Semantic similarity loss for neural source code summarization

This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for gener...

Full description

Saved in:
Bibliographic Details
Published inJournal of software : evolution and process Vol. 36; no. 11
Main Authors Su, Chia‐Yi, McMillan, Collin
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions. We proposed a procedure for using semantic similarity as a loss function. We evaluated this loss function with both purpose‐built models and large language model (LLM). The results in terms of human study and automatic metrics show that models trained with this loss function are better than models trained with categorical cross‐entropy (CCE).
AbstractList This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions. We proposed a procedure for using semantic similarity as a loss function. We evaluated this loss function with both purpose‐built models and large language model (LLM). The results in terms of human study and automatic metrics show that models trained with this loss function are better than models trained with categorical cross‐entropy (CCE).
This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions.
Author McMillan, Collin
Su, Chia‐Yi
Author_xml – sequence: 1
  givenname: Chia‐Yi
  orcidid: 0000-0003-1803-560X
  surname: Su
  fullname: Su, Chia‐Yi
  email: csu3@nd.edu
  organization: University of Notre Dame
– sequence: 2
  givenname: Collin
  surname: McMillan
  fullname: McMillan, Collin
  organization: University of Notre Dame
BookMark eNp1kEFLxDAQhYOs4Lou-BMCXrx0Tdq0aQ8eZHFVWBFcPYc0mUCWtlmTFll_vakVbw4M8w4fM2_eOZp1rgOELilZUULSm9D6VcpJcYLmKWE84ayksz_NszO0DGFPYhUpyVk-R7c7aGXXW4WDbW0jve2PuHEhYOM87mDwssHBDV4BVk4DDkPbRupL9tZ1F-jUyCbA8ncu0Pvm_m39mGxfHp7Wd9tEZaQsEqWUYYUizGRMccMog3rsgoKpaqI1VTlomauapXXNCw2QUwpSl3XGqtxkC3Q17T149zFA6MU-WuriSZHRlNGK0ZJH6nqilI8PeDDi4G00exSUiDEfEfMRYz4RTSb00zZw_JcTu-fXH_4bmdppVw
Cites_doi 10.18653/v1/P18-1042
10.1145/3359591.3359735
10.1145/3290353
10.1109/SANER53432.2022.00112
10.1145/3554820
10.1145/3551349.3556903
10.1145/3545945.3569785
10.1145/3581641.3584037
10.1109/ICPC52881.2021.00032
10.1145/3379597.3387449
10.1109/ACCESS.2019.2931579
10.1145/3338906.3338965
10.18653/v1/N18-2102
10.1145/3501261
10.1145/3510003.3510224
10.1145/3597503.3608134
10.1145/3442188.3445922
10.1145/1858996.1859006
10.1007/s10515-024-00421-4
10.1002/pfi.21749
10.1145/3551349.3559555
10.18653/v1/2023.findings-eacl.97
10.18653/v1/P19-1427
10.1145/3540250.3549145
10.18653/v1/P19-2056
10.3115/1073083.1073135
10.1145/3597503.3639174
10.1145/3551349.3559548
10.1016/j.jss.2022.111515
10.1109/SANER50967.2021.00038
10.1109/ICPC58990.2023.00027
10.18653/v1/2021.emnlp-main.685
10.1007/978-3-642-29044-2
10.1145/3468264.3468588
10.1007/s10515-022-00341-1
10.1109/ICPC58990.2023.00026
10.1145/3520312.3534862
10.1145/2207676.2208589
10.1109/ICSE48619.2023.00123
10.1109/TCYB.2020.2964993
10.1109/ICSME.2017.17
10.1073/pnas.1516947113
10.1002/pri.66
10.1145/3387904.3389268
10.1109/ICSE.2019.00087
10.1145/3522674
10.1109/WCRE.2010.13
10.18653/v1/2020.findings-emnlp.139
10.1109/TR.2022.3154773
10.1145/3611643.3613090
10.18653/v1/N19-1394
10.1145/3524610.3527909
10.1007/s10664-023-10384-x
10.1109/ICSE43902.2021.00041
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/smr.2706
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2047-7481
EndPage n/a
ExternalDocumentID 10_1002_smr_2706
SMR2706
Genre article
GrantInformation_xml – fundername: National Science Foundation
GroupedDBID .3N
.4S
.GA
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
50Z
52O
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
G-S
G.N
GODZA
HGLYW
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
P2W
P2X
PQQKQ
Q.N
Q11
QB0
R.K
ROL
SUPJJ
TUS
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3086-cccf46c04f34c7f414eb14eb61ef9b0dd1c5eda5cb42bb76dee511ead8b3495f3
IEDL.DBID DR2
ISSN 2047-7473
IngestDate Sat Jul 26 00:16:48 EDT 2025
Tue Jul 01 01:44:45 EDT 2025
Wed Jan 22 17:15:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3086-cccf46c04f34c7f414eb14eb61ef9b0dd1c5eda5cb42bb76dee511ead8b3495f3
Notes Holy Cross Dr, Notre Dame, 46556, IN, USA
Present address
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1803-560X
PQID 3124194187
PQPubID 2034650
PageCount 19
ParticipantIDs proquest_journals_3124194187
crossref_primary_10_1002_smr_2706
wiley_primary_10_1002_smr_2706_SMR2706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of software : evolution and process
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 32
2019; 7
2021; 65
2019; 3
2012
2010
2022; 72
2019; 1
2024; 31
2005
2024
2002
2022; 29
2023; 22
2023
2023; 28
2022
2021
2020; 51
2023; 195
2020
2016; 113
2019
2018
2017
2016
1996; 1
2018; 57
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_67_1
e_1_2_15_40_1
e_1_2_15_69_1
Wang E (e_1_2_15_14_1) 2023
e_1_2_15_3_1
e_1_2_15_29_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_61_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_63_1
e_1_2_15_23_1
e_1_2_15_44_1
e_1_2_15_9_1
e_1_2_15_7_1
e_1_2_15_5_1
e_1_2_15_10_1
e_1_2_15_31_1
e_1_2_15_56_1
e_1_2_15_58_1
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_37_1
e_1_2_15_50_1
e_1_2_15_71_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_73_1
e_1_2_15_12_1
e_1_2_15_33_1
e_1_2_15_54_1
e_1_2_15_19_1
Karpathy A (e_1_2_15_65_1) 2023
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_66_1
e_1_2_15_41_1
e_1_2_15_68_1
e_1_2_15_28_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_62_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_8_1
e_1_2_15_6_1
Radford A (e_1_2_15_64_1) 2019; 1
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_59_1
Taori R (e_1_2_15_13_1) 2023
e_1_2_15_17_1
e_1_2_15_70_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_72_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_74_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
References_xml – start-page: 253
  year: 2021
  end-page: 264
– start-page: 1321
  year: 2012
  end-page: 1330
– start-page: 2152
  year: 2023
  end-page: 2156
– start-page: 646
  year: 2018
  end-page: 653
– start-page: 3931
  year: 2019
  end-page: 3937
– volume: 1
  start-page: 221
  issue: 4
  year: 1996
  end-page: 228
  article-title: The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs
  publication-title: Physiotherapy Research International
– start-page: 300
  year: 2020
  end-page: 310
– year: 2021
– volume: 28
  start-page: 126
  issue: 5
  year: 2023
  article-title: ENCOSUM: enhanced semantic features for multi‐scale multi‐modal source code summarization
  publication-title: Empir Softw Eng
– start-page: 935
  year: 2022
  end-page: 946
– year: 2018
– volume: 72
  start-page: 258
  issue: 1
  year: 2022
  end-page: 273
  article-title: Setransformer: a transformer‐based code semantic parser for code comment generation
  publication-title: IEEE Trans Reliab
– start-page: 1
  year: 2022
  end-page: 6
– start-page: 400
  year: 2019
  end-page: 406
– start-page: 1405
  year: 2023
  end-page: 1417
– start-page: 4344
  year: 2019
  end-page: 4355
– volume: 195
  year: 2023
  article-title: A decade of code comment quality assessment: a systematic literature review
  publication-title: J Syst Softw
– year: 2019
– start-page: 479
  year: 2017
  end-page: 483
– start-page: 336
  year: 2021
  end-page: 347
– start-page: 150
  year: 2022
  end-page: 162
– start-page: 1
  year: 2022
  end-page: 5
– start-page: 451
  year: 2018
  end-page: 462
– start-page: 36
  year: 2022
  end-page: 47
– volume: 22
  start-page: 1
  issue: 2
  year: 2023
  end-page: 19
  article-title: GA‐SCS: graph‐augmented source code summarization
  publication-title: ACM Trans Asian Low‐Resource Lang Inform Process
– start-page: 1
  year: 2022
  end-page: 10
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI Blog
– start-page: 1536
  year: 2020
  end-page: 1547
– volume: 29
  start-page: 43
  issue: 2
  year: 2022
  article-title: Code comment generation based on graph neural network enhanced transformer model for code understanding in open‐source software ecosystems
  publication-title: Autom Softw Eng
– start-page: 1
  year: 2023
  end-page: 12
– start-page: 37
  year: 2022
  end-page: 43
– start-page: 491
  year: 2023
  end-page: 514
– year: 2016
– start-page: 311
  year: 2002
  end-page: 318
– start-page: 1
  year: 2024
  end-page: 13
– start-page: 65
  year: 2005
  end-page: 72
– start-page: 113
  year: 2023
  end-page: 124
– year: 2012
– start-page: 43
  year: 2010
  end-page: 52
– volume: 3
  start-page: 1
  issue: POPL
  year: 2019
  end-page: 29
  article-title: code2vec: learning distributed representations of code
  publication-title: Proc ACM Programm Lang
– start-page: 1105
  year: 2021
  end-page: 1116
– start-page: 931
  year: 2023
  end-page: 937
– start-page: 610
  year: 2021
  end-page: 623
– start-page: 795
  year: 2019
  end-page: 806
– start-page: 35
  year: 2010
  end-page: 44
– volume: 51
  start-page: 6240
  issue: 12
  year: 2020
  end-page: 6252
  article-title: Deep category‐level and regularized hashing with global semantic similarity learning
  publication-title: IEEE Trans Cybern
– year: 2020
– volume: 31
  start-page: 22
  issue: 1
  year: 2024
  article-title: Distilled GPT for source code summarization
  publication-title: Autom Softw Eng
– year: 2023
– volume: 7
  start-page: 111411
  year: 2019
  end-page: 111428
  article-title: A survey of automatic generation of source code comments: algorithms and techniques
  publication-title: IEEE Access
– start-page: 107
  year: 2022
  end-page: 119
– start-page: 385
  year: 2019
  end-page: 396
– start-page: 1291
  year: 2023
  end-page: 1303
– start-page: 125
  year: 2023
  end-page: 134
– start-page: 8696
  year: 2021
  end-page: 8708
– volume: 65
  start-page: 31
  issue: 1
  year: 2021
  end-page: 33
  article-title: The growing cost of deep learning for source code
  publication-title: Commun ACM
– volume: 113
  start-page: 2621
  issue: 10
  year: 2016
  end-page: 2624
  article-title: Cognitive fatigue influences students' performance on standardized tests
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 143
  year: 2019
  end-page: 153
– volume: 32
  start-page: 1
  issue: 1
  year: 2023
  end-page: 32
  article-title: Code structure–guided transformer for source code summarization
  publication-title: ACM Trans Softw Eng Methodol
– start-page: 330
  year: 2021
  end-page: 341
– start-page: 184
  year: 2020
  end-page: 195
– volume: 57
  start-page: 16
  issue: 3
  year: 2018
  end-page: 25
  article-title: Evidence‐based survey design: the use of negatively worded items in surveys
  publication-title: Performance Improvement
– ident: e_1_2_15_57_1
  doi: 10.18653/v1/P18-1042
– ident: e_1_2_15_60_1
  doi: 10.1145/3359591.3359735
– ident: e_1_2_15_17_1
  doi: 10.1145/3290353
– volume-title: Alpaca‐Lora
  year: 2023
  ident: e_1_2_15_14_1
– ident: e_1_2_15_30_1
  doi: 10.1109/SANER53432.2022.00112
– ident: e_1_2_15_34_1
  doi: 10.1145/3554820
– ident: e_1_2_15_15_1
– ident: e_1_2_15_45_1
  doi: 10.1145/3551349.3556903
– ident: e_1_2_15_8_1
  doi: 10.1145/3545945.3569785
– ident: e_1_2_15_9_1
  doi: 10.1145/3581641.3584037
– ident: e_1_2_15_22_1
  doi: 10.1109/ICPC52881.2021.00032
– ident: e_1_2_15_6_1
  doi: 10.1145/3379597.3387449
– ident: e_1_2_15_23_1
– ident: e_1_2_15_38_1
  doi: 10.1109/ACCESS.2019.2931579
– ident: e_1_2_15_18_1
  doi: 10.1145/3338906.3338965
– ident: e_1_2_15_48_1
  doi: 10.18653/v1/N18-2102
– ident: e_1_2_15_55_1
  doi: 10.1145/3501261
– ident: e_1_2_15_7_1
  doi: 10.1145/3510003.3510224
– ident: e_1_2_15_50_1
– ident: e_1_2_15_37_1
  doi: 10.1145/3597503.3608134
– ident: e_1_2_15_39_1
– ident: e_1_2_15_42_1
  doi: 10.1145/3442188.3445922
– ident: e_1_2_15_67_1
  doi: 10.1145/1858996.1859006
– ident: e_1_2_15_58_1
– ident: e_1_2_15_66_1
  doi: 10.1007/s10515-024-00421-4
– ident: e_1_2_15_44_1
– ident: e_1_2_15_47_1
– ident: e_1_2_15_71_1
  doi: 10.1002/pfi.21749
– ident: e_1_2_15_29_1
  doi: 10.1145/3551349.3559555
– ident: e_1_2_15_36_1
  doi: 10.18653/v1/2023.findings-eacl.97
– ident: e_1_2_15_10_1
  doi: 10.18653/v1/P19-1427
– ident: e_1_2_15_61_1
  doi: 10.1145/3540250.3549145
– ident: e_1_2_15_51_1
  doi: 10.18653/v1/P19-2056
– ident: e_1_2_15_43_1
  doi: 10.3115/1073083.1073135
– ident: e_1_2_15_46_1
  doi: 10.1145/3597503.3639174
– ident: e_1_2_15_28_1
  doi: 10.1145/3551349.3559548
– ident: e_1_2_15_69_1
  doi: 10.1016/j.jss.2022.111515
– ident: e_1_2_15_62_1
  doi: 10.1109/SANER50967.2021.00038
– ident: e_1_2_15_68_1
  doi: 10.1109/ICPC58990.2023.00027
– ident: e_1_2_15_52_1
– ident: e_1_2_15_12_1
– ident: e_1_2_15_41_1
  doi: 10.18653/v1/2021.emnlp-main.685
– ident: e_1_2_15_54_1
  doi: 10.1007/978-3-642-29044-2
– ident: e_1_2_15_63_1
  doi: 10.1145/3468264.3468588
– ident: e_1_2_15_20_1
– ident: e_1_2_15_26_1
  doi: 10.1007/s10515-022-00341-1
– ident: e_1_2_15_33_1
  doi: 10.1109/ICPC58990.2023.00026
– ident: e_1_2_15_56_1
  doi: 10.1145/3520312.3534862
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: e_1_2_15_64_1
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI Blog
– ident: e_1_2_15_70_1
  doi: 10.1145/2207676.2208589
– ident: e_1_2_15_53_1
– ident: e_1_2_15_74_1
  doi: 10.1109/ICSE48619.2023.00123
– volume-title: Stanford Alpaca: An Instruction‐Following Llama Model
  year: 2023
  ident: e_1_2_15_13_1
– volume-title: nanoGPT: The Simplest, Fastest Repository for Training/Finetuning Medium‐Sized GPTs
  year: 2023
  ident: e_1_2_15_65_1
– ident: e_1_2_15_49_1
  doi: 10.1109/TCYB.2020.2964993
– ident: e_1_2_15_3_1
  doi: 10.1109/ICSME.2017.17
– ident: e_1_2_15_72_1
  doi: 10.1073/pnas.1516947113
– ident: e_1_2_15_73_1
  doi: 10.1002/pri.66
– ident: e_1_2_15_5_1
  doi: 10.1145/3387904.3389268
– ident: e_1_2_15_4_1
  doi: 10.1109/ICSE.2019.00087
– ident: e_1_2_15_32_1
  doi: 10.1145/3522674
– ident: e_1_2_15_2_1
  doi: 10.1109/WCRE.2010.13
– ident: e_1_2_15_21_1
  doi: 10.18653/v1/2020.findings-emnlp.139
– ident: e_1_2_15_27_1
  doi: 10.1109/TR.2022.3154773
– ident: e_1_2_15_31_1
  doi: 10.1145/3611643.3613090
– ident: e_1_2_15_59_1
  doi: 10.18653/v1/N19-1394
– ident: e_1_2_15_11_1
  doi: 10.1145/3524610.3527909
– ident: e_1_2_15_19_1
– ident: e_1_2_15_24_1
– ident: e_1_2_15_40_1
– ident: e_1_2_15_35_1
  doi: 10.1007/s10664-023-10384-x
– ident: e_1_2_15_16_1
– ident: e_1_2_15_25_1
  doi: 10.1109/ICSE43902.2021.00041
SSID ssj0000620545
Score 2.3225236
Snippet This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Descriptions
human ratings and feedback
Large language models
loss functions
neural models
Neural networks
optimization
Semantics
Sentences
Similarity
Source code
source code summarization
Words (language)
Title Semantic similarity loss for neural source code summarization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.2706
https://www.proquest.com/docview/3124194187
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykxfnT5xOiSDeurVJmrYHDyKOIczD5mDgoTRpAkO3ybpd_Ot9r2k3FQTxUHLpC83Le833Hu99IeQ6MkIIiNg8wPehJzIZe3GslefnMrGaZ5ZrzHcMnmR_LB4n4aSqqsReGMcPsUm4oWeU_2t08EwV3S1paDFbdlhUsm1jqRbioSHbpFd8yQCMYAEjQy4CAM28pp71WbeW_X4YbRHmV5xaHjS9JnmpP9HVl7x21ivV0R8_2Bv_t4Z9slfhT3rnDOaA7Jj5IWnWdzvQytWPyO3IzEDpU02L6WwK4S-gdfoGi6CAcimyYMIsLvNPsS2eui64qqvzmIx7D8_3fa-6asHTHIIaT2tthdS-sFzoyIoA9g8fGRibKD_PAx2aPAu1EkypSObGAFIDK4wVhxDL8hPSmC_m5pRQEEt4iJFWyIQ0WaJwDhnHcFxGmfVb5KrWefruGDVSx53MUtBHivpokXa9GWnlU0XKAYoEiQjiqEVuSq3-Kp-OBkMcz_764jnZZYBWXJNhmzRWy7W5ALSxUpelXX0CerTSEQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPejF-sRq1RXEW9pkd7NJEA8ilqptD31AD0LIbjZQtFX6uPjrnc2jVUEQD2EvmSU7O5P9Ztj5BuDS05xzjNgsxPeuxSPhW76vpGXHIkgUixKmTL6j0xWtIX8cuaMSXBe1MBk_xCrhZjwj_V8bBzcJ6caaNXQ-mdWpZ-i2N0xD7zSe6tFVgsUWFOGIucJIDRsBwmZWkM_atFEIfz-O1hjzK1JNj5pmBZ6Lj8xumLzUlwtZVx8_-Bv_uYod2M4hKLnNbGYXSnq6B5WivQPJvX0fbvp6gnofKzIfT8YYASNgJ6-4CoJAlxgiTJwlS_4TUxlPskK4vLDzAIbN-8Fdy8q7LViKYVxjKaUSLpTNE8aVl3AHt9A8wtFJIO04dpSr48hVklMpPRFrjWANDdGXDKOshB1Cefo21UdAUCxgrgm2XMqFjgJp5hC-jyemFyV2FS4KpYfvGalGmNEn0xD1ERp9VKFW7EaYu9U8ZIhGnIA7vleFq1Stv8qH_U7PjMd_ffEcNluDTjtsP3SfTmCLInjJag5rUF7MlvoUwcdCnqVG9gmfwNYs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQbxYn1itGkG8bbubZLO7Bw9iLfXRIq2FgoewySZQtLX0cfHXO9lHq4IgHpZcdsJmMrP5Zpj5gtBFoBljELE5gO99h8U8dMJQScdNeGQUjQ1VNt_R7vBWn90P_EFeVWl7YTJ-iGXCzXpG-r-2Dj5JTH1FGjobTWsksGzb64y7obXoRpcs8ysuJ4BGbAUjsWQEgJppwT3rknoh_P00WkHMr0A1PWmaZfRSfGNWYPJaW8xlTX38oG_83yK20VYOQPF1ZjE7aE2Pd1G5uNwB576-h656egRaHyo8G46GEP8CXMdvsAgMMBdbGkyYJUv9Y9sXj7M2uLytcx_1m7fPNy0nv2vBURSiGkcpZRhXLjOUqcAwDzbQPtzTJpJuknjK10nsK8mIlAFPtAaoBmYYSgoxlqEHqDR-H-tDhEEsor4NtXzCuI4jaefgYQjnZRAbt4LOC52LSUapITLyZCJAH8Lqo4KqxWaI3KlmggIW8SLmhUEFXaZa_VVe9NpdOx799cUztPHUaIrHu87DMdokgFyyhsMqKs2nC30CyGMuT1MT-wRhA9Tk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+similarity+loss+for+neural+source+code+summarization&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Chia%E2%80%90Yi+Su&rft.au=McMillan%2C+Collin&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2047-7481&rft.volume=36&rft.issue=11&rft_id=info:doi/10.1002%2Fsmr.2706&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon