Re-visiting soil carbon and nitrogen stocks in a temperate heathland seven years after the termination of free air CO2 enrichment (FACE)

•Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil carbon.•Large transfer of nitrogen from deeper soil layers upon increasing plant demand.•Soil carbon and nitrogen pools in this ecosystem are highly...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 428; p. 116185
Main Authors Li, Qiaoyan, Ambus, Per Lennart, Michelsen, Anders, Schmidt, Inger Kappel, Beier, Claus, Dietzen, Christiana A., Reinsch, Sabine, Arndal, Marie Frost, Larsen, Klaus Steenberg
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil carbon.•Large transfer of nitrogen from deeper soil layers upon increasing plant demand.•Soil carbon and nitrogen pools in this ecosystem are highly dynamic. The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, CLIMAITE (Free Air CO2Enrichment (FACE), warming and drought in all combinations in a Danish heathland ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO2 concentrations (eCO2). Soil carbon pools in former eCO2 plots, as well as in drought and warming plots, had normalized again by 2020. However, the difference in soil isotopic composition between ambient and former eCO2 plots remained, indicating similar loss fractions from older and newer soil carbon pools in the eCO2 plots as well as stimulation of the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet increasing plant demand during eCO2 but was lost again from the topsoil after termination of the FACE treatment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major element pools in ecosystems.
AbstractList The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, CLIMAITE (Free Air CO₂Enrichment (FACE), warming and drought in all combinations in a Danish heathland ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO₂ concentrations (eCO₂). Soil carbon pools in former eCO₂ plots, as well as in drought and warming plots, had normalized again by 2020. However, the difference in soil isotopic composition between ambient and former eCO₂ plots remained, indicating similar loss fractions from older and newer soil carbon pools in the eCO₂ plots as well as stimulation of the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet increasing plant demand during eCO₂ but was lost again from the topsoil after termination of the FACE treatment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major element pools in ecosystems.
•Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil carbon.•Large transfer of nitrogen from deeper soil layers upon increasing plant demand.•Soil carbon and nitrogen pools in this ecosystem are highly dynamic. The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, CLIMAITE (Free Air CO2Enrichment (FACE), warming and drought in all combinations in a Danish heathland ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO2 concentrations (eCO2). Soil carbon pools in former eCO2 plots, as well as in drought and warming plots, had normalized again by 2020. However, the difference in soil isotopic composition between ambient and former eCO2 plots remained, indicating similar loss fractions from older and newer soil carbon pools in the eCO2 plots as well as stimulation of the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet increasing plant demand during eCO2 but was lost again from the topsoil after termination of the FACE treatment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major element pools in ecosystems.
ArticleNumber 116185
Author Li, Qiaoyan
Ambus, Per Lennart
Beier, Claus
Michelsen, Anders
Schmidt, Inger Kappel
Larsen, Klaus Steenberg
Arndal, Marie Frost
Dietzen, Christiana A.
Reinsch, Sabine
Author_xml – sequence: 1
  givenname: Qiaoyan
  surname: Li
  fullname: Li, Qiaoyan
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 2
  givenname: Per Lennart
  surname: Ambus
  fullname: Ambus, Per Lennart
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 3
  givenname: Anders
  surname: Michelsen
  fullname: Michelsen, Anders
  organization: Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
– sequence: 4
  givenname: Inger Kappel
  surname: Schmidt
  fullname: Schmidt, Inger Kappel
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 5
  givenname: Claus
  surname: Beier
  fullname: Beier, Claus
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 6
  givenname: Christiana A.
  surname: Dietzen
  fullname: Dietzen, Christiana A.
  organization: Section for Geobiology, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
– sequence: 7
  givenname: Sabine
  surname: Reinsch
  fullname: Reinsch, Sabine
  organization: UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, United Kingdom
– sequence: 8
  givenname: Marie Frost
  surname: Arndal
  fullname: Arndal, Marie Frost
  organization: Department of Ecoscience, Arctic Research Center, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
– sequence: 9
  givenname: Klaus Steenberg
  surname: Larsen
  fullname: Larsen, Klaus Steenberg
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
BookMark eNqFkE1rGzEQhkVJoU7av1B0TA_raLTZD0MPDSZpCoFAyV1otSN73F3JHSmG_IP-7Mp1e-klp2GG531hnnNxFmJAIT6CWoKC9mq33GAckWe71ErrJUALffNGLKDvdNXqZnUmFqqQVadaeCfOU9qVtVNaLcSv71gdKFGmsJEp0iSd5SEGacMoA2WOGwwy5eh-JEnlLDPOe2SbUW7R5u10BBMeCvWClpO0PiPLvMVC8kzBZip10UvPiNISy_WjlhiY3HbGkOXl3c369tN78dbbKeGHv_NCPN3dPq3vq4fHr9_WNw-Vq1XfVM4rDR0AdBZ9B22r6qFxCK5Z6Rot2mvXjGMP9eBV7-t25ZRv-0HrAg19U1-Iy1PtnuPPZ0zZzJQcTuUNjM_J6E7XoEFd1wVtT6jjmBKjN3um2fKLAWWO5s3O_DNvjubNyXwJfv4v6Cj_0ZDZ0vR6_MspjkXDgZBNcoTB4UiMLpsx0msVvwG-hKbD
CitedBy_id crossref_primary_10_1016_j_agwat_2023_108333
crossref_primary_10_1111_rec_14096
Cites_doi 10.1126/science.1249534
10.1016/j.soilbio.2013.05.013
10.1111/gcb.15628
10.1073/pnas.0706518104
10.1038/s41586-021-03306-8
10.1038/nature06275
10.1007/s10021-004-0220-x
10.5194/soil-1-351-2015
10.1111/gcb.14699
10.1007/s10021-011-9508-9
10.1071/FP13117
10.1111/j.1365-2486.2005.01077.x
10.1016/S0038-0717(00)00151-6
10.1023/A:1004640327512
10.1111/j.1365-2486.2010.02351.x
10.1029/2006GB002888
10.1016/j.agee.2013.10.012
10.1111/gcb.15410
10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2
10.1029/94GB00993
10.1038/s41467-019-13119-z
10.1111/j.1365-2486.2011.02484.x
10.1007/s00442-004-1682-4
10.1016/S0378-1127(00)00677-0
10.1007/BF00017086
10.1111/j.1365-2486.2011.02634.x
10.1046/j.1365-2486.1998.00167.x
10.1016/S0038-0717(00)00084-5
10.1038/nature04514
10.1111/j.1469-8137.2010.03427.x
10.1007/s10021-018-0237-1
10.1111/j.1365-2435.2007.01362.x
10.1038/nclimate2436
10.1016/j.soilbio.2016.04.007
10.1046/j.1365-2486.1997.00073.x
10.1111/j.1365-3040.2007.01682.x
10.1038/nature06592
10.1007/s10021-004-0178-8
10.1073/pnas.1524527113
10.1016/j.scitotenv.2019.136438
10.1016/j.scitotenv.2016.12.060
10.1111/j.1365-3040.2011.02320.x
10.3389/fenvs.2020.514701
10.1007/s10533-017-0303-3
10.1038/35071062
10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
10.4155/cmt.13.77
10.1016/j.soilbio.2014.11.027
10.1029/94GB02723
10.1111/j.1365-2486.2012.02745.x
10.1007/s10021-017-0131-2
10.1038/35051576
10.1071/PP9960371
10.1046/j.1365-2486.2000.00318.x
10.1111/gcb.15540
10.1111/gcb.12816
10.1111/j.1365-2486.2007.01464.x
10.1038/416389a
10.1111/pce.13971
10.1186/s13717-020-00238-5
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2022.116185
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2022_116185
S001670612200492X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c3085-cf02171117aef716603b5ce1c5923eaea4c5dd813bf08f369c0f68b225ceb853
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 02:20:49 EDT 2025
Tue Jul 01 04:04:58 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Fri Feb 23 02:39:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Elevated CO2
Warming
Soil carbon and nitrogen dynamics
FACE experiment
Drought
13C stable isotope
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3085-cf02171117aef716603b5ce1c5923eaea4c5dd813bf08f369c0f68b225ceb853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S001670612200492X
PQID 2723121043
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723121043
crossref_primary_10_1016_j_geoderma_2022_116185
crossref_citationtrail_10_1016_j_geoderma_2022_116185
elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Murphy, Baggs, Morley, Wall, Paterson (b0195) 2015; 81
Beier, Emmett, Gundersen, Tietema, Penuelas, Estiarte, Gordon, Gorissen, Llorens, Roda, Williams (b0025) 2004; 7
Hu, Chapin, Firestone, Field, Chiariello (b0125) 2001; 409
Briones, Garnett, Ineson (b0040) 2021; 27
Hebeisen, Lüscher, Zanetti, Fischer, Hartwig, Frehner, Hendrey, Blum, Nösberger (b0120) 1997; 3
Hungate, B. A., Jackson, R. B., Field, C. B., & Chapin III, F. S., 1995. Detecting changes in soil carbon in CO
Arndal, Tolver, Larsen, Beier, Schmidt (b0020) 2018; 21
Ehleringer, Buchmann, Flanagan (b0090) 2000; 10
Finzi, Norby, Calfapietra, Gallet-Budynek, Gielen, Holmes, Hoosbeek, Iversen, Jackson, Kubiske, Ledford, Liberloo, Oren, Polle, Pritchard, Zak, Schlesinger, Ceulemans (b0100) 2007; 104
Albert, Ro-Poulsen, Mikkelsen, Michelsen, Van Der Linden, Beier (b0010) 2011; 34
Dynarski, Bossio, Scow (b0085) 2020; 8
Thaysen, Reinsch, Larsen, Ambus (b0270) 2017; 133
Larsen, Andresen, Beier, Jonasson, Albert, Ambus, Arndal, Carter, Christensen, Holmstrup, Ibrom, Kongstad, Van Der LINDEN, Maraldo, Michelsen, Mikkelsen, Pilegaard, Priemé, Ro-poulsen, Schmidt, Selsted, Stevnbak (b0170) 2011; 17
Jiang, Zhang, Xu, Liu, Zhu (b0150) 2020; 9
Selsted, Linden, Ibrom, Michelsen, Larsen, Pedersen, Mikkelsen, Pilegaard, Beier, Ambus (b0250) 2012; 18
Penuelas, Prieto, Beier, Cesaraccio, De Angelis, de Dato, Emmett, Estiarte, Garadnai, Gorissen, Kovács Láng, Kröel-Dulay, Llorens, Pellizzaro, Riis-Nielsen, Schmidt, Sirca, Sowerby, Spano, Tietema (b0200) 2007; 13
Rasmussen, Beier, Bergstedt (b0215) 2002; 158
Reinsch, Ambus, Thornton, Paterson (b0225) 2013; 65
Wu, Zhang, Liang, Zhu, Wang, Zhang (b0300) 2020; 710
Sage, Kubien (b0235) 2007; 30
IPCC (b0140) 2013
warming and drought: the CLIMAITE project. Funct. Ecol., 22(1), 185-195. https://doi.org/10.1111/j.1365-2435.2007.01362.x.
Cardon, Hungate, Cambardella, Chapin, Field, Holland, Mooney (b0050) 2001; 33
Roy, Picon-Cochard, Augusti, Benot, Thiery, Darsonville, Landais, Piel, Defossez, Devidal, Escape, Ravel, Fromin, Volaire, Milcu, Bahn, Soussana (b0230) 2016; 113
Kongstad, Schmidt, Riis-Nielsen, Arndal, Mikkelsen, Beier (b0160) 2012; 15
Lloyd, Kruijt, Hollinger, Grace, Francey, Wong, Kelliher, Miranda, Farquhar, Gash, Vygodskaya, Wright, Miranda, Schulze (b0175) 1996; 23
Terrer, Phillips, Hungate, Rosende, Pett-Ridge, Craig, van Groenigen, Keenan, Sulman, Stocker, Reich, Pellegrini, Pendall, Zhang, Evans, Carrillo, Fisher, Van Sundert, Vicca, Jackson (b0265) 2021; 591
Van Groenigen, Qi, Osenberg, Luo, Hungate (b0285) 2014; 344
Köchy, Hiederer, Freibauer (b0155) 2015; 1
Yao, Wang, Zheng, Mei, Zhou, Xie, Dong, Liu, Han, Xu, Butterbach‐Bahl, Zhu (b0305) 2021; 27
Raich, Potter (b0210) 1995; 9
Reich, Knops, Tilman, Craine, Ellsworth, Tjoelker, Lee, Wedin, Naeem, Bahauddin, Hendrey, Jose, Wrage, Goth, Bengston (b0220) 2001; 410
Adair, Reich, Trost, Hobbie (b0005) 2011; 17
Arndal, Schmidt, Kongstad, Beier, Michelsen (b0015) 2013; 41
enrichment experiments. Plant and Soil, 187(2), 135-145. https://doi.org/0.1007/BF00017086.
Chen, Liu, Qin, Yang, Fang, Zhu, Kuzyakov, Chen, Xu, Yang (b0055) 2019; 10
Finzi, Abramoff, Spiller, Brzostek, Darby, Kramer, Phillips (b0105) 2015; 21
Schimel, Braswell, Holland, McKeown, Ojima, Painter, Parton, Townsend (b0245) 1994; 8
Scharlemann, Tanner, Hiederer, Kapos (b0240) 2014; 5
De Graaff, Classen, Castro, Schadt (b0070) 2010; 188
Fontaine, Barot, Barré, Bdioui, Mary, Rumpel (b0110) 2007; 450
Gruber, N., & Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. https://doi.org/0.1038/nature06592.
Tiiva, Tang, Michelsen, Rinnan (b0280) 2017; 580
Bernal, McKinley, Hungate, White, Mozdzer, Megonigal (b0030) 2016; 98
Emmett, Beier, Estiarte, Tietema, Kristensen, Williams, Peñuelas, Schmidt, Sowerby (b0095) 2004; 7
Cannell, Thornley (b0045) 1998; 4
Meeran, Ingrisch, Reinthaler, Canarini, Müller, Pötsch, Richter, Wanek, Bahn (b0185) 2021; 27
Sulman, Phillips, Oishi, Shevliakova, Pacala (b0260) 2014; 4
Dieleman, Vicca, Dijkstra, Hagedorn, Hovenden, Larsen, Morgan, Volder, Beier, Dukes, King, Leuzinger, Linder, Luo, Oren, De Angelis, Tingey, Hoosbeek, Janssens (b0075) 2012; 18
Jastrow, Michael Miller, Matamala, Norby, Boutton, Rice, Owensby (b0145) 2005; 11
Dietzen, Larsen, Ambus, Michelsen, Arndal, Beier, Reinsch, Schmidt (b0080) 2019; 25
Coast, Posch, Bramley, Gaju, Richards, Lu, Ruan, Trethowan, Atkin (b0060) 2020; 44
Huxman, Snyder, Tissue, Leffler, Ogle, Pockman, Sandquist, Potts, Schwinning (b0135) 2004; 141
Thornley, Cannell (b0275) 2000; 224
Davidson, Janssens (b0065) 2006; 440
Luo, Su, Currie, Dukes, Finzi, Hartwig, Hungate, McMurtrie, Oren, Parton, Pataki, Shaw, Zak, Field (b0180) 2004; 54
Piao, Friedlingstein, Ciais, Viovy, Demarty (b0205) 2007; 21
Blumenthal, Mueller, Kray, LeCain, Pendall, Duke, Zelikova, Dijkstra, Williams, Morgan (b0035) 2018; 21
Walther, Post, Convey, Menzel, Parmesan, Beebee, Fromentin, Hoegh-Guldberg, Bairlein (b0295) 2002; 416
Mikkelsen, T. N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I. K., Ambus, P., . . . Sverdrup, H., 2008. Experimental design of multifactor climate change experiments with elevated CO
Soussana, Lemaire (b0255) 2014; 190
Kuzyakova, Friedelb, Stahr (b0165) 2000; 32
Van Kessel, Horwath, Hartwig, Harris, Lüscher (b0290) 2000; 6
Thaysen (10.1016/j.geoderma.2022.116185_b0270) 2017; 133
Albert (10.1016/j.geoderma.2022.116185_b0010) 2011; 34
Van Kessel (10.1016/j.geoderma.2022.116185_b0290) 2000; 6
Briones (10.1016/j.geoderma.2022.116185_b0040) 2021; 27
Hebeisen (10.1016/j.geoderma.2022.116185_b0120) 1997; 3
Van Groenigen (10.1016/j.geoderma.2022.116185_b0285) 2014; 344
Arndal (10.1016/j.geoderma.2022.116185_b0015) 2013; 41
Piao (10.1016/j.geoderma.2022.116185_b0205) 2007; 21
Blumenthal (10.1016/j.geoderma.2022.116185_b0035) 2018; 21
Larsen (10.1016/j.geoderma.2022.116185_b0170) 2011; 17
Finzi (10.1016/j.geoderma.2022.116185_b0105) 2015; 21
Schimel (10.1016/j.geoderma.2022.116185_b0245) 1994; 8
Terrer (10.1016/j.geoderma.2022.116185_b0265) 2021; 591
Scharlemann (10.1016/j.geoderma.2022.116185_b0240) 2014; 5
Dieleman (10.1016/j.geoderma.2022.116185_b0075) 2012; 18
10.1016/j.geoderma.2022.116185_b0130
Finzi (10.1016/j.geoderma.2022.116185_b0100) 2007; 104
Dynarski (10.1016/j.geoderma.2022.116185_b0085) 2020; 8
Jiang (10.1016/j.geoderma.2022.116185_b0150) 2020; 9
Arndal (10.1016/j.geoderma.2022.116185_b0020) 2018; 21
Chen (10.1016/j.geoderma.2022.116185_b0055) 2019; 10
Reich (10.1016/j.geoderma.2022.116185_b0220) 2001; 410
De Graaff (10.1016/j.geoderma.2022.116185_b0070) 2010; 188
Kongstad (10.1016/j.geoderma.2022.116185_b0160) 2012; 15
Raich (10.1016/j.geoderma.2022.116185_b0210) 1995; 9
Meeran (10.1016/j.geoderma.2022.116185_b0185) 2021; 27
Luo (10.1016/j.geoderma.2022.116185_b0180) 2004; 54
Coast (10.1016/j.geoderma.2022.116185_b0060) 2020; 44
Thornley (10.1016/j.geoderma.2022.116185_b0275) 2000; 224
Fontaine (10.1016/j.geoderma.2022.116185_b0110) 2007; 450
Yao (10.1016/j.geoderma.2022.116185_b0305) 2021; 27
Huxman (10.1016/j.geoderma.2022.116185_b0135) 2004; 141
Rasmussen (10.1016/j.geoderma.2022.116185_b0215) 2002; 158
Cannell (10.1016/j.geoderma.2022.116185_b0045) 1998; 4
Ehleringer (10.1016/j.geoderma.2022.116185_b0090) 2000; 10
Cardon (10.1016/j.geoderma.2022.116185_b0050) 2001; 33
Murphy (10.1016/j.geoderma.2022.116185_b0195) 2015; 81
IPCC (10.1016/j.geoderma.2022.116185_b0140) 2013
Penuelas (10.1016/j.geoderma.2022.116185_b0200) 2007; 13
Roy (10.1016/j.geoderma.2022.116185_b0230) 2016; 113
Selsted (10.1016/j.geoderma.2022.116185_b0250) 2012; 18
Emmett (10.1016/j.geoderma.2022.116185_b0095) 2004; 7
Wu (10.1016/j.geoderma.2022.116185_b0300) 2020; 710
Köchy (10.1016/j.geoderma.2022.116185_b0155) 2015; 1
Beier (10.1016/j.geoderma.2022.116185_b0025) 2004; 7
Sulman (10.1016/j.geoderma.2022.116185_b0260) 2014; 4
Soussana (10.1016/j.geoderma.2022.116185_b0255) 2014; 190
Tiiva (10.1016/j.geoderma.2022.116185_b0280) 2017; 580
Jastrow (10.1016/j.geoderma.2022.116185_b0145) 2005; 11
Davidson (10.1016/j.geoderma.2022.116185_b0065) 2006; 440
Kuzyakova (10.1016/j.geoderma.2022.116185_b0165) 2000; 32
10.1016/j.geoderma.2022.116185_b0190
10.1016/j.geoderma.2022.116185_b0115
Hu (10.1016/j.geoderma.2022.116185_b0125) 2001; 409
Walther (10.1016/j.geoderma.2022.116185_b0295) 2002; 416
Dietzen (10.1016/j.geoderma.2022.116185_b0080) 2019; 25
Bernal (10.1016/j.geoderma.2022.116185_b0030) 2016; 98
Adair (10.1016/j.geoderma.2022.116185_b0005) 2011; 17
Sage (10.1016/j.geoderma.2022.116185_b0235) 2007; 30
Lloyd (10.1016/j.geoderma.2022.116185_b0175) 1996; 23
Reinsch (10.1016/j.geoderma.2022.116185_b0225) 2013; 65
References_xml – volume: 30
  start-page: 1086
  year: 2007
  end-page: 1106
  ident: b0235
  article-title: The temperature response of C3 and C4 photosynthesis
  publication-title: Plant, Cell Environ.
– volume: 18
  start-page: 1216
  year: 2012
  end-page: 1230
  ident: b0250
  article-title: Soil respiration is stimulated by elevated CO
  publication-title: Glob. Change Biol.
– volume: 224
  start-page: 153
  year: 2000
  end-page: 170
  ident: b0275
  article-title: Dynamics of mineral N availability in grassland ecosystems under increased [CO
  publication-title: Plant Soil
– reference: Hungate, B. A., Jackson, R. B., Field, C. B., & Chapin III, F. S., 1995. Detecting changes in soil carbon in CO
– volume: 344
  start-page: 508
  year: 2014
  end-page: 509
  ident: b0285
  article-title: Faster decomposition under increased atermospheric CO
  publication-title: Science
– volume: 33
  start-page: 365
  year: 2001
  end-page: 373
  ident: b0050
  article-title: Contrasting effects of elevated CO
  publication-title: Soil Biol. Biochem.
– volume: 27
  start-page: 3230
  year: 2021
  end-page: 3243
  ident: b0185
  article-title: Warming and elevated CO
  publication-title: Global Chang Biology.
– volume: 104
  start-page: 14014
  year: 2007
  end-page: 14019
  ident: b0100
  article-title: Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO
  publication-title: Proc. Natl. Acad. Sci.
– volume: 81
  start-page: 236
  year: 2015
  end-page: 243
  ident: b0195
  article-title: Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter
  publication-title: Soil Biol. Biochem.
– volume: 141
  start-page: 254
  year: 2004
  end-page: 268
  ident: b0135
  article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems
  publication-title: Oecologia
– volume: 190
  start-page: 9
  year: 2014
  end-page: 17
  ident: b0255
  article-title: Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems
  publication-title: Agric. Ecosyst. Environ.
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: b0165
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
– volume: 591
  start-page: 599
  year: 2021
  end-page: 603
  ident: b0265
  article-title: A trade-off between plant and soil carbon storage under elevated CO
  publication-title: Nature
– volume: 8
  year: 2020
  ident: b0085
  article-title: Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration
  publication-title: Front. Environ. Sci.
– reference: enrichment experiments. Plant and Soil, 187(2), 135-145. https://doi.org/0.1007/BF00017086.
– volume: 4
  start-page: 431
  year: 1998
  end-page: 442
  ident: b0045
  article-title: N-poor ecosystems may respond more to elevated [CO2] than N-rich ones in t-he long term. A model analysis of grassland
  publication-title: Global Chan-ge Biology
– volume: 10
  year: 2019
  ident: b0055
  article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1099
  year: 2014
  end-page: 1102
  ident: b0260
  article-title: Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO
  publication-title: Nature Climte Change
– volume: 21
  start-page: n/a
  year: 2007
  end-page: n/a
  ident: b0205
  article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades
  publication-title: Global Biogeochem. Cycles
– volume: 65
  start-page: 133
  year: 2013
  end-page: 140
  ident: b0225
  article-title: Impact of future climatic conditions on the potential for soil organic matter priming
  publication-title: Soil Biol. Biochem.
– volume: 133
  start-page: 17
  year: 2017
  end-page: 36
  ident: b0270
  article-title: Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions
  publication-title: Biogeochemistry
– volume: 23
  start-page: 371
  year: 1996
  ident: b0175
  article-title: Vegetation Effects on the Isotopic Composition of Atmospheric CO
  publication-title: Funct. Plant Biol.
– volume: 450
  start-page: 277
  year: 2007
  end-page: 280
  ident: b0110
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply
  publication-title: Nature
– volume: 27
  start-page: 1836
  year: 2021
  end-page: 1847
  ident: b0040
  article-title: No evidence for increased loss of old carbon in a temperate organic soil after 13 years of simulated climatic warming despite increased CO
  publication-title: Glob. Change Biol.
– volume: 1
  start-page: 351
  year: 2015
  end-page: 365
  ident: b0155
  article-title: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world
  publication-title: Soil
– volume: 27
  start-page: 327
  year: 2021
  end-page: 339
  ident: b0305
  article-title: Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site-years field experiments
  publication-title: Glob. Change Biol.
– volume: 10
  start-page: 412
  year: 2000
  end-page: 422
  ident: b0090
  article-title: Carbon isotope ratios in belowground carbon cycle processes
  publication-title: Ecol. Appl.
– volume: 34
  start-page: 1207
  year: 2011
  end-page: 1222
  ident: b0010
  article-title: Effects of elevated CO
  publication-title: Plant, Cell Environ.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0150
  article-title: Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (O-ryza sativa L.)
  publication-title: Ecological Processes
– volume: 54
  start-page: 731
  year: 2004
  end-page: 739
  ident: b0180
  article-title: Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide
  publication-title: Bioscience
– volume: 9
  start-page: 23
  year: 1995
  end-page: 36
  ident: b0210
  article-title: Global patterns of carbon dioxide emissions from soils
  publication-title: Global Biogeochem. Cycles
– volume: 11
  start-page: 2057
  year: 2005
  end-page: 2064
  ident: b0145
  article-title: Elevated atmospheric carbon dioxide increases soil carbon
  publication-title: Glob. Change Biol.
– volume: 17
  start-page: 1884
  year: 2011
  end-page: 1899
  ident: b0170
  article-title: Reduced N cycling in response to elevated CO
  publication-title: Glob. Change Biol.
– volume: 21
  start-page: 1533
  year: 2018
  end-page: 1544
  ident: b0035
  article-title: Warming and Elevated CO
  publication-title: Ecosystems
– volume: 409
  start-page: 188
  year: 2001
  end-page: 191
  ident: b0125
  article-title: Nitrogen limitation of microbial decomposition in a grassland under elevated CO
  publication-title: Nature
– reference: , warming and drought: the CLIMAITE project. Funct. Ecol., 22(1), 185-195. https://doi.org/10.1111/j.1365-2435.2007.01362.x.
– volume: 8
  start-page: 279
  year: 1994
  end-page: 293
  ident: b0245
  article-title: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils
  publication-title: Global Biogeochem. Cycles
– volume: 25
  start-page: 2970
  year: 2019
  end-page: 2977
  ident: b0080
  article-title: Accumulation of soil carbon under elevated CO
  publication-title: Glob. Change Biol.
– volume: 13
  start-page: 2563
  year: 2007
  end-page: 2581
  ident: b0200
  article-title: Response of plant species richness and primary productivity in shrublands along a north- south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003
  publication-title: Glob. Change Biol.
– volume: 18
  start-page: 2681
  year: 2012
  end-page: 2693
  ident: b0075
  article-title: Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO
  publication-title: Glob. Change Biol.
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  ident: b0065
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 416
  start-page: 389
  year: 2002
  end-page: 395
  ident: b0295
  article-title: Ecological responses to recent climate change
  publication-title: Nature
– volume: 7
  start-page: 583
  year: 2004
  end-page: 597
  ident: b0025
  article-title: Novel approaches to study climate change effects on terrestrial ecosystems at the field scale – drought and passive night time warming
  publication-title: Ecosystems
– volume: 41
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0015
  article-title: Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO
  publication-title: Funct. Plant Biol.
– volume: 113
  start-page: 6224
  year: 2016
  end-page: 6229
  ident: b0230
  article-title: Elevated CO
  publication-title: Proc. Natl. Acad. Sci.
– volume: 158
  start-page: 179
  year: 2002
  end-page: 188
  ident: b0215
  article-title: Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO
  publication-title: For. Ecol. Manage.
– reference: Gruber, N., & Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. https://doi.org/0.1038/nature06592.
– volume: 410
  start-page: 809
  year: 2001
  end-page: 810
  ident: b0220
  article-title: Plant diversity enhances ecosystem responses to elevated CO
  publication-title: Nature
– volume: 710
  year: 2020
  ident: b0300
  article-title: Elevated CO
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 625
  year: 2004
  end-page: 637
  ident: b0095
  article-title: The response of soil processes to climate change: Results from manipulation studies across an environmental gradient
  publication-title: Ecosystems
– volume: 188
  start-page: 1055
  year: 2010
  end-page: 1064
  ident: b0070
  article-title: Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates
  publication-title: New Phytol.
– volume: 44
  start-page: 2331
  year: 2020
  end-page: 2346
  ident: b0060
  article-title: Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat
  publication-title: Plant, Cell Environ.
– volume: 3
  start-page: 149
  year: 1997
  end-page: 160
  ident: b0120
  article-title: Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO
  publication-title: Glob. Change Biol.
– volume: 6
  start-page: 435
  year: 2000
  end-page: 444
  ident: b0290
  article-title: Net soil carbon input under ambient and elevated CO
  publication-title: Glob. Change Biol.
– volume: 21
  start-page: 15
  year: 2018
  end-page: 30
  ident: b0020
  article-title: Fine Root Growth and Vertical Distribution in Response to Elevated CO
  publication-title: Ecosystems
– year: 2013
  ident: b0140
  article-title: Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
– volume: 15
  start-page: 269
  year: 2012
  end-page: 283
  ident: b0160
  article-title: High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO
  publication-title: Ecosystems
– volume: 21
  start-page: 2082
  year: 2015
  end-page: 2094
  ident: b0105
  article-title: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles
  publication-title: Glob. Change Biol.
– volume: 17
  start-page: 3546
  year: 2011
  end-page: 3563
  ident: b0005
  article-title: Elevated CO
  publication-title: Glob. Change Biol.
– reference: Mikkelsen, T. N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I. K., Ambus, P., . . . Sverdrup, H., 2008. Experimental design of multifactor climate change experiments with elevated CO
– volume: 580
  start-page: 1056
  year: 2017
  end-page: 1067
  ident: b0280
  article-title: Monoterpene emissions in response to long-term night-time warming, elevated CO
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 81
  year: 2014
  end-page: 91
  ident: b0240
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manage.
– volume: 98
  start-page: 85
  year: 2016
  end-page: 94
  ident: b0030
  article-title: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs
  publication-title: Soil Biol. Biochem.
– volume: 344
  start-page: 508
  issue: 6183
  year: 2014
  ident: 10.1016/j.geoderma.2022.116185_b0285
  article-title: Faster decomposition under increased atermospheric CO2 limits soil carbon storage
  publication-title: Science
  doi: 10.1126/science.1249534
– volume: 65
  start-page: 133
  year: 2013
  ident: 10.1016/j.geoderma.2022.116185_b0225
  article-title: Impact of future climatic conditions on the potential for soil organic matter priming
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.05.013
– volume: 27
  start-page: 3230
  issue: 14
  year: 2021
  ident: 10.1016/j.geoderma.2022.116185_b0185
  article-title: Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration
  publication-title: Global Chang Biology.
  doi: 10.1111/gcb.15628
– volume: 104
  start-page: 14014
  issue: 35
  year: 2007
  ident: 10.1016/j.geoderma.2022.116185_b0100
  article-title: Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706518104
– volume: 591
  start-page: 599
  issue: 7851
  year: 2021
  ident: 10.1016/j.geoderma.2022.116185_b0265
  article-title: A trade-off between plant and soil carbon storage under elevated CO2
  publication-title: Nature
  doi: 10.1038/s41586-021-03306-8
– volume: 450
  start-page: 277
  issue: 8
  year: 2007
  ident: 10.1016/j.geoderma.2022.116185_b0110
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply
  publication-title: Nature
  doi: 10.1038/nature06275
– volume: 7
  start-page: 625
  year: 2004
  ident: 10.1016/j.geoderma.2022.116185_b0095
  article-title: The response of soil processes to climate change: Results from manipulation studies across an environmental gradient
  publication-title: Ecosystems
  doi: 10.1007/s10021-004-0220-x
– volume: 1
  start-page: 351
  year: 2015
  ident: 10.1016/j.geoderma.2022.116185_b0155
  article-title: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world
  publication-title: Soil
  doi: 10.5194/soil-1-351-2015
– volume: 25
  start-page: 2970
  issue: 9
  year: 2019
  ident: 10.1016/j.geoderma.2022.116185_b0080
  article-title: Accumulation of soil carbon under elevated CO2 unaffected by warming and drought
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14699
– volume: 15
  start-page: 269
  issue: 2
  year: 2012
  ident: 10.1016/j.geoderma.2022.116185_b0160
  article-title: High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment
  publication-title: Ecosystems
  doi: 10.1007/s10021-011-9508-9
– volume: 41
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.geoderma.2022.116185_b0015
  article-title: Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP13117
– volume: 11
  start-page: 2057
  issue: 12
  year: 2005
  ident: 10.1016/j.geoderma.2022.116185_b0145
  article-title: Elevated atmospheric carbon dioxide increases soil carbon
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.01077.x
– volume: 33
  start-page: 365
  issue: 3
  year: 2001
  ident: 10.1016/j.geoderma.2022.116185_b0050
  article-title: Contrasting effects of elevated CO2 on old and new soil carbon pools
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00151-6
– volume: 224
  start-page: 153
  year: 2000
  ident: 10.1016/j.geoderma.2022.116185_b0275
  article-title: Dynamics of mineral N availability in grassland ecosystems under increased [CO2]: hypotheses evaluated using the Hurley Pasture Model
  publication-title: Plant Soil
  doi: 10.1023/A:1004640327512
– volume: 17
  start-page: 1884
  issue: 5
  year: 2011
  ident: 10.1016/j.geoderma.2022.116185_b0170
  article-title: Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02351.x
– volume: 21
  start-page: n/a
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2022.116185_b0205
  article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2006GB002888
– volume: 190
  start-page: 9
  year: 2014
  ident: 10.1016/j.geoderma.2022.116185_b0255
  article-title: Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.10.012
– volume: 27
  start-page: 327
  issue: 2
  year: 2021
  ident: 10.1016/j.geoderma.2022.116185_b0305
  article-title: Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site-years field experiments
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15410
– volume: 10
  start-page: 412
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2022.116185_b0090
  article-title: Carbon isotope ratios in belowground carbon cycle processes
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2
– volume: 8
  start-page: 279
  issue: 3
  year: 1994
  ident: 10.1016/j.geoderma.2022.116185_b0245
  article-title: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/94GB00993
– year: 2013
  ident: 10.1016/j.geoderma.2022.116185_b0140
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2022.116185_b0055
  article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13119-z
– volume: 17
  start-page: 3546
  issue: 12
  year: 2011
  ident: 10.1016/j.geoderma.2022.116185_b0005
  article-title: Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02484.x
– volume: 141
  start-page: 254
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2022.116185_b0135
  article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1682-4
– volume: 158
  start-page: 179
  year: 2002
  ident: 10.1016/j.geoderma.2022.116185_b0215
  article-title: Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(00)00677-0
– ident: 10.1016/j.geoderma.2022.116185_b0130
  doi: 10.1007/BF00017086
– volume: 18
  start-page: 1216
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2022.116185_b0250
  article-title: Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE)
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02634.x
– volume: 4
  start-page: 431
  issue: 4
  year: 1998
  ident: 10.1016/j.geoderma.2022.116185_b0045
  article-title: N-poor ecosystems may respond more to elevated [CO2] than N-rich ones in t-he long term. A model analysis of grassland
  publication-title: Global Chan-ge Biology
  doi: 10.1046/j.1365-2486.1998.00167.x
– volume: 32
  start-page: 1485
  issue: 11–12
  year: 2000
  ident: 10.1016/j.geoderma.2022.116185_b0165
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 440
  start-page: 165
  year: 2006
  ident: 10.1016/j.geoderma.2022.116185_b0065
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 188
  start-page: 1055
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2022.116185_b0070
  article-title: Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03427.x
– volume: 21
  start-page: 1533
  issue: 8
  year: 2018
  ident: 10.1016/j.geoderma.2022.116185_b0035
  article-title: Warming and Elevated CO2 Interact to Alter Seasonality and Reduce Variability of Soil Water in a Semiarid Grassland
  publication-title: Ecosystems
  doi: 10.1007/s10021-018-0237-1
– ident: 10.1016/j.geoderma.2022.116185_b0190
  doi: 10.1111/j.1365-2435.2007.01362.x
– volume: 4
  start-page: 1099
  issue: 12
  year: 2014
  ident: 10.1016/j.geoderma.2022.116185_b0260
  article-title: Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2
  publication-title: Nature Climte Change
  doi: 10.1038/nclimate2436
– volume: 98
  start-page: 85
  year: 2016
  ident: 10.1016/j.geoderma.2022.116185_b0030
  article-title: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.04.007
– volume: 3
  start-page: 149
  issue: 2
  year: 1997
  ident: 10.1016/j.geoderma.2022.116185_b0120
  article-title: Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1365-2486.1997.00073.x
– volume: 30
  start-page: 1086
  issue: 9
  year: 2007
  ident: 10.1016/j.geoderma.2022.116185_b0235
  article-title: The temperature response of C3 and C4 photosynthesis
  publication-title: Plant, Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01682.x
– ident: 10.1016/j.geoderma.2022.116185_b0115
  doi: 10.1038/nature06592
– volume: 7
  start-page: 583
  year: 2004
  ident: 10.1016/j.geoderma.2022.116185_b0025
  article-title: Novel approaches to study climate change effects on terrestrial ecosystems at the field scale – drought and passive night time warming
  publication-title: Ecosystems
  doi: 10.1007/s10021-004-0178-8
– volume: 113
  start-page: 6224
  issue: 22
  year: 2016
  ident: 10.1016/j.geoderma.2022.116185_b0230
  article-title: Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1524527113
– volume: 710
  year: 2020
  ident: 10.1016/j.geoderma.2022.116185_b0300
  article-title: Elevated CO2 improved soil nitrogen mineralization capacity of rice paddy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136438
– volume: 580
  start-page: 1056
  year: 2017
  ident: 10.1016/j.geoderma.2022.116185_b0280
  article-title: Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.060
– volume: 34
  start-page: 1207
  issue: 7
  year: 2011
  ident: 10.1016/j.geoderma.2022.116185_b0010
  article-title: Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status
  publication-title: Plant, Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02320.x
– volume: 8
  year: 2020
  ident: 10.1016/j.geoderma.2022.116185_b0085
  article-title: Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2020.514701
– volume: 133
  start-page: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2022.116185_b0270
  article-title: Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0303-3
– volume: 410
  start-page: 809
  issue: 6830
  year: 2001
  ident: 10.1016/j.geoderma.2022.116185_b0220
  article-title: Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition
  publication-title: Nature
  doi: 10.1038/35071062
– volume: 54
  start-page: 731
  issue: 8
  year: 2004
  ident: 10.1016/j.geoderma.2022.116185_b0180
  article-title: Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
– volume: 5
  start-page: 81
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2022.116185_b0240
  article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Manage.
  doi: 10.4155/cmt.13.77
– volume: 81
  start-page: 236
  year: 2015
  ident: 10.1016/j.geoderma.2022.116185_b0195
  article-title: Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.11.027
– volume: 9
  start-page: 23
  issue: 1
  year: 1995
  ident: 10.1016/j.geoderma.2022.116185_b0210
  article-title: Global patterns of carbon dioxide emissions from soils
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/94GB02723
– volume: 18
  start-page: 2681
  issue: 9
  year: 2012
  ident: 10.1016/j.geoderma.2022.116185_b0075
  article-title: Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02745.x
– volume: 21
  start-page: 15
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2022.116185_b0020
  article-title: Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland-Grassland
  publication-title: Ecosystems
  doi: 10.1007/s10021-017-0131-2
– volume: 409
  start-page: 188
  year: 2001
  ident: 10.1016/j.geoderma.2022.116185_b0125
  article-title: Nitrogen limitation of microbial decomposition in a grassland under elevated CO2
  publication-title: Nature
  doi: 10.1038/35051576
– volume: 23
  start-page: 371
  issue: 3
  year: 1996
  ident: 10.1016/j.geoderma.2022.116185_b0175
  article-title: Vegetation Effects on the Isotopic Composition of Atmospheric CO2 at Local and Regional Scales: Theoretical Aspects and a Comparison Between Rain Forest in Amazonia and a Boreal Forest in Siberia
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP9960371
– volume: 6
  start-page: 435
  issue: 4
  year: 2000
  ident: 10.1016/j.geoderma.2022.116185_b0290
  article-title: Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1365-2486.2000.00318.x
– volume: 27
  start-page: 1836
  issue: 9
  year: 2021
  ident: 10.1016/j.geoderma.2022.116185_b0040
  article-title: No evidence for increased loss of old carbon in a temperate organic soil after 13 years of simulated climatic warming despite increased CO2 emissions
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15540
– volume: 21
  start-page: 2082
  year: 2015
  ident: 10.1016/j.geoderma.2022.116185_b0105
  article-title: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12816
– volume: 13
  start-page: 2563
  year: 2007
  ident: 10.1016/j.geoderma.2022.116185_b0200
  article-title: Response of plant species richness and primary productivity in shrublands along a north- south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2007.01464.x
– volume: 416
  start-page: 389
  issue: 6879
  year: 2002
  ident: 10.1016/j.geoderma.2022.116185_b0295
  article-title: Ecological responses to recent climate change
  publication-title: Nature
  doi: 10.1038/416389a
– volume: 44
  start-page: 2331
  year: 2020
  ident: 10.1016/j.geoderma.2022.116185_b0060
  article-title: Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat
  publication-title: Plant, Cell Environ.
  doi: 10.1111/pce.13971
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.geoderma.2022.116185_b0150
  article-title: Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (O-ryza sativa L.)
  publication-title: Ecological Processes
  doi: 10.1186/s13717-020-00238-5
SSID ssj0017020
Score 2.3965862
Snippet •Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil...
The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116185
SubjectTerms 13C stable isotope
air
carbon dioxide
climate
climate change
Drought
ecosystems
Elevated CO2
face
FACE experiment
free air carbon dioxide enrichment
heathlands
nitrogen
soil carbon
Soil carbon and nitrogen dynamics
topsoil
Warming
Title Re-visiting soil carbon and nitrogen stocks in a temperate heathland seven years after the termination of free air CO2 enrichment (FACE)
URI https://dx.doi.org/10.1016/j.geoderma.2022.116185
https://www.proquest.com/docview/2723121043
Volume 428
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5MemkPIX1RN2mYQg_tQbWeK-toTIzbUhdKCr4tu6vZWm6QgpQccsk5P7sz8iokpZBDbpLQCLEz882sNPONEB_QuAJT8m-XlEmQFlYHhaYjR8m8KbNSG-Te4e8rufyVfl1n65GYD70wXFbpsX-H6T1a-ysTv5qT86riHt9I5hyhWdFFvOYO9jRnK_98fVvmEeWhp2aMZMB33-kS3pKOeOBYzz8Ux4QeMuKZyv8PUP9AdR9_Fgdi3yeOMNu923MxwvqFeDb73XryDHwpbn5iwL3iXMkMXVOdgdWtaWrQdQnkum1D1gKU7dk_HVR0GZiYilmVERiTN1zlCB1zOsEVeUAH_QRxoBwRfNEMqxEaB65FBF21MP8RA5lgZTf8mRE-Lmbzk0-vxOni5HS-DPykhcAm3H1gHW9NCPZyjY52UDJMTGYxshnlf6hRpzYry2mUGBdOXSILGzo5NYQFFg0F_Ndir25qfCNA5rHRBeU5BdpUGm3IxQlGNAs7k4djkQ2rq6xnIedhGGdqKDfbqkErirWidloZi8mt3PmOh-NBiWJQnrpnUYqCxYOy7wdtK3I3_oeia2wuOxXnlBDTNjlN3j7i-YfiKZ9xWUyUHYm9i_YS31Fyc2GOe-s9Fk9mX74tV38B9mb7Sg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG5CPKgH8YnxEUtQ0MO48-zZOeSwrFk25iHICntrunuqzcQwE2YSJBfP_p78wlTN9gQVIQfJbeihl6Wq-quvd7-qEuINGldgSufbJWUSpIXVQaHpyRGZN2VWaoNcO7x_IOdf00_LbLkmLoZaGJZVeuxfYXqP1n5l5K05OqkqrvGNZM4Zmh1dxEuvrNzF8x90b-u2dj6Sk9_G8Wx7MZ0HfrRAYBOW21vHXJzOea7R0ZVBhonJLEY2I8KDGnVqs7IcR4lx4dglsrChk2NDwW_RjHlSBMH-rZTQgqcmfPh5JSuJ8tC3goxkwN_ut6rkI4oJHnDW9zuKY0IrGfEM538nxL9SQ5_vZvfFPU9UYbKyxQOxhvVDcXfyrfXNOvCR-PUFA65NZ-U0dE11DFa3pqlB1yUQVLQNRScQu7TfO6hoGbgRFndxRuAccMiqSui4hxSck1U76CeWA3FS8CIdDhtoHLgWEXTVwvRzDBTylT3knzXh3Wwy3X7_WCxuwvxPxHrd1PhUgMxjowviVQXaVBptCFIItjRvdiYPN0Q2WFdZ3_Wch28cq0HedqQGryj2ilp5ZUOMrvadrPp-XLujGJyn_ohgRcnp2r2vB28rOt78n42usTnrVJwTAadreZo8-4_PfyVuzxf7e2pv52D3ubjDb1iSE2UvxPppe4YviVidms0-kkGoGz45l8oUNhk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Re-visiting+soil+carbon+and+nitrogen+stocks+in+a+temperate+heathland+seven+years+after+the+termination+of+free+air+CO2+enrichment+%28FACE%29&rft.jtitle=Geoderma&rft.au=Li%2C+Qiaoyan&rft.au=Ambus%2C+Per+Lennart&rft.au=Michelsen%2C+Anders&rft.au=Schmidt%2C+Inger+Kappel&rft.date=2022-12-15&rft.issn=0016-7061&rft.volume=428&rft.spage=116185&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2022_116185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon