Examining Invasion‐Percolation Across the Cathode Layered Assembly in Polymer Electrolyte Membrane Fuel Cells: Oxygen Resistance, Wettability and Cracks
Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), vary...
Saved in:
Published in | ChemElectroChem Vol. 11; no. 13 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
02.07.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low.
Water and oxygen transport across the cathode layered assembly play a crucial role in the performance of polymer electrolyte membrane Fuel Cells. The present work examines the effect of microporous layer (MPL), wettability, crack density and patterned wettability on capillary transport of water and oxygen diffusion. Among other conclusions, the results show that mass transport losses can be reduced both through the incorporation of an MPL with a moderate number of cracks and the introduction of patterned wettability into the gas diffusion layer. |
---|---|
AbstractList | Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low. Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells . However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μ m in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low. Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low. Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells. However, analysis of two‐phase transport is challenged by the wide range of pore sizes present in the membrane electrode assembly (MEA), varying from 10–100 nm in the catalyst layer (CL), 10–1000 nm in the microporous layer (MPL) and 10 μm in the gas diffusion layer (GDL). In this work, a novel multiscale invasion‐percolation model accounting for the cathode CL, MPL and GDL is presented. Saturation in the macroporous GDL is modeled through an all‐or‐nothing invasion law (empty/filled), while a macroscopic description in terms of the capillary pressure curve is adopted for the MPL and the CL. The oxygen transport resistance across the cathode MEA is quantified using the computed saturation distributions. Among other conclusions, the results show that MPL addition is crucial to avoid local flooding at the CL/GDL interface, providing localized access points to the GDL rather than massively invading interfacial macropores. However, excessive MPL hydrophobicity can cause CL flooding. Water removal from the CL can be enhanced by using a more hydrophilic MPL, a hydrophobic CL or the addition of a moderate volume fraction of cracks. Oxygen transport can be further improved by modulating the arrangement of water in the GDL with patterned wettability, provided that the number of MPL cracks is low. Water and oxygen transport across the cathode layered assembly play a crucial role in the performance of polymer electrolyte membrane Fuel Cells. The present work examines the effect of microporous layer (MPL), wettability, crack density and patterned wettability on capillary transport of water and oxygen diffusion. Among other conclusions, the results show that mass transport losses can be reduced both through the incorporation of an MPL with a moderate number of cracks and the introduction of patterned wettability into the gas diffusion layer. |
Author | García‐Salaberri, Pablo A. |
Author_xml | – sequence: 1 givenname: Pablo A. orcidid: 0000-0002-3918-5415 surname: García‐Salaberri fullname: García‐Salaberri, Pablo A. email: pagsalab@ing.uc3m.es organization: Universidad Carlos III de Madrid |
BookMark | eNqFUU1vEzEQXaEiUUqvnC1xJcFeb2wvt2iVQqSgVgjE0fLHbOrg2MV2oHvjJ3Dm5_FLcBtUuHGaGc97bzzznjYnIQZomucEzwnG7SsD3sxb3HYYYyYeNact6dkMt4Sd_JM_ac5z3lUIIXhBBTttfq5u1d4FF7ZoHb6q7GL49f3HFSQTvSq1QkuTYs6oXAMaVLmOFtBGTZDAomXOsNd-Qi6gq-inPSS08mBKqkUB9K52kwqALg7g0QDe59fo8nbaQkDvIbtcVDDwEn2CUpR23pUJqWDRkJT5nJ81j0flM5z_iWfNx4vVh-HtbHP5Zj0sNzNDsRCznvRcaCus6etidMEFIwZjrTjuuOoow8yOrAdDW921pKNtj7lVvKeCdpxgetasj7o2qp28SW6v0iSjcvL-IaatVKk440H2fBwJM8JyWi-thVoA1pYLKrSmmrdV68VR6ybFLwfIRe7iIYX6fUkx7zhjC8Eran5E3Z82wfgwlWB5Z6e8s1M-2FkJ_ZHwzXmY_oOWw2oz_OX-BiRMpkk |
Cites_doi | 10.1016/j.jpowsour.2023.232714 10.1149/1945-7111/ac4456 10.1016/j.egyai.2023.100261 10.1149/1.3594636 10.1007/s12206-011-0743-y 10.1149/2.0191507jes 10.1016/j.jpowsour.2018.08.062 10.1016/j.electacta.2005.06.036 10.1016/j.jpowsour.2014.07.163 10.1016/j.ijhydene.2009.12.160 10.1149/1.3468615 10.1016/j.jpowsour.2023.233950 10.1016/j.jpowsour.2016.09.076 10.1007/s11242-022-01816-1 10.1149/05002.0487ecst 10.3389/fenrg.2022.956132 10.1016/j.jpowsour.2012.07.090 10.1149/1.3176876 10.1149/2.0881702jes 10.1016/j.jpowsour.2013.10.009 10.1016/j.ijhydene.2009.08.092 10.1016/j.jpowsour.2019.226809 10.1016/j.ijheatmasstransfer.2018.10.004 10.1016/j.jpowsour.2022.231539 10.1016/j.ijhydene.2019.07.036 10.1016/j.electacta.2015.03.100 10.1002/cssc.202000542 10.1016/j.ijhydene.2014.03.238 10.1002/er.8478 10.1149/1.3291977 10.1149/2.0921506jes 10.1016/j.energy.2023.128780 10.1016/j.coelec.2017.08.018 10.1016/j.jpowsour.2007.11.080 10.1016/j.ijhydene.2020.06.211 10.1016/j.jpowsour.2021.230723 10.1016/j.jpowsour.2007.08.111 10.1016/j.ijheatmasstransfer.2018.07.030 10.1021/acsenergylett.2c02012 10.1149/2.0391711jes 10.1021/acsaem.8b01059 10.1007/b95999 10.1016/j.jpowsour.2021.230735 10.1016/j.elecom.2013.04.006 10.1016/B978-0-323-99485-9.00011-3 10.1149/2.0321412jes 10.1016/j.ijheatmasstransfer.2020.120824 10.1016/j.ijhydene.2016.03.048 10.1016/j.jpowsour.2017.03.155 10.1149/2.0381706jes 10.1016/j.jpowsour.2006.07.058 10.1016/j.elecom.2008.12.053 10.1021/acsaem.2c00023 10.1016/j.ijhydene.2009.09.017 10.1201/9781315274386 10.1016/j.jpowsour.2021.229492 10.3390/computation4020021 10.1149/1.3635583 10.1016/j.apenergy.2010.09.030 10.1016/j.jpowsour.2013.01.150 10.1149/2.0401603jes 10.1016/j.energy.2022.126340 10.1016/j.jpowsour.2016.05.036 10.1080/15435075.2014.891521 10.1016/j.jpowsour.2022.231402 10.1016/j.egyai.2023.100265 10.1016/j.ijheatmasstransfer.2009.01.002 10.1007/s11242-022-01858-5 10.1002/wene.113 10.1016/j.ijhydene.2018.01.091 10.1016/j.jpowsour.2007.12.114 10.1021/acs.jpcc.5b06197 10.3390/en14010144 10.1149/2.0891613jes 10.1016/j.ijhydene.2010.07.056 10.3390/ma16216935 10.1115/1.4038626 10.1149/2.0831809jes 10.1149/1945-7111/ab9d61 10.1002/er.1142 10.1016/B978-0-323-85727-7.00015-1 10.1016/j.jpowsour.2019.03.079 10.1016/j.jpowsour.2022.232383 10.1007/s41918-023-00190-w 10.1021/acsami.1c00849 10.1016/j.ijheatmasstransfer.2015.02.073 10.1016/j.jpowsour.2016.08.020 10.1016/j.jpowsour.2022.231612 10.1016/j.ijheatmasstransfer.2015.01.101 10.1149/2.0511609jes 10.1149/2.009308jes 10.1016/j.jpowsour.2015.11.041 10.1016/j.electacta.2009.12.048 10.1103/PhysRevE.96.023307 10.1002/fuce.201700217 10.1016/j.electacta.2008.07.034 10.1016/j.jpowsour.2015.07.034 10.1149/2.0011907jes 10.3389/fenrg.2022.1058913 10.1016/j.jpowsour.2006.06.096 10.1149/2.0861712jes |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1002/celc.202400068 |
DatabaseName | Wiley Open Access Wiley Online Library Free Content CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_97ff16c8d73240b8a5e0bd7838bb3b72 10_1002_celc_202400068 CELC202400068 |
Genre | article |
GrantInformation_xml | – fundername: Agencia Estatal de Investigación funderid: TED2021-131620B-C21 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BBNVY BENPR BGLVJ BHPHI BMXJE BRXPI CCPQU DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7P MEWTI MY~ O9- P2W PDBOC R.K ROL TUS WBKPD WIN WOHZO WXSBR WYJ ZZTAW AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c3088-91978bd8dc9000357861c00ba7047a43606df69ec32b421432907da7938347103 |
IEDL.DBID | DOA |
ISSN | 2196-0216 |
IngestDate | Tue Oct 22 15:15:29 EDT 2024 Thu Oct 10 22:39:01 EDT 2024 Thu Sep 12 21:03:33 EDT 2024 Sat Aug 24 00:42:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3088-91978bd8dc9000357861c00ba7047a43606df69ec32b421432907da7938347103 |
ORCID | 0000-0002-3918-5415 |
OpenAccessLink | https://doaj.org/article/97ff16c8d73240b8a5e0bd7838bb3b72 |
PQID | 3074766587 |
PQPubID | 2034587 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97ff16c8d73240b8a5e0bd7838bb3b72 proquest_journals_3074766587 crossref_primary_10_1002_celc_202400068 wiley_primary_10_1002_celc_202400068_CELC202400068 |
PublicationCentury | 2000 |
PublicationDate | July 2, 2024 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2, 2024 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 5 2010; 55 2011; 158 2018; 165 2021; 168 2021; 167 2018; 127 2018; 402 2023; 6 2023; 266 2009; 156 2020; 14 2016; 304 2020; 13 2020; 167 2022; 539 2019; 129 2024 2018; 43 2005; 29 2013; 160 2022; 533 2019; 166 2017; 359 2009; 11 2014; 248 2009; 52 2014; 3 2018; 1 2015; 86 2015; 85 2007; 174 2010; 157 2015; 296 2006; 162 2019; 435 2024; 593 2016; 41 2013; 234 2014; 161 2017; 164 2011; 25 2022; 520 2015; 162 2021; 46 2015; 12 2012; 220 2023; 14 2007; 4272 2010; 35 2006; 51 2023; 560 2016; 328 2023; 16 2023; 282 2015; 167 2019; 423 2022; 46 2014; 271 2008; 54 2004 2022; 517 2016; 323 2016; 164 2016; 163 2009; 34 2022; 540 2012; 50 2016; 4 2022; 144 2022; 145 2021; 13 2018; 18 2017; 96 2023 2019; 44 2022; 5 2013; 34 2022; 7 2021; 490 2011; 41 2011; 88 2023; 555 2016; 331 2018 2015; 119 2022; 10 2014; 39 2008; 179 2008; 177 2018; 15 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Schillberg C. H. (e_1_2_9_94_1) 2007; 4272 García-Salaberri P. A. (e_1_2_9_36_1) 2023 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 Chen C. (e_1_2_9_98_1) 2023 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 Garcia-Salaberri P. A. (e_1_2_9_92_1) 2024 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 576 year: 2009 end-page: 579 publication-title: Electrochem. Commun. – volume: 359 start-page: 634 year: 2017 end-page: 655 publication-title: J. Power Sources – volume: 39 start-page: 9409 year: 2014 end-page: 9419 publication-title: Int. J. Hydrogen Energy – volume: 593 year: 2024 publication-title: J. Power Sources – volume: 119 start-page: 22934 year: 2015 end-page: 22944 publication-title: J. Phys. Chem. C – volume: 328 start-page: 364 year: 2016 end-page: 376 publication-title: J. Power Sources – volume: 162 start-page: F661 year: 2015 end-page: F668 publication-title: J. Electrochem. Soc. – volume: 266 year: 2023 publication-title: Energy – volume: 46 start-page: 12206 year: 2021 end-page: 12229 publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 7456 year: 2018 end-page: 7464 publication-title: Int. J. Hydrogen Energy – volume: 4272 start-page: 299 year: 2007 end-page: 310 publication-title: Microchannels, and Minichannels – volume: 34 start-page: 9461 year: 2009 end-page: 9478 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 21 year: 2016 publication-title: Computation – volume: 304 start-page: 207 year: 2016 end-page: 233 publication-title: J. Power Sources – volume: 12 start-page: 207 year: 2015 end-page: 214 publication-title: Int. J. Green Energy – volume: 145 start-page: 413 year: 2022 end-page: 440 publication-title: Transp. Porous Media – volume: 13 start-page: 20002 year: 2021 end-page: 20013 publication-title: ACS Appl. Mater. Interfaces – volume: 157 start-page: B563 year: 2010 end-page: B571 publication-title: J. Electrochem. Soc. – volume: 423 start-page: 280 year: 2019 end-page: 289 publication-title: J. Power Sources – volume: 54 start-page: 551 year: 2008 end-page: 559 publication-title: Electrochim. Acta – volume: 540 year: 2022 publication-title: J. Power Sources – volume: 160 start-page: F731 year: 2013 end-page: F743 publication-title: J. Electrochem. Soc. – volume: 282 year: 2023 publication-title: Energy – volume: 174 start-page: 206 year: 2007 end-page: 220 publication-title: J. Power Sources – volume: 166 start-page: F3001 year: 2019 publication-title: J. Electrochem. Soc. – volume: 25 start-page: 2665 year: 2011 end-page: 2673 publication-title: J. Mech. Sci. Technol. – volume: 7 start-page: 3900 year: 2022 end-page: 3909 publication-title: ACS Energy Lett. – volume: 331 start-page: 462 year: 2016 end-page: 474 publication-title: J. Power Sources – volume: 88 start-page: 981 year: 2011 end-page: 1007 publication-title: Appl. Energy – volume: 14 year: 2023 publication-title: Energy AI – volume: 41 start-page: 489 year: 2011 publication-title: ECS Trans. – year: 2023 publication-title: Heliyon – volume: 164 start-page: F1149 year: 2017 end-page: F1157 publication-title: J. Electrochem. Soc. – volume: 220 start-page: 348 year: 2012 end-page: 353 publication-title: J. Power Sources – volume: 163 start-page: F1389 year: 2016 publication-title: J. Electrochem. Soc. – volume: 520 year: 2022 publication-title: J. Power Sources – volume: 85 start-page: 367 year: 2015 end-page: 374 publication-title: Int. J. Heat Mass Transfer – volume: 1 start-page: 6006 year: 2018 end-page: 6017 publication-title: ACS Appl. Energ. Mater. – volume: 156 start-page: B1175 year: 2009 end-page: B1181 publication-title: J. Electrochem. Soc. – volume: 490 year: 2021 publication-title: J. Power Sources – volume: 157 start-page: B1456 year: 2010 end-page: B1464 publication-title: J. Electrochem. Soc. – volume: 50 start-page: 487 year: 2012 end-page: 501 publication-title: ECS Trans. – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 96 year: 2017 publication-title: Phys. Rev. E – volume: 16 start-page: 6935 year: 2023 publication-title: Materials – volume: 5 start-page: 27 year: 2017 end-page: 35 publication-title: Curr. Opin. Electrochem. – volume: 296 start-page: 440 year: 2015 end-page: 453 publication-title: J. Power Sources – volume: 402 start-page: 468 year: 2018 end-page: 482 publication-title: J. Power Sources – volume: 15 year: 2018 publication-title: J. Electrochem. En. Conv. Stor. – volume: 14 start-page: 144 year: 2020 publication-title: Energies – volume: 162 start-page: 1226 year: 2006 end-page: 1231 publication-title: J. Power Sources – volume: 35 start-page: 11148 year: 2010 end-page: 11153 publication-title: Int. J. Hydrogen Energy – volume: 144 start-page: 481 year: 2022 end-page: 506 publication-title: Transp. Porous Media – volume: 517 year: 2022 publication-title: J. Power Sources – year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 2779 year: 2009 end-page: 2791 publication-title: Int. J. Heat Mass Transfer – volume: 163 start-page: F1038 year: 2016 publication-title: J. Electrochem. Soc. – volume: 165 start-page: F652 year: 2018 end-page: F661 publication-title: J. Electrochem. Soc. – volume: 323 start-page: 37 year: 2016 end-page: 43 publication-title: J. Power Sources – start-page: 199 year: 2023 end-page: 224 – volume: 560 year: 2023 publication-title: J. Power Sources – volume: 13 start-page: 2931 year: 2020 publication-title: ChemSusChem – volume: 34 start-page: 22 year: 2013 end-page: 24 publication-title: Electrochem. Commun. – volume: 158 start-page: B846 year: 2011 publication-title: J. Electrochem. Soc. – volume: 162 start-page: F603 year: 2015 publication-title: J. Electrochem. Soc. – volume: 46 start-page: 18634 year: 2022 end-page: 18647 publication-title: Int. J. Energy Res. – volume: 533 year: 2022 publication-title: J. Power Sources – volume: 435 year: 2019 publication-title: J. Power Sources – year: 2018 – volume: 234 start-page: 129 year: 2013 end-page: 138 publication-title: J. Power Sources – volume: 44 start-page: 23396 year: 2019 end-page: 23405 publication-title: Int. J. Hydrogen Energy – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 127 start-page: 687 year: 2018 end-page: 703 publication-title: Int. J. Heat Mass Transfer – volume: 129 start-page: 1043 year: 2019 end-page: 1056 publication-title: Int. J. Heat Mass Transfer – volume: 35 start-page: 2403 year: 2010 end-page: 2416 publication-title: Int. J. Hydrogen Energy – volume: 18 start-page: 602 year: 2018 end-page: 612 publication-title: Fuel Cells – year: 2004 – volume: 167 start-page: 160 year: 2015 end-page: 171 publication-title: Electrochim. Acta – volume: 35 start-page: 9241 year: 2010 end-page: 9251 publication-title: Int. J. Hydrogen Energy – volume: 179 start-page: 140 year: 2008 end-page: 146 publication-title: J. Power Sources – volume: 41 start-page: 10010 year: 2016 end-page: 10020 publication-title: Int. J. Hydrogen Energy – volume: 248 start-page: 822 year: 2014 end-page: 830 publication-title: J. Power Sources – volume: 271 start-page: 180 year: 2014 end-page: 186 publication-title: J. Power Sources – volume: 162 start-page: 228 year: 2006 end-page: 238 publication-title: J. Power Sources – volume: 163 start-page: F202 year: 2016 end-page: F209 publication-title: J. Electrochem. Soc. – volume: 29 start-page: 1103 year: 2005 end-page: 1112 publication-title: Int. J. Energy Res. – volume: 164 start-page: F530 year: 2017 publication-title: J. Electrochem. Soc. – volume: 164 start-page: F115 year: 2016 publication-title: J. Electrochem. Soc. – volume: 55 start-page: 2706 year: 2010 end-page: 2711 publication-title: Electrochim. Acta – volume: 161 start-page: F1184 year: 2014 end-page: F1193 publication-title: J. Electrochem. Soc. – volume: 177 start-page: 348 year: 2008 end-page: 354 publication-title: J. Power Sources – volume: 86 start-page: 319 year: 2015 end-page: 333 publication-title: Int. J. Heat Mass Transfer – volume: 164 start-page: E3359 year: 2017 publication-title: J. Electrochem. Soc. – volume: 555 year: 2023 publication-title: J. Power Sources – volume: 539 year: 2022 publication-title: J. Power Sources – volume: 167 year: 2021 publication-title: Int J. Heat Mass Transfer – year: 2024 publication-title: Sci. Rep. – volume: 51 start-page: 1199 year: 2006 end-page: 1207 publication-title: Electrochim. Acta – volume: 5 start-page: 4613 year: 2022 end-page: 4621 publication-title: ACS Appl. Energ. Mater. – volume: 10 year: 2022 publication-title: Front. Energy Res. – volume: 3 start-page: 540 year: 2014 end-page: 560 publication-title: Wiley Interdiscip. Rev. Energy Environ. – volume: 6 start-page: 28 year: 2023 publication-title: Electrochem. Energy Rev. – ident: e_1_2_9_41_1 doi: 10.1016/j.jpowsour.2023.232714 – ident: e_1_2_9_51_1 doi: 10.1149/1945-7111/ac4456 – ident: e_1_2_9_10_1 doi: 10.1016/j.egyai.2023.100261 – ident: e_1_2_9_44_1 doi: 10.1149/1.3594636 – ident: e_1_2_9_79_1 doi: 10.1007/s12206-011-0743-y – ident: e_1_2_9_29_1 doi: 10.1149/2.0191507jes – ident: e_1_2_9_86_1 doi: 10.1016/j.jpowsour.2018.08.062 – ident: e_1_2_9_22_1 doi: 10.1016/j.electacta.2005.06.036 – ident: e_1_2_9_57_1 doi: 10.1016/j.jpowsour.2014.07.163 – ident: e_1_2_9_17_1 doi: 10.1016/j.ijhydene.2009.12.160 – ident: e_1_2_9_81_1 doi: 10.1149/1.3468615 – ident: e_1_2_9_37_1 doi: 10.1016/j.jpowsour.2023.233950 – ident: e_1_2_9_43_1 doi: 10.1016/j.jpowsour.2016.09.076 – ident: e_1_2_9_93_1 doi: 10.1007/s11242-022-01816-1 – ident: e_1_2_9_75_1 doi: 10.1149/05002.0487ecst – ident: e_1_2_9_3_1 doi: 10.3389/fenrg.2022.956132 – ident: e_1_2_9_13_1 doi: 10.1016/j.jpowsour.2012.07.090 – ident: e_1_2_9_68_1 doi: 10.1149/1.3176876 – ident: e_1_2_9_20_1 doi: 10.1149/2.0881702jes – ident: e_1_2_9_67_1 doi: 10.1016/j.jpowsour.2013.10.009 – ident: e_1_2_9_88_1 doi: 10.1016/j.ijhydene.2009.08.092 – ident: e_1_2_9_107_1 doi: 10.1016/j.jpowsour.2019.226809 – ident: e_1_2_9_38_1 doi: 10.1016/j.ijheatmasstransfer.2018.10.004 – ident: e_1_2_9_21_1 doi: 10.1016/j.jpowsour.2022.231539 – ident: e_1_2_9_54_1 doi: 10.1016/j.ijhydene.2019.07.036 – ident: e_1_2_9_69_1 doi: 10.1016/j.electacta.2015.03.100 – ident: e_1_2_9_106_1 doi: 10.1002/cssc.202000542 – ident: e_1_2_9_76_1 doi: 10.1016/j.ijhydene.2014.03.238 – ident: e_1_2_9_105_1 doi: 10.1002/er.8478 – ident: e_1_2_9_27_1 doi: 10.1149/1.3291977 – volume: 4272 start-page: 299 year: 2007 ident: e_1_2_9_94_1 publication-title: Microchannels, and Minichannels contributor: fullname: Schillberg C. H. – ident: e_1_2_9_71_1 doi: 10.1149/2.0921506jes – ident: e_1_2_9_80_1 doi: 10.1016/j.energy.2023.128780 – ident: e_1_2_9_78_1 doi: 10.1016/j.ijhydene.2014.03.238 – ident: e_1_2_9_15_1 doi: 10.1016/j.coelec.2017.08.018 – ident: e_1_2_9_104_1 doi: 10.1016/j.jpowsour.2007.11.080 – ident: e_1_2_9_6_1 doi: 10.1016/j.ijhydene.2020.06.211 – ident: e_1_2_9_18_1 doi: 10.1016/j.jpowsour.2021.230723 – ident: e_1_2_9_99_1 doi: 10.1016/j.jpowsour.2007.08.111 – ident: e_1_2_9_52_1 doi: 10.1016/j.ijheatmasstransfer.2018.07.030 – ident: e_1_2_9_103_1 doi: 10.1021/acsenergylett.2c02012 – ident: e_1_2_9_47_1 doi: 10.1149/2.0391711jes – ident: e_1_2_9_25_1 doi: 10.1021/acsaem.8b01059 – ident: e_1_2_9_45_1 doi: 10.1007/b95999 – ident: e_1_2_9_32_1 doi: 10.1016/j.jpowsour.2021.230735 – ident: e_1_2_9_96_1 doi: 10.1016/j.elecom.2013.04.006 – ident: e_1_2_9_1_1 doi: 10.1016/B978-0-323-99485-9.00011-3 – ident: e_1_2_9_77_1 doi: 10.1149/2.0321412jes – ident: e_1_2_9_34_1 doi: 10.1016/j.ijheatmasstransfer.2020.120824 – ident: e_1_2_9_90_1 doi: 10.1016/j.ijhydene.2016.03.048 – ident: e_1_2_9_101_1 – ident: e_1_2_9_49_1 doi: 10.1016/j.jpowsour.2017.03.155 – ident: e_1_2_9_58_1 doi: 10.1149/2.0381706jes – ident: e_1_2_9_66_1 doi: 10.1016/j.jpowsour.2006.07.058 – ident: e_1_2_9_83_1 doi: 10.1016/j.elecom.2008.12.053 – year: 2024 ident: e_1_2_9_92_1 publication-title: Sci. Rep. contributor: fullname: Garcia-Salaberri P. A. – ident: e_1_2_9_60_1 doi: 10.1021/acsaem.2c00023 – ident: e_1_2_9_19_1 doi: 10.1016/j.ijhydene.2009.09.017 – ident: e_1_2_9_85_1 doi: 10.1201/9781315274386 – ident: e_1_2_9_39_1 doi: 10.1016/j.jpowsour.2021.229492 – ident: e_1_2_9_84_1 doi: 10.3390/computation4020021 – ident: e_1_2_9_70_1 doi: 10.1149/1.3635583 – ident: e_1_2_9_2_1 doi: 10.1016/j.apenergy.2010.09.030 – ident: e_1_2_9_23_1 doi: 10.1016/j.jpowsour.2013.01.150 – ident: e_1_2_9_73_1 doi: 10.1149/2.0401603jes – year: 2023 ident: e_1_2_9_98_1 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Chen C. – ident: e_1_2_9_97_1 doi: 10.1016/j.energy.2022.126340 – ident: e_1_2_9_102_1 doi: 10.1016/j.jpowsour.2016.05.036 – ident: e_1_2_9_95_1 doi: 10.1080/15435075.2014.891521 – ident: e_1_2_9_26_1 doi: 10.1016/j.jpowsour.2022.231402 – ident: e_1_2_9_9_1 doi: 10.1016/j.egyai.2023.100265 – ident: e_1_2_9_82_1 doi: 10.1016/j.ijheatmasstransfer.2009.01.002 – ident: e_1_2_9_35_1 doi: 10.1007/s11242-022-01858-5 – ident: e_1_2_9_8_1 doi: 10.1002/wene.113 – ident: e_1_2_9_91_1 doi: 10.1016/j.ijhydene.2018.01.091 – ident: e_1_2_9_100_1 doi: 10.1016/j.jpowsour.2007.12.114 – ident: e_1_2_9_48_1 doi: 10.1021/acs.jpcc.5b06197 – ident: e_1_2_9_5_1 doi: 10.3390/en14010144 – year: 2023 ident: e_1_2_9_36_1 publication-title: Heliyon contributor: fullname: García-Salaberri P. A. – ident: e_1_2_9_24_1 doi: 10.1149/2.0891613jes – ident: e_1_2_9_53_1 doi: 10.1016/j.ijhydene.2010.07.056 – ident: e_1_2_9_55_1 doi: 10.3390/ma16216935 – ident: e_1_2_9_63_1 doi: 10.1115/1.4038626 – ident: e_1_2_9_74_1 doi: 10.1149/2.0831809jes – ident: e_1_2_9_31_1 doi: 10.1149/1945-7111/ab9d61 – ident: e_1_2_9_4_1 doi: 10.1002/er.1142 – ident: e_1_2_9_12_1 doi: 10.1016/B978-0-323-85727-7.00015-1 – ident: e_1_2_9_30_1 doi: 10.1016/j.jpowsour.2019.03.079 – ident: e_1_2_9_33_1 doi: 10.1016/j.jpowsour.2022.232383 – ident: e_1_2_9_14_1 doi: 10.1007/s41918-023-00190-w – ident: e_1_2_9_59_1 doi: 10.1021/acsami.1c00849 – ident: e_1_2_9_16_1 doi: 10.1016/j.ijheatmasstransfer.2015.02.073 – ident: e_1_2_9_72_1 doi: 10.1016/j.jpowsour.2016.08.020 – ident: e_1_2_9_40_1 doi: 10.1016/j.jpowsour.2022.231612 – ident: e_1_2_9_65_1 doi: 10.1016/j.ijheatmasstransfer.2015.01.101 – ident: e_1_2_9_62_1 doi: 10.1149/2.0511609jes – ident: e_1_2_9_28_1 doi: 10.1149/2.009308jes – ident: e_1_2_9_11_1 doi: 10.1016/j.jpowsour.2015.11.041 – ident: e_1_2_9_89_1 doi: 10.1016/j.electacta.2009.12.048 – ident: e_1_2_9_42_1 doi: 10.1103/PhysRevE.96.023307 – ident: e_1_2_9_61_1 doi: 10.1002/fuce.201700217 – ident: e_1_2_9_64_1 doi: 10.1016/j.electacta.2008.07.034 – ident: e_1_2_9_50_1 doi: 10.1016/j.jpowsour.2015.07.034 – ident: e_1_2_9_46_1 doi: 10.1149/2.0011907jes – ident: e_1_2_9_7_1 doi: 10.3389/fenrg.2022.1058913 – ident: e_1_2_9_56_1 doi: 10.1016/j.jpowsour.2006.06.096 – ident: e_1_2_9_87_1 doi: 10.1149/2.0861712jes |
SSID | ssj0001105386 |
Score | 2.3651178 |
Snippet | Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane Fuel Cells.... Abstract Efficient evacuation of water generated by oxygen reduction reaction is necessary to increase catalyst utilization in polymer electrolyte membrane... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Assembly Capillary pressure capillary transport Catalysts Cathodes Chemical reduction Cracks Diffusion layers Electrolytes Electrolytic cells Fuel cells Gaseous diffusion Hydrophobicity MEA multiscale Oxygen Oxygen reduction reactions oxygen resistance PEMFC Percolation Polymers Pressure curve Proton exchange membrane fuel cells Wettability |
SummonAdditionalLinks | – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BWcCm4ikCBd0FEhus2uPHjNkVK1FBLUSIiu5G8zJCchzkuFW94xNY83l8CfeOk7RZIbHz25bP3LlnXucw9io2wvqydlGttYyyMsGQ8pmLPOYHV2JSsWG44PRjcXyWfTjPz2-s4h_1IbYdbhQZob6mANdmdXgtGmp9QxKENAcyLuRtdodkY0g9n2fz614WpA9psHvEyKTZtkmxUW6M-eHuI3YyUxDw32GdN7lrSD6z-2x_zRrhaIT5Abvl24fsbrUxa3vEfk-v9CJ4PcD79lJTF9ifn7_mvkOcw7-Ho_BWQL4HtOpv6Tyc6IGcOoEGfhemGeB7C_NlMyx8B9PRHqcZeg-neBZTmofZhW-g8k2zegufrgYse_DZr4iBYtF5A19934-y3wPo1kHV0QL-x-xsNv1SHUdr24XIpljnYPWHLUvjpLNlGGgUskhsHBst4kzoLMUmj6uL0tuUm4wj3-LYwHYaA12mmOri9Anba5etf8qg5HWSS8TdFZZM1yU-39TWWZ1zY3Q-Ya83v1z9GNU11KijzBWBo7bgTNg7QmR7FalihwPL7ptaB5kqRV0nhZVOkMygkTr3sXFCptKY1Ag-YQcbPNU6VFcqJQuBAomYmDAeMP7Hp6hqelJt9579z03P2T3aDtN--QHb67sL_wLJTW9ehvL7F1zh8WM priority: 102 providerName: Wiley-Blackwell |
Title | Examining Invasion‐Percolation Across the Cathode Layered Assembly in Polymer Electrolyte Membrane Fuel Cells: Oxygen Resistance, Wettability and Cracks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400068 https://www.proquest.com/docview/3074766587 https://doaj.org/article/97ff16c8d73240b8a5e0bd7838bb3b72 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLWgLGCDeIqBMroLJDZE9dhJ7HTXRhkV1JZRRUV3ll-RKmUyaCZFzY5P6JrP40u4dmZGw6oblkksx_K99j3Xj3MI-UCNsL6oXVJrLZO0mOCQ8qlLPMYHV2BQsXG74Ow8P7lMv1xlVztSX-FM2EAPPHTcQSHqepJb6USgjjNSZ54aJySXxnAjhtmXFjvJVFxdQdjAZb5haaTswPomMBaGI5M08KruRKFI1v8PwtzFqTHQTJ-Rp2uECEdDy56TB759QR6XG2G2l-R3davnUdcBPrc_dVju-vPrbuaXaNPYz3AU_wqI7SDc8Fs4D6e6D6qcEDZ556bp4bqF2aLp534J1SCF0_SdhzP8iuHLw_TGN1D6plkdwtfbHv0MLvwqoE10k0_w3XfdQPHdg24dlMtwWf8VuZxW38qTZC2xkFiO8wtOdZhFGiedLeKmopD5xFJqtKCp0CnH9MbVeeEtZyZliK0YJtNO46CWHMMa5a_JXrto_RsCBasnmUQbu9wGgXWJ9ZvaOqszZozORuTjpsvVj4FJQw2cyUwF46itcUbkOFhkWyowYMcX6Bdq7RfqPr8Ykf2NPdV6WK4UD3IBOYIuMSIs2viepqiyOi23T2__R8PekSehwnjkl-2TvW55498jsOnMmDxk6WxMHh1X57OLcfTov3ef91Q |
link.rule.ids | 315,783,787,867,2109,11574,27936,27937,33756,46064,46488,50826,50935 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage1guiKcoLOADEheiTZyXw61ErbrQLiu0BcTF8isrpDRFaRZtbvwEzvw8fgkzTtKlJySOcRIn8ng8n2fG3xDywleptllhvEJK7kVZACplI-NZsA8mA6OiXbhgeZrMV9Hbz_GQTYhnYTp-iJ3DDTXDrdeo4OiQPr5mDdW2RA5CTIL0E36THMQY1BuRg8nH1ZfVtaMFEEToKj6CcmLCbZAM5I0-O97vZM84OQ7_PeD5N3x19md2h9zugSOddJK-S27Y6h45zId6bffJr-mVXLtyD_Sk-i7RC_b7x88zW4Oo3fDTifsqBchH8eDfxli6kC0W66QY-12rsqVfK3q2Kdu1rem0q5BTto2lS7gLVs3S2aUtaW7Lcvuavr9qYfrRD3aLIBRmzyv6yTZNx_zdUlkZmtd4hv8BWc2m5_nc6ysveDqEZQdWQNhcKsONzlysMeVJoH1fydSPUhmFsOsxRZJZHTIVMYBcDPbYRoKu8xCsnR8-JKNqU9lHhGasCGIOojeJxrrrHPpXhTZaxkwpGY_Jy2HIxbeOYEN0VMpMoHDETjhj8gYlsnsKibFdw6a-EL2eiSwtiiDR3KTINKi4jK2vTMpDrlSoUjYmR4M8Ra-tWxFiFYEEsFg6JszJ-B-_IvLpIt9dPf6fl56Tw_n5ciEWJ6fvnpBb2O6ygNkRGTX1pX0KWKdRz_rZ_Acpovad |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BKwEbVF4ifcBdILHBqj1-jdkFN1ELaYkQgYrNaF5GSI5TOS6qd3wCaz6PL-mdsZM2KySWHttja-69c8-8ziHklS9TZbJCe4UQzIuyAEPKRNozmB90hklFueWC07PkeBa9P4_Pb53i7_gh1hNuNjJcf20D_EIXhzekocqUloLQ7oH0E3aXbCPUoOjj28Mvs2-zm3kWBBChE3zE2LT7bYNkxd3o08PNSjZyk6Pw38Cdt9GrSz_jHfKwx40w7Az9iNwx1WNyP1_JtT0hf0ZXYu7UHuCk-insJNjfX7-npkZLu9aHofsqIOIDe-5voQ1MRGu1OsEu_c5l2cKPCqaLsp2bGkadQE7ZNgZO8S4mNQPjS1NCbspy-RY-XrXoffDJLC0GRed5A19N03TE3y2ISkNe2yP8T8lsPPqcH3u98IKnQux1sAPEsaXUTKvMLTWmLAmU70uR-lEqohAHPbpIMqNCKiOKiIviEFsLDHUWYrLzw2dkq1pU5jmBjBZBzNDyOlFWdp1h_bJQWomYSiniAXm9anJ-0fFr8I5JmXJrHL42zoC8sxZZP2V5sV3Bov7O-zDjWVoUQaKYTi3RoGQiNr7UKQuZlKFM6YDsr-zJ-2Bd8tCKCCQIxdIBoc7G__gVno8m-fpq939eeknuTY_GfHJy9mGPPLDFbg8w3SdbTX1pDhDpNPJF78zXpNb1xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+Invasion%E2%80%90Percolation+Across+the+Cathode+Layered+Assembly+in+Polymer+Electrolyte+Membrane+Fuel+Cells%3A+Oxygen+Resistance%2C+Wettability+and+Cracks&rft.jtitle=ChemElectroChem&rft.au=Pablo+A.+Garc%C3%ADa%E2%80%90Salaberri&rft.date=2024-07-02&rft.pub=Wiley-VCH&rft.eissn=2196-0216&rft.volume=11&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202400068&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_97ff16c8d73240b8a5e0bd7838bb3b72 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |