek4EYXHfNuCm5k8AUDIszCXUiTFDO0TSdpFvPvrc7owtWFcz8Oh28OJp3vLACXCC4RhPhuq_USFwQXJ2CGYMnzUhQfEzCDqMS54AxNwTzGLYSQME7PwJQIwgijaAbu35PqhtRmuklxsCGzu-QaVwU3ZsOn9WGfqb5vnDXZ4LPGjW-Tqbb1nVPn4LRWTbQXx7sAm6fHzeolX789v64e1rkmUAw5MtooWhHBqcVKiIqLgmljjagN4ooKgyi1lLC6LHlVQ2UEthQSZJUWCpMFuDnU9sHvko2DbF3UtmlUZ32KEpeYMwwp4iN6_Q_d-hS6cZwkkEKGS8boSN0eKB18jMHWsg-uVWEvEZTfRuVoVP4YHdmrY2OqWmv-yF-F5Av4X3Jr |
Cites_doi | 10.1021/ar800019z 10.1039/D0CP01393E 10.1021/j100138a028 10.1093/nsr/nwad128 10.1146/annurev-physchem-040412-110040 10.1021/j100593a032 10.1021/jp057342h 10.1063/5.0005078 10.1016/j.molliq.2021.116199 10.1039/D1CP00427A 10.1021/acs.jcim.2c01244 10.1021/acs.jpclett.2c02576 10.1021/acs.jpcb.0c06313 10.1021/acs.jpclett.2c01608 10.1021/acs.jctc.8b00908 10.1080/00268978700102931 10.1021/jp7106796 10.1063/1.3418567 10.1063/1.469016 10.1039/C6SC00705H 10.1016/j.molliq.2023.122562 10.1016/j.comptc.2021.113236 10.1063/1.434330 10.1039/C5CP04060D 10.1002/bbpc.19981020210 10.1063/1.432065 10.1002/jcc.540151009 10.1051/jcp/1967640665 10.1002/open.202000171 10.3390/molecules27041286 10.1039/C5CP06313B 10.1021/jp971575u 10.1016/j.jmgm.2021.108102 10.1063/1.4978958 10.1063/1.3662071 10.1063/1.476574 10.1021/je000236i 10.1002/qua.26553 10.1021/ja00530a001 10.1063/5.0061187 10.1063/1.3159398 10.1002/qua.26222 10.1016/j.molliq.2021.118301 10.1063/1.479194 10.1039/C5CP03374H 10.1021/jp109950h 10.1016/j.cpc.2011.03.011 10.1063/5.0138367 10.1016/j.theochem.2010.07.003 10.1063/1.5010791 10.1039/C8CP02694G 10.1039/D2CP03712B 10.1016/S0009-2614(01)00107-5 10.1103/PhysRevB.100.224104 10.1063/1.1725978 10.1039/D1SC00621E 10.1063/1.4941278 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION JQ2 7X8 |
DOI | 10.1002/jcc.27327 |
DatabaseName | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 1288 |
ExternalDocumentID | 10_1002_jcc_27327 38353541 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation grantid: 145414 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB NPM O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAYXX CITATION JQ2 7X8 |
ID | FETCH-LOGICAL-c308t-1dcda4b3864e2a88b6875cded8fd16a48d144e435f996bf0ad82e4031eac8a23 |
ISSN | 0192-8651 |
IngestDate | Sat Aug 17 05:24:15 EDT 2024 Thu Oct 10 17:29:50 EDT 2024 Fri Aug 23 01:46:54 EDT 2024 Sat Nov 02 12:30:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | ammonia clusters thermodynamic properties liquid ammonia infrared spectra liquid's clusters distribution |
Language | English |
License | 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-1dcda4b3864e2a88b6875cded8fd16a48d144e435f996bf0ad82e4031eac8a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3338-3469 0000-0002-3013-3029 0000-0002-8120-6830 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.27327 |
PMID | 38353541 |
PQID | 3040529554 |
PQPubID | 48816 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2926520416 proquest_journals_3040529554 crossref_primary_10_1002_jcc_27327 pubmed_primary_38353541 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-05 |
PublicationDateYYYYMMDD | 2024-06-05 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Hospital A. (e_1_2_8_4_1) 2015; 8 e_1_2_8_26_1 Frisch M. J. (e_1_2_8_49_1) 2016 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_2_1 doi: 10.1021/ar800019z – ident: e_1_2_8_48_1 doi: 10.1039/D0CP01393E – ident: e_1_2_8_31_1 doi: 10.1021/j100138a028 – ident: e_1_2_8_46_1 doi: 10.1093/nsr/nwad128 – ident: e_1_2_8_3_1 doi: 10.1146/annurev-physchem-040412-110040 – ident: e_1_2_8_7_1 doi: 10.1021/j100593a032 – ident: e_1_2_8_8_1 doi: 10.1021/jp057342h – ident: e_1_2_8_57_1 doi: 10.1063/5.0005078 – volume: 8 start-page: 37 year: 2015 ident: e_1_2_8_4_1 publication-title: Adv. Appl. Bioinform. Chem. contributor: fullname: Hospital A. – ident: e_1_2_8_19_1 doi: 10.1016/j.molliq.2021.116199 – ident: e_1_2_8_18_1 doi: 10.1039/D1CP00427A – ident: e_1_2_8_56_1 doi: 10.1021/acs.jcim.2c01244 – ident: e_1_2_8_51_1 doi: 10.1021/acs.jpclett.2c02576 – ident: e_1_2_8_22_1 doi: 10.1021/acs.jpcb.0c06313 – ident: e_1_2_8_52_1 doi: 10.1021/acs.jpclett.2c01608 – ident: e_1_2_8_54_1 doi: 10.1021/acs.jctc.8b00908 – ident: e_1_2_8_29_1 doi: 10.1080/00268978700102931 – ident: e_1_2_8_44_1 doi: 10.1021/jp7106796 – ident: e_1_2_8_24_1 doi: 10.1063/1.3418567 – ident: e_1_2_8_27_1 doi: 10.1063/1.469016 – ident: e_1_2_8_47_1 doi: 10.1039/C6SC00705H – ident: e_1_2_8_12_1 doi: 10.1016/j.molliq.2023.122562 – ident: e_1_2_8_20_1 doi: 10.1016/j.comptc.2021.113236 – ident: e_1_2_8_26_1 doi: 10.1063/1.434330 – ident: e_1_2_8_37_1 doi: 10.1039/C5CP04060D – volume-title: Gaussian1̃6 Revision C.01 year: 2016 ident: e_1_2_8_49_1 contributor: fullname: Frisch M. J. – ident: e_1_2_8_34_1 doi: 10.1002/bbpc.19981020210 – ident: e_1_2_8_6_1 doi: 10.1063/1.432065 – ident: e_1_2_8_36_1 doi: 10.1002/jcc.540151009 – ident: e_1_2_8_60_1 doi: 10.1051/jcp/1967640665 – ident: e_1_2_8_21_1 doi: 10.1002/open.202000171 – ident: e_1_2_8_50_1 doi: 10.3390/molecules27041286 – ident: e_1_2_8_38_1 doi: 10.1039/C5CP06313B – ident: e_1_2_8_10_1 doi: 10.1021/jp971575u – ident: e_1_2_8_42_1 doi: 10.1016/j.jmgm.2021.108102 – ident: e_1_2_8_15_1 doi: 10.1063/1.4978958 – ident: e_1_2_8_13_1 doi: 10.1063/1.3662071 – ident: e_1_2_8_9_1 doi: 10.1063/1.476574 – ident: e_1_2_8_59_1 doi: 10.1021/je000236i – ident: e_1_2_8_39_1 doi: 10.1002/qua.26553 – ident: e_1_2_8_5_1 doi: 10.1021/ja00530a001 – ident: e_1_2_8_16_1 doi: 10.1063/5.0061187 – ident: e_1_2_8_45_1 doi: 10.1063/1.3159398 – ident: e_1_2_8_40_1 doi: 10.1002/qua.26222 – ident: e_1_2_8_41_1 doi: 10.1016/j.molliq.2021.118301 – ident: e_1_2_8_25_1 doi: 10.1063/1.479194 – ident: e_1_2_8_28_1 doi: 10.1039/C5CP03374H – ident: e_1_2_8_58_1 doi: 10.1021/jp109950h – ident: e_1_2_8_33_1 doi: 10.1016/j.cpc.2011.03.011 – ident: e_1_2_8_53_1 doi: 10.1063/5.0138367 – ident: e_1_2_8_35_1 doi: 10.1016/j.theochem.2010.07.003 – ident: e_1_2_8_32_1 doi: 10.1063/1.5010791 – ident: e_1_2_8_55_1 doi: 10.1039/C8CP02694G – ident: e_1_2_8_11_1 doi: 10.1039/D2CP03712B – ident: e_1_2_8_43_1 doi: 10.1016/S0009-2614(01)00107-5 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevB.100.224104 – ident: e_1_2_8_23_1 doi: 10.1063/1.1725978 – ident: e_1_2_8_17_1 doi: 10.1039/D1SC00621E – ident: e_1_2_8_14_1 doi: 10.1063/1.4941278 |
SSID | ssj0003564 |
Score | 2.4908824 |
Snippet | Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia... Abstract Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1279 |
SubjectTerms | Ammonia Boiling points Clusters Configurations Enthalpy Heat of vaporization Infrared radiation Liquid ammonia Liquid phases Melting points Thermodynamic properties Vapor phases |
Title | Quantum cluster equilibrium theory applied to liquid ammonia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38353541 https://www.proquest.com/docview/3040529554 https://search.proquest.com/docview/2926520416 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_X-aAv4rd3Toni26WzbdKYgi9jbIwxJkoHF19CmqSso7vVrXmY7_7fnjRpbwebOF9KaSAt5_x6cj6S30HoAyHGEJnSiMqURJSzKpKUxFFpEs2pcQwqPdvnMTs4oYfLbDmb_Z7sWrJdua1-3Xiu5H-0Cs9Ar-6U7B00O04KD-Ae9AtX0DBc_0nHXy3IxZ4vVGMd38HC_LR1v4ffnvsTilcLGbxMcDGbGob1Qrrvq-UtXqnquzwMGUI1tINbJ66vZCgcWF9jX480TeubJu80p1Kf1SM06iqcAHFZ_0PbTJrZn8rWSt3vKPje2tLUIUEQ8hCgXZeKyO5g7aZZzBzMMAtMs8ZbXoilopx_Wk5Ns2eaHCCYTQxtkvoeNGHRhlWW37ggeILZM6W2AXWeheA66fbxF7F_cnQkir1lcQ_dh2lJX-3_tmYhI5lnIRu-eiCoitOP48TX3ZpbYpXeZykeo0dBrXjHI-cJmpnVU_Rgd1DqM_Q5IAgHBOEJgrBHEA4Iwl2LPYJwQNBzVOzvFbsHUeinESkS8y5KtNKSloQzalLJeckgWFXaaF7phEnKNUTXBvznCoLgsoql5qmhYPVhcebwK79AG6t2ZV4hnKmEuUZkVOacysR1PGOllgaii1zrvJqj94M0xA_PmiI8P3YqQGSiF9kcbQ1yEuGnuhQEFhVXe87oHL0bh0Eqro4lV6a1lwJex7I0hlBijl56-Y5vIRBRkIwmm3-f_DV6uMbwFtroLqx5A95lV77tdf8HUqx91g |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+cluster+equilibrium+theory+applied+to+liquid+ammonia&rft.jtitle=Journal+of+computational+chemistry&rft.au=Maya%2C+Josu%C3%A9&rft.au=Malloum%2C+Alhadji&rft.au=Fifen%2C+Jean+Jules&rft.au=Dhaouadi%2C+Zoubeida&rft.date=2024-06-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=45&rft.issue=15&rft.spage=1279&rft.epage=1288&rft_id=info:doi/10.1002%2Fjcc.27327&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |