Semantic similarity loss for neural source code summarization
This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for gener...
Saved in:
Published in | Journal of software : evolution and process Vol. 36; no. 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions.
We proposed a procedure for using semantic similarity as a loss function. We evaluated this loss function with both purpose‐built models and large language model (LLM). The results in terms of human study and automatic metrics show that models trained with this loss function are better than models trained with categorical cross‐entropy (CCE). |
---|---|
AbstractList | This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions.
We proposed a procedure for using semantic similarity as a loss function. We evaluated this loss function with both purpose‐built models and large language model (LLM). The results in terms of human study and automatic metrics show that models trained with this loss function are better than models trained with categorical cross‐entropy (CCE). This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions. |
Author | McMillan, Collin Su, Chia‐Yi |
Author_xml | – sequence: 1 givenname: Chia‐Yi orcidid: 0000-0003-1803-560X surname: Su fullname: Su, Chia‐Yi email: csu3@nd.edu organization: University of Notre Dame – sequence: 2 givenname: Collin surname: McMillan fullname: McMillan, Collin organization: University of Notre Dame |
BookMark | eNp1kEFLxDAQhYOs4Lou-BMCXrx0Tdq0aQ8eZHFVWBFcPYc0mUCWtlmTFll_vakVbw4M8w4fM2_eOZp1rgOELilZUULSm9D6VcpJcYLmKWE84ayksz_NszO0DGFPYhUpyVk-R7c7aGXXW4WDbW0jve2PuHEhYOM87mDwssHBDV4BVk4DDkPbRupL9tZ1F-jUyCbA8ncu0Pvm_m39mGxfHp7Wd9tEZaQsEqWUYYUizGRMccMog3rsgoKpaqI1VTlomauapXXNCw2QUwpSl3XGqtxkC3Q17T149zFA6MU-WuriSZHRlNGK0ZJH6nqilI8PeDDi4G00exSUiDEfEfMRYz4RTSb00zZw_JcTu-fXH_4bmdppVw |
Cites_doi | 10.18653/v1/P18-1042 10.1145/3359591.3359735 10.1145/3290353 10.1109/SANER53432.2022.00112 10.1145/3554820 10.1145/3551349.3556903 10.1145/3545945.3569785 10.1145/3581641.3584037 10.1109/ICPC52881.2021.00032 10.1145/3379597.3387449 10.1109/ACCESS.2019.2931579 10.1145/3338906.3338965 10.18653/v1/N18-2102 10.1145/3501261 10.1145/3510003.3510224 10.1145/3597503.3608134 10.1145/3442188.3445922 10.1145/1858996.1859006 10.1007/s10515-024-00421-4 10.1002/pfi.21749 10.1145/3551349.3559555 10.18653/v1/2023.findings-eacl.97 10.18653/v1/P19-1427 10.1145/3540250.3549145 10.18653/v1/P19-2056 10.3115/1073083.1073135 10.1145/3597503.3639174 10.1145/3551349.3559548 10.1016/j.jss.2022.111515 10.1109/SANER50967.2021.00038 10.1109/ICPC58990.2023.00027 10.18653/v1/2021.emnlp-main.685 10.1007/978-3-642-29044-2 10.1145/3468264.3468588 10.1007/s10515-022-00341-1 10.1109/ICPC58990.2023.00026 10.1145/3520312.3534862 10.1145/2207676.2208589 10.1109/ICSE48619.2023.00123 10.1109/TCYB.2020.2964993 10.1109/ICSME.2017.17 10.1073/pnas.1516947113 10.1002/pri.66 10.1145/3387904.3389268 10.1109/ICSE.2019.00087 10.1145/3522674 10.1109/WCRE.2010.13 10.18653/v1/2020.findings-emnlp.139 10.1109/TR.2022.3154773 10.1145/3611643.3613090 10.18653/v1/N19-1394 10.1145/3524610.3527909 10.1007/s10664-023-10384-x 10.1109/ICSE43902.2021.00041 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/smr.2706 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2047-7481 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smr_2706 SMR2706 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation |
GroupedDBID | .3N .4S .GA .Y3 05W 0R~ 10A 1OC 31~ 33P 3SF 50Z 52O 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN BAFTC BDRZF BHBCM BMNLL BMXJE BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EDO EJD F00 F01 F04 G-S G.N GODZA HGLYW HZ~ I-F LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 O66 O9- P2W P2X PQQKQ Q.N Q11 QB0 R.K ROL SUPJJ TUS W8V W99 WBKPD WIH WIK WOHZO WXSBR WYISQ WZISG ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3086-cccf46c04f34c7f414eb14eb61ef9b0dd1c5eda5cb42bb76dee511ead8b3495f3 |
IEDL.DBID | DR2 |
ISSN | 2047-7473 |
IngestDate | Sat Jul 26 00:16:48 EDT 2025 Tue Jul 01 01:44:45 EDT 2025 Wed Jan 22 17:15:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3086-cccf46c04f34c7f414eb14eb61ef9b0dd1c5eda5cb42bb76dee511ead8b3495f3 |
Notes | Holy Cross Dr, Notre Dame, 46556, IN, USA Present address ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1803-560X |
PQID | 3124194187 |
PQPubID | 2034650 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3124194187 crossref_primary_10_1002_smr_2706 wiley_primary_10_1002_smr_2706_SMR2706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Journal of software : evolution and process |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 32 2019; 7 2021; 65 2019; 3 2012 2010 2022; 72 2019; 1 2024; 31 2005 2024 2002 2022; 29 2023; 22 2023 2023; 28 2022 2021 2020; 51 2023; 195 2020 2016; 113 2019 2018 2017 2016 1996; 1 2018; 57 e_1_2_15_21_1 e_1_2_15_42_1 e_1_2_15_67_1 e_1_2_15_40_1 e_1_2_15_69_1 Wang E (e_1_2_15_14_1) 2023 e_1_2_15_3_1 e_1_2_15_29_1 e_1_2_15_27_1 e_1_2_15_48_1 e_1_2_15_61_1 e_1_2_15_25_1 e_1_2_15_46_1 e_1_2_15_63_1 e_1_2_15_23_1 e_1_2_15_44_1 e_1_2_15_9_1 e_1_2_15_7_1 e_1_2_15_5_1 e_1_2_15_10_1 e_1_2_15_31_1 e_1_2_15_56_1 e_1_2_15_58_1 e_1_2_15_18_1 e_1_2_15_39_1 e_1_2_15_16_1 e_1_2_15_37_1 e_1_2_15_50_1 e_1_2_15_71_1 e_1_2_15_35_1 e_1_2_15_52_1 e_1_2_15_73_1 e_1_2_15_12_1 e_1_2_15_33_1 e_1_2_15_54_1 e_1_2_15_19_1 Karpathy A (e_1_2_15_65_1) 2023 e_1_2_15_20_1 e_1_2_15_43_1 e_1_2_15_66_1 e_1_2_15_41_1 e_1_2_15_68_1 e_1_2_15_28_1 e_1_2_15_2_1 e_1_2_15_26_1 e_1_2_15_49_1 e_1_2_15_60_1 e_1_2_15_24_1 e_1_2_15_47_1 e_1_2_15_62_1 e_1_2_15_22_1 e_1_2_15_45_1 e_1_2_15_8_1 e_1_2_15_6_1 Radford A (e_1_2_15_64_1) 2019; 1 e_1_2_15_4_1 e_1_2_15_32_1 e_1_2_15_55_1 e_1_2_15_30_1 e_1_2_15_57_1 e_1_2_15_59_1 Taori R (e_1_2_15_13_1) 2023 e_1_2_15_17_1 e_1_2_15_70_1 e_1_2_15_15_1 e_1_2_15_38_1 e_1_2_15_72_1 e_1_2_15_36_1 e_1_2_15_51_1 e_1_2_15_74_1 e_1_2_15_11_1 e_1_2_15_34_1 e_1_2_15_53_1 |
References_xml | – start-page: 253 year: 2021 end-page: 264 – start-page: 1321 year: 2012 end-page: 1330 – start-page: 2152 year: 2023 end-page: 2156 – start-page: 646 year: 2018 end-page: 653 – start-page: 3931 year: 2019 end-page: 3937 – volume: 1 start-page: 221 issue: 4 year: 1996 end-page: 228 article-title: The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs publication-title: Physiotherapy Research International – start-page: 300 year: 2020 end-page: 310 – year: 2021 – volume: 28 start-page: 126 issue: 5 year: 2023 article-title: ENCOSUM: enhanced semantic features for multi‐scale multi‐modal source code summarization publication-title: Empir Softw Eng – start-page: 935 year: 2022 end-page: 946 – year: 2018 – volume: 72 start-page: 258 issue: 1 year: 2022 end-page: 273 article-title: Setransformer: a transformer‐based code semantic parser for code comment generation publication-title: IEEE Trans Reliab – start-page: 1 year: 2022 end-page: 6 – start-page: 400 year: 2019 end-page: 406 – start-page: 1405 year: 2023 end-page: 1417 – start-page: 4344 year: 2019 end-page: 4355 – volume: 195 year: 2023 article-title: A decade of code comment quality assessment: a systematic literature review publication-title: J Syst Softw – year: 2019 – start-page: 479 year: 2017 end-page: 483 – start-page: 336 year: 2021 end-page: 347 – start-page: 150 year: 2022 end-page: 162 – start-page: 1 year: 2022 end-page: 5 – start-page: 451 year: 2018 end-page: 462 – start-page: 36 year: 2022 end-page: 47 – volume: 22 start-page: 1 issue: 2 year: 2023 end-page: 19 article-title: GA‐SCS: graph‐augmented source code summarization publication-title: ACM Trans Asian Low‐Resource Lang Inform Process – start-page: 1 year: 2022 end-page: 10 – volume: 1 start-page: 9 issue: 8 year: 2019 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – start-page: 1536 year: 2020 end-page: 1547 – volume: 29 start-page: 43 issue: 2 year: 2022 article-title: Code comment generation based on graph neural network enhanced transformer model for code understanding in open‐source software ecosystems publication-title: Autom Softw Eng – start-page: 1 year: 2023 end-page: 12 – start-page: 37 year: 2022 end-page: 43 – start-page: 491 year: 2023 end-page: 514 – year: 2016 – start-page: 311 year: 2002 end-page: 318 – start-page: 1 year: 2024 end-page: 13 – start-page: 65 year: 2005 end-page: 72 – start-page: 113 year: 2023 end-page: 124 – year: 2012 – start-page: 43 year: 2010 end-page: 52 – volume: 3 start-page: 1 issue: POPL year: 2019 end-page: 29 article-title: code2vec: learning distributed representations of code publication-title: Proc ACM Programm Lang – start-page: 1105 year: 2021 end-page: 1116 – start-page: 931 year: 2023 end-page: 937 – start-page: 610 year: 2021 end-page: 623 – start-page: 795 year: 2019 end-page: 806 – start-page: 35 year: 2010 end-page: 44 – volume: 51 start-page: 6240 issue: 12 year: 2020 end-page: 6252 article-title: Deep category‐level and regularized hashing with global semantic similarity learning publication-title: IEEE Trans Cybern – year: 2020 – volume: 31 start-page: 22 issue: 1 year: 2024 article-title: Distilled GPT for source code summarization publication-title: Autom Softw Eng – year: 2023 – volume: 7 start-page: 111411 year: 2019 end-page: 111428 article-title: A survey of automatic generation of source code comments: algorithms and techniques publication-title: IEEE Access – start-page: 107 year: 2022 end-page: 119 – start-page: 385 year: 2019 end-page: 396 – start-page: 1291 year: 2023 end-page: 1303 – start-page: 125 year: 2023 end-page: 134 – start-page: 8696 year: 2021 end-page: 8708 – volume: 65 start-page: 31 issue: 1 year: 2021 end-page: 33 article-title: The growing cost of deep learning for source code publication-title: Commun ACM – volume: 113 start-page: 2621 issue: 10 year: 2016 end-page: 2624 article-title: Cognitive fatigue influences students' performance on standardized tests publication-title: Proceedings of the National Academy of Sciences – start-page: 143 year: 2019 end-page: 153 – volume: 32 start-page: 1 issue: 1 year: 2023 end-page: 32 article-title: Code structure–guided transformer for source code summarization publication-title: ACM Trans Softw Eng Methodol – start-page: 330 year: 2021 end-page: 341 – start-page: 184 year: 2020 end-page: 195 – volume: 57 start-page: 16 issue: 3 year: 2018 end-page: 25 article-title: Evidence‐based survey design: the use of negatively worded items in surveys publication-title: Performance Improvement – ident: e_1_2_15_57_1 doi: 10.18653/v1/P18-1042 – ident: e_1_2_15_60_1 doi: 10.1145/3359591.3359735 – ident: e_1_2_15_17_1 doi: 10.1145/3290353 – volume-title: Alpaca‐Lora year: 2023 ident: e_1_2_15_14_1 – ident: e_1_2_15_30_1 doi: 10.1109/SANER53432.2022.00112 – ident: e_1_2_15_34_1 doi: 10.1145/3554820 – ident: e_1_2_15_15_1 – ident: e_1_2_15_45_1 doi: 10.1145/3551349.3556903 – ident: e_1_2_15_8_1 doi: 10.1145/3545945.3569785 – ident: e_1_2_15_9_1 doi: 10.1145/3581641.3584037 – ident: e_1_2_15_22_1 doi: 10.1109/ICPC52881.2021.00032 – ident: e_1_2_15_6_1 doi: 10.1145/3379597.3387449 – ident: e_1_2_15_23_1 – ident: e_1_2_15_38_1 doi: 10.1109/ACCESS.2019.2931579 – ident: e_1_2_15_18_1 doi: 10.1145/3338906.3338965 – ident: e_1_2_15_48_1 doi: 10.18653/v1/N18-2102 – ident: e_1_2_15_55_1 doi: 10.1145/3501261 – ident: e_1_2_15_7_1 doi: 10.1145/3510003.3510224 – ident: e_1_2_15_50_1 – ident: e_1_2_15_37_1 doi: 10.1145/3597503.3608134 – ident: e_1_2_15_39_1 – ident: e_1_2_15_42_1 doi: 10.1145/3442188.3445922 – ident: e_1_2_15_67_1 doi: 10.1145/1858996.1859006 – ident: e_1_2_15_58_1 – ident: e_1_2_15_66_1 doi: 10.1007/s10515-024-00421-4 – ident: e_1_2_15_44_1 – ident: e_1_2_15_47_1 – ident: e_1_2_15_71_1 doi: 10.1002/pfi.21749 – ident: e_1_2_15_29_1 doi: 10.1145/3551349.3559555 – ident: e_1_2_15_36_1 doi: 10.18653/v1/2023.findings-eacl.97 – ident: e_1_2_15_10_1 doi: 10.18653/v1/P19-1427 – ident: e_1_2_15_61_1 doi: 10.1145/3540250.3549145 – ident: e_1_2_15_51_1 doi: 10.18653/v1/P19-2056 – ident: e_1_2_15_43_1 doi: 10.3115/1073083.1073135 – ident: e_1_2_15_46_1 doi: 10.1145/3597503.3639174 – ident: e_1_2_15_28_1 doi: 10.1145/3551349.3559548 – ident: e_1_2_15_69_1 doi: 10.1016/j.jss.2022.111515 – ident: e_1_2_15_62_1 doi: 10.1109/SANER50967.2021.00038 – ident: e_1_2_15_68_1 doi: 10.1109/ICPC58990.2023.00027 – ident: e_1_2_15_52_1 – ident: e_1_2_15_12_1 – ident: e_1_2_15_41_1 doi: 10.18653/v1/2021.emnlp-main.685 – ident: e_1_2_15_54_1 doi: 10.1007/978-3-642-29044-2 – ident: e_1_2_15_63_1 doi: 10.1145/3468264.3468588 – ident: e_1_2_15_20_1 – ident: e_1_2_15_26_1 doi: 10.1007/s10515-022-00341-1 – ident: e_1_2_15_33_1 doi: 10.1109/ICPC58990.2023.00026 – ident: e_1_2_15_56_1 doi: 10.1145/3520312.3534862 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: e_1_2_15_64_1 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – ident: e_1_2_15_70_1 doi: 10.1145/2207676.2208589 – ident: e_1_2_15_53_1 – ident: e_1_2_15_74_1 doi: 10.1109/ICSE48619.2023.00123 – volume-title: Stanford Alpaca: An Instruction‐Following Llama Model year: 2023 ident: e_1_2_15_13_1 – volume-title: nanoGPT: The Simplest, Fastest Repository for Training/Finetuning Medium‐Sized GPTs year: 2023 ident: e_1_2_15_65_1 – ident: e_1_2_15_49_1 doi: 10.1109/TCYB.2020.2964993 – ident: e_1_2_15_3_1 doi: 10.1109/ICSME.2017.17 – ident: e_1_2_15_72_1 doi: 10.1073/pnas.1516947113 – ident: e_1_2_15_73_1 doi: 10.1002/pri.66 – ident: e_1_2_15_5_1 doi: 10.1145/3387904.3389268 – ident: e_1_2_15_4_1 doi: 10.1109/ICSE.2019.00087 – ident: e_1_2_15_32_1 doi: 10.1145/3522674 – ident: e_1_2_15_2_1 doi: 10.1109/WCRE.2010.13 – ident: e_1_2_15_21_1 doi: 10.18653/v1/2020.findings-emnlp.139 – ident: e_1_2_15_27_1 doi: 10.1109/TR.2022.3154773 – ident: e_1_2_15_31_1 doi: 10.1145/3611643.3613090 – ident: e_1_2_15_59_1 doi: 10.18653/v1/N19-1394 – ident: e_1_2_15_11_1 doi: 10.1145/3524610.3527909 – ident: e_1_2_15_19_1 – ident: e_1_2_15_24_1 – ident: e_1_2_15_40_1 – ident: e_1_2_15_35_1 doi: 10.1007/s10664-023-10384-x – ident: e_1_2_15_16_1 – ident: e_1_2_15_25_1 doi: 10.1109/ICSE43902.2021.00041 |
SSID | ssj0000620545 |
Score | 2.3225236 |
Snippet | This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Descriptions human ratings and feedback Large language models loss functions neural models Neural networks optimization Semantics Sentences Similarity Source code source code summarization Words (language) |
Title | Semantic similarity loss for neural source code summarization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.2706 https://www.proquest.com/docview/3124194187 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6ykxfnT5xOiSDeurVJmrYHDyKOIczD5mDgoTRpAkO3ybpd_Ot9r2k3FQTxUHLpC83Le833Hu99IeQ6MkIIiNg8wPehJzIZe3GslefnMrGaZ5ZrzHcMnmR_LB4n4aSqqsReGMcPsUm4oWeU_2t08EwV3S1paDFbdlhUsm1jqRbioSHbpFd8yQCMYAEjQy4CAM28pp71WbeW_X4YbRHmV5xaHjS9JnmpP9HVl7x21ivV0R8_2Bv_t4Z9slfhT3rnDOaA7Jj5IWnWdzvQytWPyO3IzEDpU02L6WwK4S-gdfoGi6CAcimyYMIsLvNPsS2eui64qqvzmIx7D8_3fa-6asHTHIIaT2tthdS-sFzoyIoA9g8fGRibKD_PAx2aPAu1EkypSObGAFIDK4wVhxDL8hPSmC_m5pRQEEt4iJFWyIQ0WaJwDhnHcFxGmfVb5KrWefruGDVSx53MUtBHivpokXa9GWnlU0XKAYoEiQjiqEVuSq3-Kp-OBkMcz_764jnZZYBWXJNhmzRWy7W5ALSxUpelXX0CerTSEQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPejF-sRq1RXEW9pkd7NJEA8ilqptD31AD0LIbjZQtFX6uPjrnc2jVUEQD2EvmSU7O5P9Ztj5BuDS05xzjNgsxPeuxSPhW76vpGXHIkgUixKmTL6j0xWtIX8cuaMSXBe1MBk_xCrhZjwj_V8bBzcJ6caaNXQ-mdWpZ-i2N0xD7zSe6tFVgsUWFOGIucJIDRsBwmZWkM_atFEIfz-O1hjzK1JNj5pmBZ6Lj8xumLzUlwtZVx8_-Bv_uYod2M4hKLnNbGYXSnq6B5WivQPJvX0fbvp6gnofKzIfT8YYASNgJ6-4CoJAlxgiTJwlS_4TUxlPskK4vLDzAIbN-8Fdy8q7LViKYVxjKaUSLpTNE8aVl3AHt9A8wtFJIO04dpSr48hVklMpPRFrjWANDdGXDKOshB1Cefo21UdAUCxgrgm2XMqFjgJp5hC-jyemFyV2FS4KpYfvGalGmNEn0xD1ERp9VKFW7EaYu9U8ZIhGnIA7vleFq1Stv8qH_U7PjMd_ffEcNluDTjtsP3SfTmCLInjJag5rUF7MlvoUwcdCnqVG9gmfwNYs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQbxYn1itGkG8bbubZLO7Bw9iLfXRIq2FgoewySZQtLX0cfHXO9lHq4IgHpZcdsJmMrP5Zpj5gtBFoBljELE5gO99h8U8dMJQScdNeGQUjQ1VNt_R7vBWn90P_EFeVWl7YTJ-iGXCzXpG-r-2Dj5JTH1FGjobTWsksGzb64y7obXoRpcs8ysuJ4BGbAUjsWQEgJppwT3rknoh_P00WkHMr0A1PWmaZfRSfGNWYPJaW8xlTX38oG_83yK20VYOQPF1ZjE7aE2Pd1G5uNwB576-h656egRaHyo8G46GEP8CXMdvsAgMMBdbGkyYJUv9Y9sXj7M2uLytcx_1m7fPNy0nv2vBURSiGkcpZRhXLjOUqcAwDzbQPtzTJpJuknjK10nsK8mIlAFPtAaoBmYYSgoxlqEHqDR-H-tDhEEsor4NtXzCuI4jaefgYQjnZRAbt4LOC52LSUapITLyZCJAH8Lqo4KqxWaI3KlmggIW8SLmhUEFXaZa_VVe9NpdOx799cUztPHUaIrHu87DMdokgFyyhsMqKs2nC30CyGMuT1MT-wRhA9Tk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+similarity+loss+for+neural+source+code+summarization&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Chia%E2%80%90Yi+Su&rft.au=McMillan%2C+Collin&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2047-7481&rft.volume=36&rft.issue=11&rft_id=info:doi/10.1002%2Fsmr.2706&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon |