Examining Invasion‐Percolation Across the Cathode Layered Assembly in Polymer Electrolyte Membrane Fuel Cells: Oxygen Resistance, Wettability and Cracks

Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), vary...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 11; no. 13
Main Author García‐Salaberri, Pablo A.
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 02.07.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low. Water and oxygen transport across the cathode layered assembly play a crucial role in the performance of polymer electrolyte membrane Fuel Cells. The present work examines the effect of microporous layer (MPL), wettability, crack density and patterned wettability on capillary transport of water and oxygen diffusion. Among other conclusions, the results show that mass transport losses can be reduced both through the incorporation of an MPL with a moderate number of cracks and the introduction of patterned wettability into the gas diffusion layer.
AbstractList Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low.
Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells . However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μ m in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low.
Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low.
Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low. Water and oxygen transport across the cathode layered assembly play a crucial role in the performance of polymer electrolyte membrane Fuel Cells. The present work examines the effect of microporous layer (MPL), wettability, crack density and patterned wettability on capillary transport of water and oxygen diffusion. Among other conclusions, the results show that mass transport losses can be reduced both through the incorporation of an MPL with a moderate number of cracks and the introduction of patterned wettability into the gas diffusion layer.
Author García‐Salaberri, Pablo A.
Author_xml – sequence: 1
  givenname: Pablo A.
  orcidid: 0000-0002-3918-5415
  surname: García‐Salaberri
  fullname: García‐Salaberri, Pablo A.
  email: pagsalab@ing.uc3m.es
  organization: Universidad Carlos III de Madrid
BookMark eNqFUU1vEzEQXaEiUUqvnC1xJcFeb2wvt2iVQqSgVgjE0fLHbOrg2MV2oHvjJ3Dm5_FLcBtUuHGaGc97bzzznjYnIQZomucEzwnG7SsD3sxb3HYYYyYeNact6dkMt4Sd_JM_ac5z3lUIIXhBBTttfq5u1d4FF7ZoHb6q7GL49f3HFSQTvSq1QkuTYs6oXAMaVLmOFtBGTZDAomXOsNd-Qi6gq-inPSS08mBKqkUB9K52kwqALg7g0QDe59fo8nbaQkDvIbtcVDDwEn2CUpR23pUJqWDRkJT5nJ81j0flM5z_iWfNx4vVh-HtbHP5Zj0sNzNDsRCznvRcaCus6etidMEFIwZjrTjuuOoow8yOrAdDW921pKNtj7lVvKeCdpxgetasj7o2qp28SW6v0iSjcvL-IaatVKk440H2fBwJM8JyWi-thVoA1pYLKrSmmrdV68VR6ybFLwfIRe7iIYX6fUkx7zhjC8Eran5E3Z82wfgwlWB5Z6e8s1M-2FkJ_ZHwzXmY_oOWw2oz_OX-BiRMpkk
Cites_doi 10.1016/j.jpowsour.2023.232714
10.1149/1945-7111/ac4456
10.1016/j.egyai.2023.100261
10.1149/1.3594636
10.1007/s12206-011-0743-y
10.1149/2.0191507jes
10.1016/j.jpowsour.2018.08.062
10.1016/j.electacta.2005.06.036
10.1016/j.jpowsour.2014.07.163
10.1016/j.ijhydene.2009.12.160
10.1149/1.3468615
10.1016/j.jpowsour.2023.233950
10.1016/j.jpowsour.2016.09.076
10.1007/s11242-022-01816-1
10.1149/05002.0487ecst
10.3389/fenrg.2022.956132
10.1016/j.jpowsour.2012.07.090
10.1149/1.3176876
10.1149/2.0881702jes
10.1016/j.jpowsour.2013.10.009
10.1016/j.ijhydene.2009.08.092
10.1016/j.jpowsour.2019.226809
10.1016/j.ijheatmasstransfer.2018.10.004
10.1016/j.jpowsour.2022.231539
10.1016/j.ijhydene.2019.07.036
10.1016/j.electacta.2015.03.100
10.1002/cssc.202000542
10.1016/j.ijhydene.2014.03.238
10.1002/er.8478
10.1149/1.3291977
10.1149/2.0921506jes
10.1016/j.energy.2023.128780
10.1016/j.coelec.2017.08.018
10.1016/j.jpowsour.2007.11.080
10.1016/j.ijhydene.2020.06.211
10.1016/j.jpowsour.2021.230723
10.1016/j.jpowsour.2007.08.111
10.1016/j.ijheatmasstransfer.2018.07.030
10.1021/acsenergylett.2c02012
10.1149/2.0391711jes
10.1021/acsaem.8b01059
10.1007/b95999
10.1016/j.jpowsour.2021.230735
10.1016/j.elecom.2013.04.006
10.1016/B978-0-323-99485-9.00011-3
10.1149/2.0321412jes
10.1016/j.ijheatmasstransfer.2020.120824
10.1016/j.ijhydene.2016.03.048
10.1016/j.jpowsour.2017.03.155
10.1149/2.0381706jes
10.1016/j.jpowsour.2006.07.058
10.1016/j.elecom.2008.12.053
10.1021/acsaem.2c00023
10.1016/j.ijhydene.2009.09.017
10.1201/9781315274386
10.1016/j.jpowsour.2021.229492
10.3390/computation4020021
10.1149/1.3635583
10.1016/j.apenergy.2010.09.030
10.1016/j.jpowsour.2013.01.150
10.1149/2.0401603jes
10.1016/j.energy.2022.126340
10.1016/j.jpowsour.2016.05.036
10.1080/15435075.2014.891521
10.1016/j.jpowsour.2022.231402
10.1016/j.egyai.2023.100265
10.1016/j.ijheatmasstransfer.2009.01.002
10.1007/s11242-022-01858-5
10.1002/wene.113
10.1016/j.ijhydene.2018.01.091
10.1016/j.jpowsour.2007.12.114
10.1021/acs.jpcc.5b06197
10.3390/en14010144
10.1149/2.0891613jes
10.1016/j.ijhydene.2010.07.056
10.3390/ma16216935
10.1115/1.4038626
10.1149/2.0831809jes
10.1149/1945-7111/ab9d61
10.1002/er.1142
10.1016/B978-0-323-85727-7.00015-1
10.1016/j.jpowsour.2019.03.079
10.1016/j.jpowsour.2022.232383
10.1007/s41918-023-00190-w
10.1021/acsami.1c00849
10.1016/j.ijheatmasstransfer.2015.02.073
10.1016/j.jpowsour.2016.08.020
10.1016/j.jpowsour.2022.231612
10.1016/j.ijheatmasstransfer.2015.01.101
10.1149/2.0511609jes
10.1149/2.009308jes
10.1016/j.jpowsour.2015.11.041
10.1016/j.electacta.2009.12.048
10.1103/PhysRevE.96.023307
10.1002/fuce.201700217
10.1016/j.electacta.2008.07.034
10.1016/j.jpowsour.2015.07.034
10.1149/2.0011907jes
10.3389/fenrg.2022.1058913
10.1016/j.jpowsour.2006.06.096
10.1149/2.0861712jes
ContentType Journal Article
Copyright 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1002/celc.202400068
DatabaseName Wiley Open Access
Wiley Online Library Free Content
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID oai_doaj_org_article_97ff16c8d73240b8a5e0bd7838bb3b72
10_1002_celc_202400068
CELC202400068
Genre article
GrantInformation_xml – fundername: Agencia Estatal de Investigación
  funderid: TED2021-131620B-C21
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BBNVY
BENPR
BGLVJ
BHPHI
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7P
MEWTI
MY~
O9-
P2W
PDBOC
R.K
ROL
TUS
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3088-91978bd8dc9000357861c00ba7047a43606df69ec32b421432907da7938347103
IEDL.DBID DOA
ISSN 2196-0216
IngestDate Tue Oct 22 15:15:29 EDT 2024
Thu Oct 10 22:39:01 EDT 2024
Thu Sep 12 21:03:33 EDT 2024
Sat Aug 24 00:42:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3088-91978bd8dc9000357861c00ba7047a43606df69ec32b421432907da7938347103
ORCID 0000-0002-3918-5415
OpenAccessLink https://doaj.org/article/97ff16c8d73240b8a5e0bd7838bb3b72
PQID 3074766587
PQPubID 2034587
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_97ff16c8d73240b8a5e0bd7838bb3b72
proquest_journals_3074766587
crossref_primary_10_1002_celc_202400068
wiley_primary_10_1002_celc_202400068_CELC202400068
PublicationCentury 2000
PublicationDate July 2, 2024
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: July 2, 2024
  day: 02
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 5
2010; 55
2011; 158
2018; 165
2021; 168
2021; 167
2018; 127
2018; 402
2023; 6
2023; 266
2009; 156
2020; 14
2016; 304
2020; 13
2020; 167
2022; 539
2019; 129
2024
2018; 43
2005; 29
2013; 160
2022; 533
2019; 166
2017; 359
2009; 11
2014; 248
2009; 52
2014; 3
2018; 1
2015; 86
2015; 85
2007; 174
2010; 157
2015; 296
2006; 162
2019; 435
2024; 593
2016; 41
2013; 234
2014; 161
2017; 164
2011; 25
2022; 520
2015; 162
2021; 46
2015; 12
2012; 220
2023; 14
2007; 4272
2010; 35
2006; 51
2023; 560
2016; 328
2023; 16
2023; 282
2015; 167
2019; 423
2022; 46
2014; 271
2008; 54
2004
2022; 517
2016; 323
2016; 164
2016; 163
2009; 34
2022; 540
2012; 50
2016; 4
2022; 144
2022; 145
2021; 13
2018; 18
2017; 96
2023
2019; 44
2022; 5
2013; 34
2022; 7
2021; 490
2011; 41
2011; 88
2023; 555
2016; 331
2018
2015; 119
2022; 10
2014; 39
2008; 179
2008; 177
2018; 15
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Schillberg C. H. (e_1_2_9_94_1) 2007; 4272
García-Salaberri P. A. (e_1_2_9_36_1) 2023
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
Chen C. (e_1_2_9_98_1) 2023
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
Garcia-Salaberri P. A. (e_1_2_9_92_1) 2024
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 576
  year: 2009
  end-page: 579
  publication-title: Electrochem. Commun.
– volume: 359
  start-page: 634
  year: 2017
  end-page: 655
  publication-title: J. Power Sources
– volume: 39
  start-page: 9409
  year: 2014
  end-page: 9419
  publication-title: Int. J. Hydrogen Energy
– volume: 593
  year: 2024
  publication-title: J. Power Sources
– volume: 119
  start-page: 22934
  year: 2015
  end-page: 22944
  publication-title: J. Phys. Chem. C
– volume: 328
  start-page: 364
  year: 2016
  end-page: 376
  publication-title: J. Power Sources
– volume: 162
  start-page: F661
  year: 2015
  end-page: F668
  publication-title: J. Electrochem. Soc.
– volume: 266
  year: 2023
  publication-title: Energy
– volume: 46
  start-page: 12206
  year: 2021
  end-page: 12229
  publication-title: Int. J. Hydrogen Energy
– volume: 43
  start-page: 7456
  year: 2018
  end-page: 7464
  publication-title: Int. J. Hydrogen Energy
– volume: 4272
  start-page: 299
  year: 2007
  end-page: 310
  publication-title: Microchannels, and Minichannels
– volume: 34
  start-page: 9461
  year: 2009
  end-page: 9478
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 21
  year: 2016
  publication-title: Computation
– volume: 304
  start-page: 207
  year: 2016
  end-page: 233
  publication-title: J. Power Sources
– volume: 12
  start-page: 207
  year: 2015
  end-page: 214
  publication-title: Int. J. Green Energy
– volume: 145
  start-page: 413
  year: 2022
  end-page: 440
  publication-title: Transp. Porous Media
– volume: 13
  start-page: 20002
  year: 2021
  end-page: 20013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 157
  start-page: B563
  year: 2010
  end-page: B571
  publication-title: J. Electrochem. Soc.
– volume: 423
  start-page: 280
  year: 2019
  end-page: 289
  publication-title: J. Power Sources
– volume: 54
  start-page: 551
  year: 2008
  end-page: 559
  publication-title: Electrochim. Acta
– volume: 540
  year: 2022
  publication-title: J. Power Sources
– volume: 160
  start-page: F731
  year: 2013
  end-page: F743
  publication-title: J. Electrochem. Soc.
– volume: 282
  year: 2023
  publication-title: Energy
– volume: 174
  start-page: 206
  year: 2007
  end-page: 220
  publication-title: J. Power Sources
– volume: 166
  start-page: F3001
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 25
  start-page: 2665
  year: 2011
  end-page: 2673
  publication-title: J. Mech. Sci. Technol.
– volume: 7
  start-page: 3900
  year: 2022
  end-page: 3909
  publication-title: ACS Energy Lett.
– volume: 331
  start-page: 462
  year: 2016
  end-page: 474
  publication-title: J. Power Sources
– volume: 88
  start-page: 981
  year: 2011
  end-page: 1007
  publication-title: Appl. Energy
– volume: 14
  year: 2023
  publication-title: Energy AI
– volume: 41
  start-page: 489
  year: 2011
  publication-title: ECS Trans.
– year: 2023
  publication-title: Heliyon
– volume: 164
  start-page: F1149
  year: 2017
  end-page: F1157
  publication-title: J. Electrochem. Soc.
– volume: 220
  start-page: 348
  year: 2012
  end-page: 353
  publication-title: J. Power Sources
– volume: 163
  start-page: F1389
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 520
  year: 2022
  publication-title: J. Power Sources
– volume: 85
  start-page: 367
  year: 2015
  end-page: 374
  publication-title: Int. J. Heat Mass Transfer
– volume: 1
  start-page: 6006
  year: 2018
  end-page: 6017
  publication-title: ACS Appl. Energ. Mater.
– volume: 156
  start-page: B1175
  year: 2009
  end-page: B1181
  publication-title: J. Electrochem. Soc.
– volume: 490
  year: 2021
  publication-title: J. Power Sources
– volume: 157
  start-page: B1456
  year: 2010
  end-page: B1464
  publication-title: J. Electrochem. Soc.
– volume: 50
  start-page: 487
  year: 2012
  end-page: 501
  publication-title: ECS Trans.
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. E
– volume: 16
  start-page: 6935
  year: 2023
  publication-title: Materials
– volume: 5
  start-page: 27
  year: 2017
  end-page: 35
  publication-title: Curr. Opin. Electrochem.
– volume: 296
  start-page: 440
  year: 2015
  end-page: 453
  publication-title: J. Power Sources
– volume: 402
  start-page: 468
  year: 2018
  end-page: 482
  publication-title: J. Power Sources
– volume: 15
  year: 2018
  publication-title: J. Electrochem. En. Conv. Stor.
– volume: 14
  start-page: 144
  year: 2020
  publication-title: Energies
– volume: 162
  start-page: 1226
  year: 2006
  end-page: 1231
  publication-title: J. Power Sources
– volume: 35
  start-page: 11148
  year: 2010
  end-page: 11153
  publication-title: Int. J. Hydrogen Energy
– volume: 144
  start-page: 481
  year: 2022
  end-page: 506
  publication-title: Transp. Porous Media
– volume: 517
  year: 2022
  publication-title: J. Power Sources
– year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 2779
  year: 2009
  end-page: 2791
  publication-title: Int. J. Heat Mass Transfer
– volume: 163
  start-page: F1038
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: F652
  year: 2018
  end-page: F661
  publication-title: J. Electrochem. Soc.
– volume: 323
  start-page: 37
  year: 2016
  end-page: 43
  publication-title: J. Power Sources
– start-page: 199
  year: 2023
  end-page: 224
– volume: 560
  year: 2023
  publication-title: J. Power Sources
– volume: 13
  start-page: 2931
  year: 2020
  publication-title: ChemSusChem
– volume: 34
  start-page: 22
  year: 2013
  end-page: 24
  publication-title: Electrochem. Commun.
– volume: 158
  start-page: B846
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: F603
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 46
  start-page: 18634
  year: 2022
  end-page: 18647
  publication-title: Int. J. Energy Res.
– volume: 533
  year: 2022
  publication-title: J. Power Sources
– volume: 435
  year: 2019
  publication-title: J. Power Sources
– year: 2018
– volume: 234
  start-page: 129
  year: 2013
  end-page: 138
  publication-title: J. Power Sources
– volume: 44
  start-page: 23396
  year: 2019
  end-page: 23405
  publication-title: Int. J. Hydrogen Energy
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 127
  start-page: 687
  year: 2018
  end-page: 703
  publication-title: Int. J. Heat Mass Transfer
– volume: 129
  start-page: 1043
  year: 2019
  end-page: 1056
  publication-title: Int. J. Heat Mass Transfer
– volume: 35
  start-page: 2403
  year: 2010
  end-page: 2416
  publication-title: Int. J. Hydrogen Energy
– volume: 18
  start-page: 602
  year: 2018
  end-page: 612
  publication-title: Fuel Cells
– year: 2004
– volume: 167
  start-page: 160
  year: 2015
  end-page: 171
  publication-title: Electrochim. Acta
– volume: 35
  start-page: 9241
  year: 2010
  end-page: 9251
  publication-title: Int. J. Hydrogen Energy
– volume: 179
  start-page: 140
  year: 2008
  end-page: 146
  publication-title: J. Power Sources
– volume: 41
  start-page: 10010
  year: 2016
  end-page: 10020
  publication-title: Int. J. Hydrogen Energy
– volume: 248
  start-page: 822
  year: 2014
  end-page: 830
  publication-title: J. Power Sources
– volume: 271
  start-page: 180
  year: 2014
  end-page: 186
  publication-title: J. Power Sources
– volume: 162
  start-page: 228
  year: 2006
  end-page: 238
  publication-title: J. Power Sources
– volume: 163
  start-page: F202
  year: 2016
  end-page: F209
  publication-title: J. Electrochem. Soc.
– volume: 29
  start-page: 1103
  year: 2005
  end-page: 1112
  publication-title: Int. J. Energy Res.
– volume: 164
  start-page: F530
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 164
  start-page: F115
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 55
  start-page: 2706
  year: 2010
  end-page: 2711
  publication-title: Electrochim. Acta
– volume: 161
  start-page: F1184
  year: 2014
  end-page: F1193
  publication-title: J. Electrochem. Soc.
– volume: 177
  start-page: 348
  year: 2008
  end-page: 354
  publication-title: J. Power Sources
– volume: 86
  start-page: 319
  year: 2015
  end-page: 333
  publication-title: Int. J. Heat Mass Transfer
– volume: 164
  start-page: E3359
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 555
  year: 2023
  publication-title: J. Power Sources
– volume: 539
  year: 2022
  publication-title: J. Power Sources
– volume: 167
  year: 2021
  publication-title: Int J. Heat Mass Transfer
– year: 2024
  publication-title: Sci. Rep.
– volume: 51
  start-page: 1199
  year: 2006
  end-page: 1207
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 4613
  year: 2022
  end-page: 4621
  publication-title: ACS Appl. Energ. Mater.
– volume: 10
  year: 2022
  publication-title: Front. Energy Res.
– volume: 3
  start-page: 540
  year: 2014
  end-page: 560
  publication-title: Wiley Interdiscip. Rev. Energy Environ.
– volume: 6
  start-page: 28
  year: 2023
  publication-title: Electrochem. Energy Rev.
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jpowsour.2023.232714
– ident: e_1_2_9_51_1
  doi: 10.1149/1945-7111/ac4456
– ident: e_1_2_9_10_1
  doi: 10.1016/j.egyai.2023.100261
– ident: e_1_2_9_44_1
  doi: 10.1149/1.3594636
– ident: e_1_2_9_79_1
  doi: 10.1007/s12206-011-0743-y
– ident: e_1_2_9_29_1
  doi: 10.1149/2.0191507jes
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jpowsour.2018.08.062
– ident: e_1_2_9_22_1
  doi: 10.1016/j.electacta.2005.06.036
– ident: e_1_2_9_57_1
  doi: 10.1016/j.jpowsour.2014.07.163
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ijhydene.2009.12.160
– ident: e_1_2_9_81_1
  doi: 10.1149/1.3468615
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jpowsour.2023.233950
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jpowsour.2016.09.076
– ident: e_1_2_9_93_1
  doi: 10.1007/s11242-022-01816-1
– ident: e_1_2_9_75_1
  doi: 10.1149/05002.0487ecst
– ident: e_1_2_9_3_1
  doi: 10.3389/fenrg.2022.956132
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jpowsour.2012.07.090
– ident: e_1_2_9_68_1
  doi: 10.1149/1.3176876
– ident: e_1_2_9_20_1
  doi: 10.1149/2.0881702jes
– ident: e_1_2_9_67_1
  doi: 10.1016/j.jpowsour.2013.10.009
– ident: e_1_2_9_88_1
  doi: 10.1016/j.ijhydene.2009.08.092
– ident: e_1_2_9_107_1
  doi: 10.1016/j.jpowsour.2019.226809
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ijheatmasstransfer.2018.10.004
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jpowsour.2022.231539
– ident: e_1_2_9_54_1
  doi: 10.1016/j.ijhydene.2019.07.036
– ident: e_1_2_9_69_1
  doi: 10.1016/j.electacta.2015.03.100
– ident: e_1_2_9_106_1
  doi: 10.1002/cssc.202000542
– ident: e_1_2_9_76_1
  doi: 10.1016/j.ijhydene.2014.03.238
– ident: e_1_2_9_105_1
  doi: 10.1002/er.8478
– ident: e_1_2_9_27_1
  doi: 10.1149/1.3291977
– volume: 4272
  start-page: 299
  year: 2007
  ident: e_1_2_9_94_1
  publication-title: Microchannels, and Minichannels
  contributor:
    fullname: Schillberg C. H.
– ident: e_1_2_9_71_1
  doi: 10.1149/2.0921506jes
– ident: e_1_2_9_80_1
  doi: 10.1016/j.energy.2023.128780
– ident: e_1_2_9_78_1
  doi: 10.1016/j.ijhydene.2014.03.238
– ident: e_1_2_9_15_1
  doi: 10.1016/j.coelec.2017.08.018
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jpowsour.2007.11.080
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ijhydene.2020.06.211
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jpowsour.2021.230723
– ident: e_1_2_9_99_1
  doi: 10.1016/j.jpowsour.2007.08.111
– ident: e_1_2_9_52_1
  doi: 10.1016/j.ijheatmasstransfer.2018.07.030
– ident: e_1_2_9_103_1
  doi: 10.1021/acsenergylett.2c02012
– ident: e_1_2_9_47_1
  doi: 10.1149/2.0391711jes
– ident: e_1_2_9_25_1
  doi: 10.1021/acsaem.8b01059
– ident: e_1_2_9_45_1
  doi: 10.1007/b95999
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jpowsour.2021.230735
– ident: e_1_2_9_96_1
  doi: 10.1016/j.elecom.2013.04.006
– ident: e_1_2_9_1_1
  doi: 10.1016/B978-0-323-99485-9.00011-3
– ident: e_1_2_9_77_1
  doi: 10.1149/2.0321412jes
– ident: e_1_2_9_34_1
  doi: 10.1016/j.ijheatmasstransfer.2020.120824
– ident: e_1_2_9_90_1
  doi: 10.1016/j.ijhydene.2016.03.048
– ident: e_1_2_9_101_1
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jpowsour.2017.03.155
– ident: e_1_2_9_58_1
  doi: 10.1149/2.0381706jes
– ident: e_1_2_9_66_1
  doi: 10.1016/j.jpowsour.2006.07.058
– ident: e_1_2_9_83_1
  doi: 10.1016/j.elecom.2008.12.053
– year: 2024
  ident: e_1_2_9_92_1
  publication-title: Sci. Rep.
  contributor:
    fullname: Garcia-Salaberri P. A.
– ident: e_1_2_9_60_1
  doi: 10.1021/acsaem.2c00023
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ijhydene.2009.09.017
– ident: e_1_2_9_85_1
  doi: 10.1201/9781315274386
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jpowsour.2021.229492
– ident: e_1_2_9_84_1
  doi: 10.3390/computation4020021
– ident: e_1_2_9_70_1
  doi: 10.1149/1.3635583
– ident: e_1_2_9_2_1
  doi: 10.1016/j.apenergy.2010.09.030
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jpowsour.2013.01.150
– ident: e_1_2_9_73_1
  doi: 10.1149/2.0401603jes
– year: 2023
  ident: e_1_2_9_98_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Chen C.
– ident: e_1_2_9_97_1
  doi: 10.1016/j.energy.2022.126340
– ident: e_1_2_9_102_1
  doi: 10.1016/j.jpowsour.2016.05.036
– ident: e_1_2_9_95_1
  doi: 10.1080/15435075.2014.891521
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jpowsour.2022.231402
– ident: e_1_2_9_9_1
  doi: 10.1016/j.egyai.2023.100265
– ident: e_1_2_9_82_1
  doi: 10.1016/j.ijheatmasstransfer.2009.01.002
– ident: e_1_2_9_35_1
  doi: 10.1007/s11242-022-01858-5
– ident: e_1_2_9_8_1
  doi: 10.1002/wene.113
– ident: e_1_2_9_91_1
  doi: 10.1016/j.ijhydene.2018.01.091
– ident: e_1_2_9_100_1
  doi: 10.1016/j.jpowsour.2007.12.114
– ident: e_1_2_9_48_1
  doi: 10.1021/acs.jpcc.5b06197
– ident: e_1_2_9_5_1
  doi: 10.3390/en14010144
– year: 2023
  ident: e_1_2_9_36_1
  publication-title: Heliyon
  contributor:
    fullname: García-Salaberri P. A.
– ident: e_1_2_9_24_1
  doi: 10.1149/2.0891613jes
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ijhydene.2010.07.056
– ident: e_1_2_9_55_1
  doi: 10.3390/ma16216935
– ident: e_1_2_9_63_1
  doi: 10.1115/1.4038626
– ident: e_1_2_9_74_1
  doi: 10.1149/2.0831809jes
– ident: e_1_2_9_31_1
  doi: 10.1149/1945-7111/ab9d61
– ident: e_1_2_9_4_1
  doi: 10.1002/er.1142
– ident: e_1_2_9_12_1
  doi: 10.1016/B978-0-323-85727-7.00015-1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jpowsour.2019.03.079
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jpowsour.2022.232383
– ident: e_1_2_9_14_1
  doi: 10.1007/s41918-023-00190-w
– ident: e_1_2_9_59_1
  doi: 10.1021/acsami.1c00849
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ijheatmasstransfer.2015.02.073
– ident: e_1_2_9_72_1
  doi: 10.1016/j.jpowsour.2016.08.020
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jpowsour.2022.231612
– ident: e_1_2_9_65_1
  doi: 10.1016/j.ijheatmasstransfer.2015.01.101
– ident: e_1_2_9_62_1
  doi: 10.1149/2.0511609jes
– ident: e_1_2_9_28_1
  doi: 10.1149/2.009308jes
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jpowsour.2015.11.041
– ident: e_1_2_9_89_1
  doi: 10.1016/j.electacta.2009.12.048
– ident: e_1_2_9_42_1
  doi: 10.1103/PhysRevE.96.023307
– ident: e_1_2_9_61_1
  doi: 10.1002/fuce.201700217
– ident: e_1_2_9_64_1
  doi: 10.1016/j.electacta.2008.07.034
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jpowsour.2015.07.034
– ident: e_1_2_9_46_1
  doi: 10.1149/2.0011907jes
– ident: e_1_2_9_7_1
  doi: 10.3389/fenrg.2022.1058913
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jpowsour.2006.06.096
– ident: e_1_2_9_87_1
  doi: 10.1149/2.0861712jes
SSID ssj0001105386
Score 2.3651178
Snippet Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells....
Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Assembly
Capillary pressure
capillary transport
Catalysts
Cathodes
Chemical reduction
Cracks
Diffusion layers
Electrolytes
Electrolytic cells
Fuel cells
Gaseous diffusion
Hydrophobicity
MEA
multiscale
Oxygen
Oxygen reduction reactions
oxygen resistance
PEMFC
Percolation
Polymers
Pressure curve
Proton exchange membrane fuel cells
Wettability
SummonAdditionalLinks – databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BWcCm4ikCBd0FEhus2uPHjNkVK1FBLUSIiu5G8zJCchzkuFW94xNY83l8CfeOk7RZIbHz25bP3LlnXucw9io2wvqydlGttYyyMsGQ8pmLPOYHV2JSsWG44PRjcXyWfTjPz2-s4h_1IbYdbhQZob6mANdmdXgtGmp9QxKENAcyLuRtdodkY0g9n2fz614WpA9psHvEyKTZtkmxUW6M-eHuI3YyUxDw32GdN7lrSD6z-2x_zRrhaIT5Abvl24fsbrUxa3vEfk-v9CJ4PcD79lJTF9ifn7_mvkOcw7-Ho_BWQL4HtOpv6Tyc6IGcOoEGfhemGeB7C_NlMyx8B9PRHqcZeg-neBZTmofZhW-g8k2zegufrgYse_DZr4iBYtF5A19934-y3wPo1kHV0QL-x-xsNv1SHUdr24XIpljnYPWHLUvjpLNlGGgUskhsHBst4kzoLMUmj6uL0tuUm4wj3-LYwHYaA12mmOri9Anba5etf8qg5HWSS8TdFZZM1yU-39TWWZ1zY3Q-Ya83v1z9GNU11KijzBWBo7bgTNg7QmR7FalihwPL7ptaB5kqRV0nhZVOkMygkTr3sXFCptKY1Ag-YQcbPNU6VFcqJQuBAomYmDAeMP7Hp6hqelJt9579z03P2T3aDtN--QHb67sL_wLJTW9ehvL7F1zh8WM
  priority: 102
  providerName: Wiley-Blackwell
Title Examining Invasion‐Percolation Across the Cathode Layered Assembly in Polymer Electrolyte Membrane Fuel Cells: Oxygen Resistance, Wettability and Cracks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400068
https://www.proquest.com/docview/3074766587
https://doaj.org/article/97ff16c8d73240b8a5e0bd7838bb3b72
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgLGCDeIqBMroLJDZE9dhJ7HTXRhkV1JZRRUV3ll-RKmUyaCZFzY5P6JrP40u4dmZGw6oblkksx_K99j3Xj3MI-UCNsL6oXVJrLZO0mOCQ8qlLPMYHV2BQsXG74Ow8P7lMv1xlVztSX-FM2EAPPHTcQSHqepJb6USgjjNSZ54aJySXxnAjhtmXFjvJVFxdQdjAZb5haaTswPomMBaGI5M08KruRKFI1v8PwtzFqTHQTJ-Rp2uECEdDy56TB759QR6XG2G2l-R3davnUdcBPrc_dVju-vPrbuaXaNPYz3AU_wqI7SDc8Fs4D6e6D6qcEDZ556bp4bqF2aLp534J1SCF0_SdhzP8iuHLw_TGN1D6plkdwtfbHv0MLvwqoE10k0_w3XfdQPHdg24dlMtwWf8VuZxW38qTZC2xkFiO8wtOdZhFGiedLeKmopD5xFJqtKCp0CnH9MbVeeEtZyZliK0YJtNO46CWHMMa5a_JXrto_RsCBasnmUQbu9wGgXWJ9ZvaOqszZozORuTjpsvVj4FJQw2cyUwF46itcUbkOFhkWyowYMcX6Bdq7RfqPr8Ykf2NPdV6WK4UD3IBOYIuMSIs2viepqiyOi23T2__R8PekSehwnjkl-2TvW55498jsOnMmDxk6WxMHh1X57OLcfTov3ef91Q
link.rule.ids 315,783,787,867,2109,11574,27936,27937,33756,46064,46488,50826,50935
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage1guiKcoLOADEheiTZyXw61ErbrQLiu0BcTF8isrpDRFaRZtbvwEzvw8fgkzTtKlJySOcRIn8ng8n2fG3xDywleptllhvEJK7kVZACplI-NZsA8mA6OiXbhgeZrMV9Hbz_GQTYhnYTp-iJ3DDTXDrdeo4OiQPr5mDdW2RA5CTIL0E36THMQY1BuRg8nH1ZfVtaMFEEToKj6CcmLCbZAM5I0-O97vZM84OQ7_PeD5N3x19md2h9zugSOddJK-S27Y6h45zId6bffJr-mVXLtyD_Sk-i7RC_b7x88zW4Oo3fDTifsqBchH8eDfxli6kC0W66QY-12rsqVfK3q2Kdu1rem0q5BTto2lS7gLVs3S2aUtaW7Lcvuavr9qYfrRD3aLIBRmzyv6yTZNx_zdUlkZmtd4hv8BWc2m5_nc6ysveDqEZQdWQNhcKsONzlysMeVJoH1fydSPUhmFsOsxRZJZHTIVMYBcDPbYRoKu8xCsnR8-JKNqU9lHhGasCGIOojeJxrrrHPpXhTZaxkwpGY_Jy2HIxbeOYEN0VMpMoHDETjhj8gYlsnsKibFdw6a-EL2eiSwtiiDR3KTINKi4jK2vTMpDrlSoUjYmR4M8Ra-tWxFiFYEEsFg6JszJ-B-_IvLpIt9dPf6fl56Tw_n5ciEWJ6fvnpBb2O6ygNkRGTX1pX0KWKdRz_rZ_Acpovad
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BKwEbVF4ifcBdILHBqj1-jdkFN1ELaYkQgYrNaF5GSI5TOS6qd3wCaz6PL-mdsZM2KySWHttja-69c8-8ziHklS9TZbJCe4UQzIuyAEPKRNozmB90hklFueWC07PkeBa9P4_Pb53i7_gh1hNuNjJcf20D_EIXhzekocqUloLQ7oH0E3aXbCPUoOjj28Mvs2-zm3kWBBChE3zE2LT7bYNkxd3o08PNSjZyk6Pw38Cdt9GrSz_jHfKwx40w7Az9iNwx1WNyP1_JtT0hf0ZXYu7UHuCk-insJNjfX7-npkZLu9aHofsqIOIDe-5voQ1MRGu1OsEu_c5l2cKPCqaLsp2bGkadQE7ZNgZO8S4mNQPjS1NCbspy-RY-XrXoffDJLC0GRed5A19N03TE3y2ISkNe2yP8T8lsPPqcH3u98IKnQux1sAPEsaXUTKvMLTWmLAmU70uR-lEqohAHPbpIMqNCKiOKiIviEFsLDHUWYrLzw2dkq1pU5jmBjBZBzNDyOlFWdp1h_bJQWomYSiniAXm9anJ-0fFr8I5JmXJrHL42zoC8sxZZP2V5sV3Bov7O-zDjWVoUQaKYTi3RoGQiNr7UKQuZlKFM6YDsr-zJ-2Bd8tCKCCQIxdIBoc7G__gVno8m-fpq939eeknuTY_GfHJy9mGPPLDFbg8w3SdbTX1pDhDpNPJF78zXpNb1xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+Invasion%E2%80%90Percolation+Across+the+Cathode+Layered+Assembly+in+Polymer+Electrolyte+Membrane+Fuel+Cells%3A+Oxygen+Resistance%2C+Wettability+and+Cracks&rft.jtitle=ChemElectroChem&rft.au=Pablo+A.+Garc%C3%ADa%E2%80%90Salaberri&rft.date=2024-07-02&rft.pub=Wiley-VCH&rft.eissn=2196-0216&rft.volume=11&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202400068&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_97ff16c8d73240b8a5e0bd7838bb3b72
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon