Re-visiting soil carbon and nitrogen stocks in a temperate heathland seven years after the termination of free air CO2 enrichment (FACE)
•Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil carbon.•Large transfer of nitrogen from deeper soil layers upon increasing plant demand.•Soil carbon and nitrogen pools in this ecosystem are highly...
Saved in:
Published in | Geoderma Vol. 428; p. 116185 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil carbon.•Large transfer of nitrogen from deeper soil layers upon increasing plant demand.•Soil carbon and nitrogen pools in this ecosystem are highly dynamic.
The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, CLIMAITE (Free Air CO2Enrichment (FACE), warming and drought in all combinations in a Danish heathland ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO2 concentrations (eCO2). Soil carbon pools in former eCO2 plots, as well as in drought and warming plots, had normalized again by 2020. However, the difference in soil isotopic composition between ambient and former eCO2 plots remained, indicating similar loss fractions from older and newer soil carbon pools in the eCO2 plots as well as stimulation of the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet increasing plant demand during eCO2 but was lost again from the topsoil after termination of the FACE treatment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major element pools in ecosystems. |
---|---|
AbstractList | The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, CLIMAITE (Free Air CO₂Enrichment (FACE), warming and drought in all combinations in a Danish heathland ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO₂ concentrations (eCO₂). Soil carbon pools in former eCO₂ plots, as well as in drought and warming plots, had normalized again by 2020. However, the difference in soil isotopic composition between ambient and former eCO₂ plots remained, indicating similar loss fractions from older and newer soil carbon pools in the eCO₂ plots as well as stimulation of the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet increasing plant demand during eCO₂ but was lost again from the topsoil after termination of the FACE treatment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major element pools in ecosystems. •Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil carbon.•Large transfer of nitrogen from deeper soil layers upon increasing plant demand.•Soil carbon and nitrogen pools in this ecosystem are highly dynamic. The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the soil in a long-term, field-scale, multi-factorial climate experiment, CLIMAITE (Free Air CO2Enrichment (FACE), warming and drought in all combinations in a Danish heathland ecosystem) in 2020, seven years after the experiment was terminated. We aimed to study the dynamics of the soil carbon after the cessation of long-term multi-factorial climate manipulation, with special attention to the fate of the additional soil carbon (19% increase) that was sequestered in plots exposed to elevated CO2 concentrations (eCO2). Soil carbon pools in former eCO2 plots, as well as in drought and warming plots, had normalized again by 2020. However, the difference in soil isotopic composition between ambient and former eCO2 plots remained, indicating similar loss fractions from older and newer soil carbon pools in the eCO2 plots as well as stimulation of the decomposition of old soil carbon via priming. Throughout the study period, soil nitrogen dynamics tracked the changes in soil carbon, suggesting that nitrogen from deeper soil layers was transported upwards to meet increasing plant demand during eCO2 but was lost again from the topsoil after termination of the FACE treatment. Our findings show that the soil carbon and nitrogen pools in this ecosystem are highly dynamic and may respond strongly and rapidly to changes in major ecosystem drivers, and that revisiting climate experiments after the cessation of treatments may provide valuable insights into the dynamics, stability and resilience of major element pools in ecosystems. |
ArticleNumber | 116185 |
Author | Li, Qiaoyan Ambus, Per Lennart Beier, Claus Michelsen, Anders Schmidt, Inger Kappel Larsen, Klaus Steenberg Arndal, Marie Frost Dietzen, Christiana A. Reinsch, Sabine |
Author_xml | – sequence: 1 givenname: Qiaoyan surname: Li fullname: Li, Qiaoyan organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark – sequence: 2 givenname: Per Lennart surname: Ambus fullname: Ambus, Per Lennart organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark – sequence: 3 givenname: Anders surname: Michelsen fullname: Michelsen, Anders organization: Terrestrial Ecology Section, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark – sequence: 4 givenname: Inger Kappel surname: Schmidt fullname: Schmidt, Inger Kappel organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark – sequence: 5 givenname: Claus surname: Beier fullname: Beier, Claus organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark – sequence: 6 givenname: Christiana A. surname: Dietzen fullname: Dietzen, Christiana A. organization: Section for Geobiology, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark – sequence: 7 givenname: Sabine surname: Reinsch fullname: Reinsch, Sabine organization: UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, United Kingdom – sequence: 8 givenname: Marie Frost surname: Arndal fullname: Arndal, Marie Frost organization: Department of Ecoscience, Arctic Research Center, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark – sequence: 9 givenname: Klaus Steenberg surname: Larsen fullname: Larsen, Klaus Steenberg organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark |
BookMark | eNqFkE1rGzEQhkVJoU7av1B0TA_raLTZD0MPDSZpCoFAyV1otSN73F3JHSmG_IP-7Mp1e-klp2GG531hnnNxFmJAIT6CWoKC9mq33GAckWe71ErrJUALffNGLKDvdNXqZnUmFqqQVadaeCfOU9qVtVNaLcSv71gdKFGmsJEp0iSd5SEGacMoA2WOGwwy5eh-JEnlLDPOe2SbUW7R5u10BBMeCvWClpO0PiPLvMVC8kzBZip10UvPiNISy_WjlhiY3HbGkOXl3c369tN78dbbKeGHv_NCPN3dPq3vq4fHr9_WNw-Vq1XfVM4rDR0AdBZ9B22r6qFxCK5Z6Rot2mvXjGMP9eBV7-t25ZRv-0HrAg19U1-Iy1PtnuPPZ0zZzJQcTuUNjM_J6E7XoEFd1wVtT6jjmBKjN3um2fKLAWWO5s3O_DNvjubNyXwJfv4v6Cj_0ZDZ0vR6_MspjkXDgZBNcoTB4UiMLpsx0msVvwG-hKbD |
CitedBy_id | crossref_primary_10_1016_j_agwat_2023_108333 crossref_primary_10_1111_rec_14096 |
Cites_doi | 10.1126/science.1249534 10.1016/j.soilbio.2013.05.013 10.1111/gcb.15628 10.1073/pnas.0706518104 10.1038/s41586-021-03306-8 10.1038/nature06275 10.1007/s10021-004-0220-x 10.5194/soil-1-351-2015 10.1111/gcb.14699 10.1007/s10021-011-9508-9 10.1071/FP13117 10.1111/j.1365-2486.2005.01077.x 10.1016/S0038-0717(00)00151-6 10.1023/A:1004640327512 10.1111/j.1365-2486.2010.02351.x 10.1029/2006GB002888 10.1016/j.agee.2013.10.012 10.1111/gcb.15410 10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2 10.1029/94GB00993 10.1038/s41467-019-13119-z 10.1111/j.1365-2486.2011.02484.x 10.1007/s00442-004-1682-4 10.1016/S0378-1127(00)00677-0 10.1007/BF00017086 10.1111/j.1365-2486.2011.02634.x 10.1046/j.1365-2486.1998.00167.x 10.1016/S0038-0717(00)00084-5 10.1038/nature04514 10.1111/j.1469-8137.2010.03427.x 10.1007/s10021-018-0237-1 10.1111/j.1365-2435.2007.01362.x 10.1038/nclimate2436 10.1016/j.soilbio.2016.04.007 10.1046/j.1365-2486.1997.00073.x 10.1111/j.1365-3040.2007.01682.x 10.1038/nature06592 10.1007/s10021-004-0178-8 10.1073/pnas.1524527113 10.1016/j.scitotenv.2019.136438 10.1016/j.scitotenv.2016.12.060 10.1111/j.1365-3040.2011.02320.x 10.3389/fenvs.2020.514701 10.1007/s10533-017-0303-3 10.1038/35071062 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 10.4155/cmt.13.77 10.1016/j.soilbio.2014.11.027 10.1029/94GB02723 10.1111/j.1365-2486.2012.02745.x 10.1007/s10021-017-0131-2 10.1038/35051576 10.1071/PP9960371 10.1046/j.1365-2486.2000.00318.x 10.1111/gcb.15540 10.1111/gcb.12816 10.1111/j.1365-2486.2007.01464.x 10.1038/416389a 10.1111/pce.13971 10.1186/s13717-020-00238-5 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2022.116185 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2022_116185 S001670612200492X |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c3085-cf02171117aef716603b5ce1c5923eaea4c5dd813bf08f369c0f68b225ceb853 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 02:20:49 EDT 2025 Tue Jul 01 04:04:58 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri Feb 23 02:39:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Elevated CO2 Warming Soil carbon and nitrogen dynamics FACE experiment Drought 13C stable isotope |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3085-cf02171117aef716603b5ce1c5923eaea4c5dd813bf08f369c0f68b225ceb853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S001670612200492X |
PQID | 2723121043 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2723121043 crossref_primary_10_1016_j_geoderma_2022_116185 crossref_citationtrail_10_1016_j_geoderma_2022_116185 elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Murphy, Baggs, Morley, Wall, Paterson (b0195) 2015; 81 Beier, Emmett, Gundersen, Tietema, Penuelas, Estiarte, Gordon, Gorissen, Llorens, Roda, Williams (b0025) 2004; 7 Hu, Chapin, Firestone, Field, Chiariello (b0125) 2001; 409 Briones, Garnett, Ineson (b0040) 2021; 27 Hebeisen, Lüscher, Zanetti, Fischer, Hartwig, Frehner, Hendrey, Blum, Nösberger (b0120) 1997; 3 Hungate, B. A., Jackson, R. B., Field, C. B., & Chapin III, F. S., 1995. Detecting changes in soil carbon in CO Arndal, Tolver, Larsen, Beier, Schmidt (b0020) 2018; 21 Ehleringer, Buchmann, Flanagan (b0090) 2000; 10 Finzi, Norby, Calfapietra, Gallet-Budynek, Gielen, Holmes, Hoosbeek, Iversen, Jackson, Kubiske, Ledford, Liberloo, Oren, Polle, Pritchard, Zak, Schlesinger, Ceulemans (b0100) 2007; 104 Albert, Ro-Poulsen, Mikkelsen, Michelsen, Van Der Linden, Beier (b0010) 2011; 34 Dynarski, Bossio, Scow (b0085) 2020; 8 Thaysen, Reinsch, Larsen, Ambus (b0270) 2017; 133 Larsen, Andresen, Beier, Jonasson, Albert, Ambus, Arndal, Carter, Christensen, Holmstrup, Ibrom, Kongstad, Van Der LINDEN, Maraldo, Michelsen, Mikkelsen, Pilegaard, Priemé, Ro-poulsen, Schmidt, Selsted, Stevnbak (b0170) 2011; 17 Jiang, Zhang, Xu, Liu, Zhu (b0150) 2020; 9 Selsted, Linden, Ibrom, Michelsen, Larsen, Pedersen, Mikkelsen, Pilegaard, Beier, Ambus (b0250) 2012; 18 Penuelas, Prieto, Beier, Cesaraccio, De Angelis, de Dato, Emmett, Estiarte, Garadnai, Gorissen, Kovács Láng, Kröel-Dulay, Llorens, Pellizzaro, Riis-Nielsen, Schmidt, Sirca, Sowerby, Spano, Tietema (b0200) 2007; 13 Rasmussen, Beier, Bergstedt (b0215) 2002; 158 Reinsch, Ambus, Thornton, Paterson (b0225) 2013; 65 Wu, Zhang, Liang, Zhu, Wang, Zhang (b0300) 2020; 710 Sage, Kubien (b0235) 2007; 30 IPCC (b0140) 2013 warming and drought: the CLIMAITE project. Funct. Ecol., 22(1), 185-195. https://doi.org/10.1111/j.1365-2435.2007.01362.x. Cardon, Hungate, Cambardella, Chapin, Field, Holland, Mooney (b0050) 2001; 33 Roy, Picon-Cochard, Augusti, Benot, Thiery, Darsonville, Landais, Piel, Defossez, Devidal, Escape, Ravel, Fromin, Volaire, Milcu, Bahn, Soussana (b0230) 2016; 113 Kongstad, Schmidt, Riis-Nielsen, Arndal, Mikkelsen, Beier (b0160) 2012; 15 Lloyd, Kruijt, Hollinger, Grace, Francey, Wong, Kelliher, Miranda, Farquhar, Gash, Vygodskaya, Wright, Miranda, Schulze (b0175) 1996; 23 Terrer, Phillips, Hungate, Rosende, Pett-Ridge, Craig, van Groenigen, Keenan, Sulman, Stocker, Reich, Pellegrini, Pendall, Zhang, Evans, Carrillo, Fisher, Van Sundert, Vicca, Jackson (b0265) 2021; 591 Van Groenigen, Qi, Osenberg, Luo, Hungate (b0285) 2014; 344 Köchy, Hiederer, Freibauer (b0155) 2015; 1 Yao, Wang, Zheng, Mei, Zhou, Xie, Dong, Liu, Han, Xu, Butterbach‐Bahl, Zhu (b0305) 2021; 27 Raich, Potter (b0210) 1995; 9 Reich, Knops, Tilman, Craine, Ellsworth, Tjoelker, Lee, Wedin, Naeem, Bahauddin, Hendrey, Jose, Wrage, Goth, Bengston (b0220) 2001; 410 Adair, Reich, Trost, Hobbie (b0005) 2011; 17 Arndal, Schmidt, Kongstad, Beier, Michelsen (b0015) 2013; 41 enrichment experiments. Plant and Soil, 187(2), 135-145. https://doi.org/0.1007/BF00017086. Chen, Liu, Qin, Yang, Fang, Zhu, Kuzyakov, Chen, Xu, Yang (b0055) 2019; 10 Finzi, Abramoff, Spiller, Brzostek, Darby, Kramer, Phillips (b0105) 2015; 21 Schimel, Braswell, Holland, McKeown, Ojima, Painter, Parton, Townsend (b0245) 1994; 8 Scharlemann, Tanner, Hiederer, Kapos (b0240) 2014; 5 De Graaff, Classen, Castro, Schadt (b0070) 2010; 188 Fontaine, Barot, Barré, Bdioui, Mary, Rumpel (b0110) 2007; 450 Gruber, N., & Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. https://doi.org/0.1038/nature06592. Tiiva, Tang, Michelsen, Rinnan (b0280) 2017; 580 Bernal, McKinley, Hungate, White, Mozdzer, Megonigal (b0030) 2016; 98 Emmett, Beier, Estiarte, Tietema, Kristensen, Williams, Peñuelas, Schmidt, Sowerby (b0095) 2004; 7 Cannell, Thornley (b0045) 1998; 4 Meeran, Ingrisch, Reinthaler, Canarini, Müller, Pötsch, Richter, Wanek, Bahn (b0185) 2021; 27 Sulman, Phillips, Oishi, Shevliakova, Pacala (b0260) 2014; 4 Dieleman, Vicca, Dijkstra, Hagedorn, Hovenden, Larsen, Morgan, Volder, Beier, Dukes, King, Leuzinger, Linder, Luo, Oren, De Angelis, Tingey, Hoosbeek, Janssens (b0075) 2012; 18 Jastrow, Michael Miller, Matamala, Norby, Boutton, Rice, Owensby (b0145) 2005; 11 Dietzen, Larsen, Ambus, Michelsen, Arndal, Beier, Reinsch, Schmidt (b0080) 2019; 25 Coast, Posch, Bramley, Gaju, Richards, Lu, Ruan, Trethowan, Atkin (b0060) 2020; 44 Huxman, Snyder, Tissue, Leffler, Ogle, Pockman, Sandquist, Potts, Schwinning (b0135) 2004; 141 Thornley, Cannell (b0275) 2000; 224 Davidson, Janssens (b0065) 2006; 440 Luo, Su, Currie, Dukes, Finzi, Hartwig, Hungate, McMurtrie, Oren, Parton, Pataki, Shaw, Zak, Field (b0180) 2004; 54 Piao, Friedlingstein, Ciais, Viovy, Demarty (b0205) 2007; 21 Blumenthal, Mueller, Kray, LeCain, Pendall, Duke, Zelikova, Dijkstra, Williams, Morgan (b0035) 2018; 21 Walther, Post, Convey, Menzel, Parmesan, Beebee, Fromentin, Hoegh-Guldberg, Bairlein (b0295) 2002; 416 Mikkelsen, T. N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I. K., Ambus, P., . . . Sverdrup, H., 2008. Experimental design of multifactor climate change experiments with elevated CO Soussana, Lemaire (b0255) 2014; 190 Kuzyakova, Friedelb, Stahr (b0165) 2000; 32 Van Kessel, Horwath, Hartwig, Harris, Lüscher (b0290) 2000; 6 Thaysen (10.1016/j.geoderma.2022.116185_b0270) 2017; 133 Albert (10.1016/j.geoderma.2022.116185_b0010) 2011; 34 Van Kessel (10.1016/j.geoderma.2022.116185_b0290) 2000; 6 Briones (10.1016/j.geoderma.2022.116185_b0040) 2021; 27 Hebeisen (10.1016/j.geoderma.2022.116185_b0120) 1997; 3 Van Groenigen (10.1016/j.geoderma.2022.116185_b0285) 2014; 344 Arndal (10.1016/j.geoderma.2022.116185_b0015) 2013; 41 Piao (10.1016/j.geoderma.2022.116185_b0205) 2007; 21 Blumenthal (10.1016/j.geoderma.2022.116185_b0035) 2018; 21 Larsen (10.1016/j.geoderma.2022.116185_b0170) 2011; 17 Finzi (10.1016/j.geoderma.2022.116185_b0105) 2015; 21 Schimel (10.1016/j.geoderma.2022.116185_b0245) 1994; 8 Terrer (10.1016/j.geoderma.2022.116185_b0265) 2021; 591 Scharlemann (10.1016/j.geoderma.2022.116185_b0240) 2014; 5 Dieleman (10.1016/j.geoderma.2022.116185_b0075) 2012; 18 10.1016/j.geoderma.2022.116185_b0130 Finzi (10.1016/j.geoderma.2022.116185_b0100) 2007; 104 Dynarski (10.1016/j.geoderma.2022.116185_b0085) 2020; 8 Jiang (10.1016/j.geoderma.2022.116185_b0150) 2020; 9 Arndal (10.1016/j.geoderma.2022.116185_b0020) 2018; 21 Chen (10.1016/j.geoderma.2022.116185_b0055) 2019; 10 Reich (10.1016/j.geoderma.2022.116185_b0220) 2001; 410 De Graaff (10.1016/j.geoderma.2022.116185_b0070) 2010; 188 Kongstad (10.1016/j.geoderma.2022.116185_b0160) 2012; 15 Raich (10.1016/j.geoderma.2022.116185_b0210) 1995; 9 Meeran (10.1016/j.geoderma.2022.116185_b0185) 2021; 27 Luo (10.1016/j.geoderma.2022.116185_b0180) 2004; 54 Coast (10.1016/j.geoderma.2022.116185_b0060) 2020; 44 Thornley (10.1016/j.geoderma.2022.116185_b0275) 2000; 224 Fontaine (10.1016/j.geoderma.2022.116185_b0110) 2007; 450 Yao (10.1016/j.geoderma.2022.116185_b0305) 2021; 27 Huxman (10.1016/j.geoderma.2022.116185_b0135) 2004; 141 Rasmussen (10.1016/j.geoderma.2022.116185_b0215) 2002; 158 Cannell (10.1016/j.geoderma.2022.116185_b0045) 1998; 4 Ehleringer (10.1016/j.geoderma.2022.116185_b0090) 2000; 10 Cardon (10.1016/j.geoderma.2022.116185_b0050) 2001; 33 Murphy (10.1016/j.geoderma.2022.116185_b0195) 2015; 81 IPCC (10.1016/j.geoderma.2022.116185_b0140) 2013 Penuelas (10.1016/j.geoderma.2022.116185_b0200) 2007; 13 Roy (10.1016/j.geoderma.2022.116185_b0230) 2016; 113 Selsted (10.1016/j.geoderma.2022.116185_b0250) 2012; 18 Emmett (10.1016/j.geoderma.2022.116185_b0095) 2004; 7 Wu (10.1016/j.geoderma.2022.116185_b0300) 2020; 710 Köchy (10.1016/j.geoderma.2022.116185_b0155) 2015; 1 Beier (10.1016/j.geoderma.2022.116185_b0025) 2004; 7 Sulman (10.1016/j.geoderma.2022.116185_b0260) 2014; 4 Soussana (10.1016/j.geoderma.2022.116185_b0255) 2014; 190 Tiiva (10.1016/j.geoderma.2022.116185_b0280) 2017; 580 Jastrow (10.1016/j.geoderma.2022.116185_b0145) 2005; 11 Davidson (10.1016/j.geoderma.2022.116185_b0065) 2006; 440 Kuzyakova (10.1016/j.geoderma.2022.116185_b0165) 2000; 32 10.1016/j.geoderma.2022.116185_b0190 10.1016/j.geoderma.2022.116185_b0115 Hu (10.1016/j.geoderma.2022.116185_b0125) 2001; 409 Walther (10.1016/j.geoderma.2022.116185_b0295) 2002; 416 Dietzen (10.1016/j.geoderma.2022.116185_b0080) 2019; 25 Bernal (10.1016/j.geoderma.2022.116185_b0030) 2016; 98 Adair (10.1016/j.geoderma.2022.116185_b0005) 2011; 17 Sage (10.1016/j.geoderma.2022.116185_b0235) 2007; 30 Lloyd (10.1016/j.geoderma.2022.116185_b0175) 1996; 23 Reinsch (10.1016/j.geoderma.2022.116185_b0225) 2013; 65 |
References_xml | – volume: 30 start-page: 1086 year: 2007 end-page: 1106 ident: b0235 article-title: The temperature response of C3 and C4 photosynthesis publication-title: Plant, Cell Environ. – volume: 18 start-page: 1216 year: 2012 end-page: 1230 ident: b0250 article-title: Soil respiration is stimulated by elevated CO publication-title: Glob. Change Biol. – volume: 224 start-page: 153 year: 2000 end-page: 170 ident: b0275 article-title: Dynamics of mineral N availability in grassland ecosystems under increased [CO publication-title: Plant Soil – reference: Hungate, B. A., Jackson, R. B., Field, C. B., & Chapin III, F. S., 1995. Detecting changes in soil carbon in CO – volume: 344 start-page: 508 year: 2014 end-page: 509 ident: b0285 article-title: Faster decomposition under increased atermospheric CO publication-title: Science – volume: 33 start-page: 365 year: 2001 end-page: 373 ident: b0050 article-title: Contrasting effects of elevated CO publication-title: Soil Biol. Biochem. – volume: 27 start-page: 3230 year: 2021 end-page: 3243 ident: b0185 article-title: Warming and elevated CO publication-title: Global Chang Biology. – volume: 104 start-page: 14014 year: 2007 end-page: 14019 ident: b0100 article-title: Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO publication-title: Proc. Natl. Acad. Sci. – volume: 81 start-page: 236 year: 2015 end-page: 243 ident: b0195 article-title: Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter publication-title: Soil Biol. Biochem. – volume: 141 start-page: 254 year: 2004 end-page: 268 ident: b0135 article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems publication-title: Oecologia – volume: 190 start-page: 9 year: 2014 end-page: 17 ident: b0255 article-title: Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems publication-title: Agric. Ecosyst. Environ. – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: b0165 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – volume: 591 start-page: 599 year: 2021 end-page: 603 ident: b0265 article-title: A trade-off between plant and soil carbon storage under elevated CO publication-title: Nature – volume: 8 year: 2020 ident: b0085 article-title: Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration publication-title: Front. Environ. Sci. – reference: enrichment experiments. Plant and Soil, 187(2), 135-145. https://doi.org/0.1007/BF00017086. – volume: 4 start-page: 431 year: 1998 end-page: 442 ident: b0045 article-title: N-poor ecosystems may respond more to elevated [CO2] than N-rich ones in t-he long term. A model analysis of grassland publication-title: Global Chan-ge Biology – volume: 10 year: 2019 ident: b0055 article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale publication-title: Nat. Commun. – volume: 4 start-page: 1099 year: 2014 end-page: 1102 ident: b0260 article-title: Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO publication-title: Nature Climte Change – volume: 21 start-page: n/a year: 2007 end-page: n/a ident: b0205 article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades publication-title: Global Biogeochem. Cycles – volume: 65 start-page: 133 year: 2013 end-page: 140 ident: b0225 article-title: Impact of future climatic conditions on the potential for soil organic matter priming publication-title: Soil Biol. Biochem. – volume: 133 start-page: 17 year: 2017 end-page: 36 ident: b0270 article-title: Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions publication-title: Biogeochemistry – volume: 23 start-page: 371 year: 1996 ident: b0175 article-title: Vegetation Effects on the Isotopic Composition of Atmospheric CO publication-title: Funct. Plant Biol. – volume: 450 start-page: 277 year: 2007 end-page: 280 ident: b0110 article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply publication-title: Nature – volume: 27 start-page: 1836 year: 2021 end-page: 1847 ident: b0040 article-title: No evidence for increased loss of old carbon in a temperate organic soil after 13 years of simulated climatic warming despite increased CO publication-title: Glob. Change Biol. – volume: 1 start-page: 351 year: 2015 end-page: 365 ident: b0155 article-title: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world publication-title: Soil – volume: 27 start-page: 327 year: 2021 end-page: 339 ident: b0305 article-title: Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site-years field experiments publication-title: Glob. Change Biol. – volume: 10 start-page: 412 year: 2000 end-page: 422 ident: b0090 article-title: Carbon isotope ratios in belowground carbon cycle processes publication-title: Ecol. Appl. – volume: 34 start-page: 1207 year: 2011 end-page: 1222 ident: b0010 article-title: Effects of elevated CO publication-title: Plant, Cell Environ. – volume: 9 start-page: 1 year: 2020 end-page: 12 ident: b0150 article-title: Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (O-ryza sativa L.) publication-title: Ecological Processes – volume: 54 start-page: 731 year: 2004 end-page: 739 ident: b0180 article-title: Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide publication-title: Bioscience – volume: 9 start-page: 23 year: 1995 end-page: 36 ident: b0210 article-title: Global patterns of carbon dioxide emissions from soils publication-title: Global Biogeochem. Cycles – volume: 11 start-page: 2057 year: 2005 end-page: 2064 ident: b0145 article-title: Elevated atmospheric carbon dioxide increases soil carbon publication-title: Glob. Change Biol. – volume: 17 start-page: 1884 year: 2011 end-page: 1899 ident: b0170 article-title: Reduced N cycling in response to elevated CO publication-title: Glob. Change Biol. – volume: 21 start-page: 1533 year: 2018 end-page: 1544 ident: b0035 article-title: Warming and Elevated CO publication-title: Ecosystems – volume: 409 start-page: 188 year: 2001 end-page: 191 ident: b0125 article-title: Nitrogen limitation of microbial decomposition in a grassland under elevated CO publication-title: Nature – reference: , warming and drought: the CLIMAITE project. Funct. Ecol., 22(1), 185-195. https://doi.org/10.1111/j.1365-2435.2007.01362.x. – volume: 8 start-page: 279 year: 1994 end-page: 293 ident: b0245 article-title: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils publication-title: Global Biogeochem. Cycles – volume: 25 start-page: 2970 year: 2019 end-page: 2977 ident: b0080 article-title: Accumulation of soil carbon under elevated CO publication-title: Glob. Change Biol. – volume: 13 start-page: 2563 year: 2007 end-page: 2581 ident: b0200 article-title: Response of plant species richness and primary productivity in shrublands along a north- south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003 publication-title: Glob. Change Biol. – volume: 18 start-page: 2681 year: 2012 end-page: 2693 ident: b0075 article-title: Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO publication-title: Glob. Change Biol. – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: b0065 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 416 start-page: 389 year: 2002 end-page: 395 ident: b0295 article-title: Ecological responses to recent climate change publication-title: Nature – volume: 7 start-page: 583 year: 2004 end-page: 597 ident: b0025 article-title: Novel approaches to study climate change effects on terrestrial ecosystems at the field scale – drought and passive night time warming publication-title: Ecosystems – volume: 41 start-page: 1 year: 2013 end-page: 10 ident: b0015 article-title: Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO publication-title: Funct. Plant Biol. – volume: 113 start-page: 6224 year: 2016 end-page: 6229 ident: b0230 article-title: Elevated CO publication-title: Proc. Natl. Acad. Sci. – volume: 158 start-page: 179 year: 2002 end-page: 188 ident: b0215 article-title: Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO publication-title: For. Ecol. Manage. – reference: Gruber, N., & Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. https://doi.org/0.1038/nature06592. – volume: 410 start-page: 809 year: 2001 end-page: 810 ident: b0220 article-title: Plant diversity enhances ecosystem responses to elevated CO publication-title: Nature – volume: 710 year: 2020 ident: b0300 article-title: Elevated CO publication-title: Sci. Total Environ. – volume: 7 start-page: 625 year: 2004 end-page: 637 ident: b0095 article-title: The response of soil processes to climate change: Results from manipulation studies across an environmental gradient publication-title: Ecosystems – volume: 188 start-page: 1055 year: 2010 end-page: 1064 ident: b0070 article-title: Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates publication-title: New Phytol. – volume: 44 start-page: 2331 year: 2020 end-page: 2346 ident: b0060 article-title: Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat publication-title: Plant, Cell Environ. – volume: 3 start-page: 149 year: 1997 end-page: 160 ident: b0120 article-title: Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO publication-title: Glob. Change Biol. – volume: 6 start-page: 435 year: 2000 end-page: 444 ident: b0290 article-title: Net soil carbon input under ambient and elevated CO publication-title: Glob. Change Biol. – volume: 21 start-page: 15 year: 2018 end-page: 30 ident: b0020 article-title: Fine Root Growth and Vertical Distribution in Response to Elevated CO publication-title: Ecosystems – year: 2013 ident: b0140 article-title: Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change – volume: 15 start-page: 269 year: 2012 end-page: 283 ident: b0160 article-title: High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO publication-title: Ecosystems – volume: 21 start-page: 2082 year: 2015 end-page: 2094 ident: b0105 article-title: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles publication-title: Glob. Change Biol. – volume: 17 start-page: 3546 year: 2011 end-page: 3563 ident: b0005 article-title: Elevated CO publication-title: Glob. Change Biol. – reference: Mikkelsen, T. N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I. K., Ambus, P., . . . Sverdrup, H., 2008. Experimental design of multifactor climate change experiments with elevated CO – volume: 580 start-page: 1056 year: 2017 end-page: 1067 ident: b0280 article-title: Monoterpene emissions in response to long-term night-time warming, elevated CO publication-title: Sci. Total Environ. – volume: 5 start-page: 81 year: 2014 end-page: 91 ident: b0240 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manage. – volume: 98 start-page: 85 year: 2016 end-page: 94 ident: b0030 article-title: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs publication-title: Soil Biol. Biochem. – volume: 344 start-page: 508 issue: 6183 year: 2014 ident: 10.1016/j.geoderma.2022.116185_b0285 article-title: Faster decomposition under increased atermospheric CO2 limits soil carbon storage publication-title: Science doi: 10.1126/science.1249534 – volume: 65 start-page: 133 year: 2013 ident: 10.1016/j.geoderma.2022.116185_b0225 article-title: Impact of future climatic conditions on the potential for soil organic matter priming publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.05.013 – volume: 27 start-page: 3230 issue: 14 year: 2021 ident: 10.1016/j.geoderma.2022.116185_b0185 article-title: Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration publication-title: Global Chang Biology. doi: 10.1111/gcb.15628 – volume: 104 start-page: 14014 issue: 35 year: 2007 ident: 10.1016/j.geoderma.2022.116185_b0100 article-title: Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706518104 – volume: 591 start-page: 599 issue: 7851 year: 2021 ident: 10.1016/j.geoderma.2022.116185_b0265 article-title: A trade-off between plant and soil carbon storage under elevated CO2 publication-title: Nature doi: 10.1038/s41586-021-03306-8 – volume: 450 start-page: 277 issue: 8 year: 2007 ident: 10.1016/j.geoderma.2022.116185_b0110 article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply publication-title: Nature doi: 10.1038/nature06275 – volume: 7 start-page: 625 year: 2004 ident: 10.1016/j.geoderma.2022.116185_b0095 article-title: The response of soil processes to climate change: Results from manipulation studies across an environmental gradient publication-title: Ecosystems doi: 10.1007/s10021-004-0220-x – volume: 1 start-page: 351 year: 2015 ident: 10.1016/j.geoderma.2022.116185_b0155 article-title: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world publication-title: Soil doi: 10.5194/soil-1-351-2015 – volume: 25 start-page: 2970 issue: 9 year: 2019 ident: 10.1016/j.geoderma.2022.116185_b0080 article-title: Accumulation of soil carbon under elevated CO2 unaffected by warming and drought publication-title: Glob. Change Biol. doi: 10.1111/gcb.14699 – volume: 15 start-page: 269 issue: 2 year: 2012 ident: 10.1016/j.geoderma.2022.116185_b0160 article-title: High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment publication-title: Ecosystems doi: 10.1007/s10021-011-9508-9 – volume: 41 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.geoderma.2022.116185_b0015 article-title: Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem publication-title: Funct. Plant Biol. doi: 10.1071/FP13117 – volume: 11 start-page: 2057 issue: 12 year: 2005 ident: 10.1016/j.geoderma.2022.116185_b0145 article-title: Elevated atmospheric carbon dioxide increases soil carbon publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.01077.x – volume: 33 start-page: 365 issue: 3 year: 2001 ident: 10.1016/j.geoderma.2022.116185_b0050 article-title: Contrasting effects of elevated CO2 on old and new soil carbon pools publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00151-6 – volume: 224 start-page: 153 year: 2000 ident: 10.1016/j.geoderma.2022.116185_b0275 article-title: Dynamics of mineral N availability in grassland ecosystems under increased [CO2]: hypotheses evaluated using the Hurley Pasture Model publication-title: Plant Soil doi: 10.1023/A:1004640327512 – volume: 17 start-page: 1884 issue: 5 year: 2011 ident: 10.1016/j.geoderma.2022.116185_b0170 article-title: Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02351.x – volume: 21 start-page: n/a issue: 3 year: 2007 ident: 10.1016/j.geoderma.2022.116185_b0205 article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades publication-title: Global Biogeochem. Cycles doi: 10.1029/2006GB002888 – volume: 190 start-page: 9 year: 2014 ident: 10.1016/j.geoderma.2022.116185_b0255 article-title: Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.10.012 – volume: 27 start-page: 327 issue: 2 year: 2021 ident: 10.1016/j.geoderma.2022.116185_b0305 article-title: Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site-years field experiments publication-title: Glob. Change Biol. doi: 10.1111/gcb.15410 – volume: 10 start-page: 412 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2022.116185_b0090 article-title: Carbon isotope ratios in belowground carbon cycle processes publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2 – volume: 8 start-page: 279 issue: 3 year: 1994 ident: 10.1016/j.geoderma.2022.116185_b0245 article-title: Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils publication-title: Global Biogeochem. Cycles doi: 10.1029/94GB00993 – year: 2013 ident: 10.1016/j.geoderma.2022.116185_b0140 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2022.116185_b0055 article-title: Regulation of priming effect by soil organic matter stability over a broad geographic scale publication-title: Nat. Commun. doi: 10.1038/s41467-019-13119-z – volume: 17 start-page: 3546 issue: 12 year: 2011 ident: 10.1016/j.geoderma.2022.116185_b0005 article-title: Elevated CO2 stimulates grassland soil respiration by increasing carbon inputs rather than by enhancing soil moisture publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02484.x – volume: 141 start-page: 254 issue: 2 year: 2004 ident: 10.1016/j.geoderma.2022.116185_b0135 article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems publication-title: Oecologia doi: 10.1007/s00442-004-1682-4 – volume: 158 start-page: 179 year: 2002 ident: 10.1016/j.geoderma.2022.116185_b0215 article-title: Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(00)00677-0 – ident: 10.1016/j.geoderma.2022.116185_b0130 doi: 10.1007/BF00017086 – volume: 18 start-page: 1216 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2022.116185_b0250 article-title: Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE) publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02634.x – volume: 4 start-page: 431 issue: 4 year: 1998 ident: 10.1016/j.geoderma.2022.116185_b0045 article-title: N-poor ecosystems may respond more to elevated [CO2] than N-rich ones in t-he long term. A model analysis of grassland publication-title: Global Chan-ge Biology doi: 10.1046/j.1365-2486.1998.00167.x – volume: 32 start-page: 1485 issue: 11–12 year: 2000 ident: 10.1016/j.geoderma.2022.116185_b0165 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – volume: 440 start-page: 165 year: 2006 ident: 10.1016/j.geoderma.2022.116185_b0065 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 188 start-page: 1055 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2022.116185_b0070 article-title: Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03427.x – volume: 21 start-page: 1533 issue: 8 year: 2018 ident: 10.1016/j.geoderma.2022.116185_b0035 article-title: Warming and Elevated CO2 Interact to Alter Seasonality and Reduce Variability of Soil Water in a Semiarid Grassland publication-title: Ecosystems doi: 10.1007/s10021-018-0237-1 – ident: 10.1016/j.geoderma.2022.116185_b0190 doi: 10.1111/j.1365-2435.2007.01362.x – volume: 4 start-page: 1099 issue: 12 year: 2014 ident: 10.1016/j.geoderma.2022.116185_b0260 article-title: Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2 publication-title: Nature Climte Change doi: 10.1038/nclimate2436 – volume: 98 start-page: 85 year: 2016 ident: 10.1016/j.geoderma.2022.116185_b0030 article-title: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.04.007 – volume: 3 start-page: 149 issue: 2 year: 1997 ident: 10.1016/j.geoderma.2022.116185_b0120 article-title: Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management publication-title: Glob. Change Biol. doi: 10.1046/j.1365-2486.1997.00073.x – volume: 30 start-page: 1086 issue: 9 year: 2007 ident: 10.1016/j.geoderma.2022.116185_b0235 article-title: The temperature response of C3 and C4 photosynthesis publication-title: Plant, Cell Environ. doi: 10.1111/j.1365-3040.2007.01682.x – ident: 10.1016/j.geoderma.2022.116185_b0115 doi: 10.1038/nature06592 – volume: 7 start-page: 583 year: 2004 ident: 10.1016/j.geoderma.2022.116185_b0025 article-title: Novel approaches to study climate change effects on terrestrial ecosystems at the field scale – drought and passive night time warming publication-title: Ecosystems doi: 10.1007/s10021-004-0178-8 – volume: 113 start-page: 6224 issue: 22 year: 2016 ident: 10.1016/j.geoderma.2022.116185_b0230 article-title: Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1524527113 – volume: 710 year: 2020 ident: 10.1016/j.geoderma.2022.116185_b0300 article-title: Elevated CO2 improved soil nitrogen mineralization capacity of rice paddy publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136438 – volume: 580 start-page: 1056 year: 2017 ident: 10.1016/j.geoderma.2022.116185_b0280 article-title: Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.060 – volume: 34 start-page: 1207 issue: 7 year: 2011 ident: 10.1016/j.geoderma.2022.116185_b0010 article-title: Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status publication-title: Plant, Cell Environ. doi: 10.1111/j.1365-3040.2011.02320.x – volume: 8 year: 2020 ident: 10.1016/j.geoderma.2022.116185_b0085 article-title: Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2020.514701 – volume: 133 start-page: 17 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2022.116185_b0270 article-title: Decrease in heathland soil labile organic carbon under future atmospheric and climatic conditions publication-title: Biogeochemistry doi: 10.1007/s10533-017-0303-3 – volume: 410 start-page: 809 issue: 6830 year: 2001 ident: 10.1016/j.geoderma.2022.116185_b0220 article-title: Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition publication-title: Nature doi: 10.1038/35071062 – volume: 54 start-page: 731 issue: 8 year: 2004 ident: 10.1016/j.geoderma.2022.116185_b0180 article-title: Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide publication-title: Bioscience doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 – volume: 5 start-page: 81 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2022.116185_b0240 article-title: Global soil carbon: understanding and managing the largest terrestrial carbon pool publication-title: Carbon Manage. doi: 10.4155/cmt.13.77 – volume: 81 start-page: 236 year: 2015 ident: 10.1016/j.geoderma.2022.116185_b0195 article-title: Rhizosphere priming can promote mobilisation of N-rich compounds from soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.027 – volume: 9 start-page: 23 issue: 1 year: 1995 ident: 10.1016/j.geoderma.2022.116185_b0210 article-title: Global patterns of carbon dioxide emissions from soils publication-title: Global Biogeochem. Cycles doi: 10.1029/94GB02723 – volume: 18 start-page: 2681 issue: 9 year: 2012 ident: 10.1016/j.geoderma.2022.116185_b0075 article-title: Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02745.x – volume: 21 start-page: 15 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2022.116185_b0020 article-title: Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland-Grassland publication-title: Ecosystems doi: 10.1007/s10021-017-0131-2 – volume: 409 start-page: 188 year: 2001 ident: 10.1016/j.geoderma.2022.116185_b0125 article-title: Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 publication-title: Nature doi: 10.1038/35051576 – volume: 23 start-page: 371 issue: 3 year: 1996 ident: 10.1016/j.geoderma.2022.116185_b0175 article-title: Vegetation Effects on the Isotopic Composition of Atmospheric CO2 at Local and Regional Scales: Theoretical Aspects and a Comparison Between Rain Forest in Amazonia and a Boreal Forest in Siberia publication-title: Funct. Plant Biol. doi: 10.1071/PP9960371 – volume: 6 start-page: 435 issue: 4 year: 2000 ident: 10.1016/j.geoderma.2022.116185_b0290 article-title: Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years publication-title: Glob. Change Biol. doi: 10.1046/j.1365-2486.2000.00318.x – volume: 27 start-page: 1836 issue: 9 year: 2021 ident: 10.1016/j.geoderma.2022.116185_b0040 article-title: No evidence for increased loss of old carbon in a temperate organic soil after 13 years of simulated climatic warming despite increased CO2 emissions publication-title: Glob. Change Biol. doi: 10.1111/gcb.15540 – volume: 21 start-page: 2082 year: 2015 ident: 10.1016/j.geoderma.2022.116185_b0105 article-title: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles publication-title: Glob. Change Biol. doi: 10.1111/gcb.12816 – volume: 13 start-page: 2563 year: 2007 ident: 10.1016/j.geoderma.2022.116185_b0200 article-title: Response of plant species richness and primary productivity in shrublands along a north- south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01464.x – volume: 416 start-page: 389 issue: 6879 year: 2002 ident: 10.1016/j.geoderma.2022.116185_b0295 article-title: Ecological responses to recent climate change publication-title: Nature doi: 10.1038/416389a – volume: 44 start-page: 2331 year: 2020 ident: 10.1016/j.geoderma.2022.116185_b0060 article-title: Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat publication-title: Plant, Cell Environ. doi: 10.1111/pce.13971 – volume: 9 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.geoderma.2022.116185_b0150 article-title: Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (O-ryza sativa L.) publication-title: Ecological Processes doi: 10.1186/s13717-020-00238-5 |
SSID | ssj0017020 |
Score | 2.3965862 |
Snippet | •Extra stored soil carbon was lost again seven years after FACE termination.•Increased soil carbon during FACE stimulated the decomposition of old soil... The response of soil carbon to global climate change remains one of the largest uncertainties for future climate projection. In this study, we re-sampled the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116185 |
SubjectTerms | 13C stable isotope air carbon dioxide climate climate change Drought ecosystems Elevated CO2 face FACE experiment free air carbon dioxide enrichment heathlands nitrogen soil carbon Soil carbon and nitrogen dynamics topsoil Warming |
Title | Re-visiting soil carbon and nitrogen stocks in a temperate heathland seven years after the termination of free air CO2 enrichment (FACE) |
URI | https://dx.doi.org/10.1016/j.geoderma.2022.116185 https://www.proquest.com/docview/2723121043 |
Volume | 428 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5MemkPIX1RN2mYQg_tQbWeK-toTIzbUhdKCr4tu6vZWm6QgpQccsk5P7sz8iokpZBDbpLQCLEz882sNPONEB_QuAJT8m-XlEmQFlYHhaYjR8m8KbNSG-Te4e8rufyVfl1n65GYD70wXFbpsX-H6T1a-ysTv5qT86riHt9I5hyhWdFFvOYO9jRnK_98fVvmEeWhp2aMZMB33-kS3pKOeOBYzz8Ux4QeMuKZyv8PUP9AdR9_Fgdi3yeOMNu923MxwvqFeDb73XryDHwpbn5iwL3iXMkMXVOdgdWtaWrQdQnkum1D1gKU7dk_HVR0GZiYilmVERiTN1zlCB1zOsEVeUAH_QRxoBwRfNEMqxEaB65FBF21MP8RA5lgZTf8mRE-Lmbzk0-vxOni5HS-DPykhcAm3H1gHW9NCPZyjY52UDJMTGYxshnlf6hRpzYry2mUGBdOXSILGzo5NYQFFg0F_Ndir25qfCNA5rHRBeU5BdpUGm3IxQlGNAs7k4djkQ2rq6xnIedhGGdqKDfbqkErirWidloZi8mt3PmOh-NBiWJQnrpnUYqCxYOy7wdtK3I3_oeia2wuOxXnlBDTNjlN3j7i-YfiKZ9xWUyUHYm9i_YS31Fyc2GOe-s9Fk9mX74tV38B9mb7Sg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG5CPKgH8YnxEUtQ0MO48-zZOeSwrFk25iHICntrunuqzcQwE2YSJBfP_p78wlTN9gQVIQfJbeihl6Wq-quvd7-qEuINGldgSufbJWUSpIXVQaHpyRGZN2VWaoNcO7x_IOdf00_LbLkmLoZaGJZVeuxfYXqP1n5l5K05OqkqrvGNZM4Zmh1dxEuvrNzF8x90b-u2dj6Sk9_G8Wx7MZ0HfrRAYBOW21vHXJzOea7R0ZVBhonJLEY2I8KDGnVqs7IcR4lx4dglsrChk2NDwW_RjHlSBMH-rZTQgqcmfPh5JSuJ8tC3goxkwN_ut6rkI4oJHnDW9zuKY0IrGfEM538nxL9SQ5_vZvfFPU9UYbKyxQOxhvVDcXfyrfXNOvCR-PUFA65NZ-U0dE11DFa3pqlB1yUQVLQNRScQu7TfO6hoGbgRFndxRuAccMiqSui4hxSck1U76CeWA3FS8CIdDhtoHLgWEXTVwvRzDBTylT3knzXh3Wwy3X7_WCxuwvxPxHrd1PhUgMxjowviVQXaVBptCFIItjRvdiYPN0Q2WFdZ3_Wch28cq0HedqQGryj2ilp5ZUOMrvadrPp-XLujGJyn_ohgRcnp2r2vB28rOt78n42usTnrVJwTAadreZo8-4_PfyVuzxf7e2pv52D3ubjDb1iSE2UvxPppe4YviVidms0-kkGoGz45l8oUNhk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Re-visiting+soil+carbon+and+nitrogen+stocks+in+a+temperate+heathland+seven+years+after+the+termination+of+free+air+CO2+enrichment+%28FACE%29&rft.jtitle=Geoderma&rft.au=Li%2C+Qiaoyan&rft.au=Ambus%2C+Per+Lennart&rft.au=Michelsen%2C+Anders&rft.au=Schmidt%2C+Inger+Kappel&rft.date=2022-12-15&rft.issn=0016-7061&rft.volume=428&rft.spage=116185&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2022_116185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |