Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment
Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material a...
Saved in:
Published in | Environmental DNA (Hoboken, N.J.) Vol. 3; no. 1; pp. 105 - 120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.01.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems.
We showed that eDNA metacording outperform gillnets survey to detect freshwater fish communities. Our results also suggest that eDNA metabarcoding can be used to infer fish abundance and biomass. Together, it suggest that eDNA is a usable tool for fish conservation and management. |
---|---|
AbstractList | Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems.
We showed that eDNA metacording outperform gillnets survey to detect freshwater fish communities. Our results also suggest that eDNA metabarcoding can be used to infer fish abundance and biomass. Together, it suggest that eDNA is a usable tool for fish conservation and management. Abstract Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems. Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems. Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye ( Sander vitreus ), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR ( r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems. |
Author | Bernatchez, Louis Normandeau, Eric Dion, René Boivin‐Delisle, Damien Burton, Frédéric Laporte, Martin |
Author_xml | – sequence: 1 givenname: Damien surname: Boivin‐Delisle fullname: Boivin‐Delisle, Damien organization: Université Laval – sequence: 2 givenname: Martin orcidid: 0000-0002-0622-123X surname: Laporte fullname: Laporte, Martin email: uni.mlaporte@gmail.com organization: Université Laval – sequence: 3 givenname: Frédéric surname: Burton fullname: Burton, Frédéric organization: Études Environnementales et Relations avec les Communautés – sequence: 4 givenname: René surname: Dion fullname: Dion, René organization: Hydro‐Québec Environnement Naturel et Humain – sequence: 5 givenname: Eric surname: Normandeau fullname: Normandeau, Eric organization: Université Laval – sequence: 6 givenname: Louis orcidid: 0000-0002-8085-9709 surname: Bernatchez fullname: Bernatchez, Louis organization: Université Laval |
BookMark | eNp1kctuFDEQRVsoSIQQiU-wxIZNT-y2-8UumgQSKQobsrb8qJ7xqNs12O6M5lvys7gZkBCCVZVKp25d1X1bnHn0UBTvGV0xSqsrsJ6vGK9fFedVw9tS9IKf_dG_KS5j3NGMspZRzs6Ll6fo_IaAf3YB_QQ-qZHcPF6TAQPRDif0LmFYGBzIECBuDypBIIOLW2JwmuYMOIifyBqnvQouoicHl7YEYlJ6zBhYsnHj6CGROIdnOEbiPFFEY4B8bXu0AWEEk4IzxE17nL1dnLwrXg9qjHD5q14UT59vv63vyoevX-7X1w-l4bSry4pDXRvoqdFcG-h61kBLu6bpFVOgRCeqXvQaKquhE7RuhelYq7QFYO3QU35R3J90Laqd3Ac3qXCUqJz8OcCwkSokZ0aQHbN6qKvaMtOIzhoFvVGGge4rLWoQWevDSWsf8PucXyB3OAef7ctKtF3bVVS0mVqdKBMwxgCDNC6p5NCnoNwoGZVLnnLJU-Y888LHvxZ-2_wHWp7Qgxvh-F9O3t488oX_AUp0tNs |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e17102 crossref_primary_10_1002_edn3_505 crossref_primary_10_1002_edn3_224 crossref_primary_10_1002_edn3_70019 crossref_primary_10_1002_edn3_348 crossref_primary_10_1002_edn3_424 crossref_primary_10_1111_mec_16364 crossref_primary_10_1111_mec_16202 crossref_primary_10_1002_edn3_70054 crossref_primary_10_1007_s12562_020_01461_x crossref_primary_10_1002_edn3_355 crossref_primary_10_1016_j_ecolind_2024_112538 crossref_primary_10_1002_edn3_459 crossref_primary_10_1016_j_ecolind_2024_112467 crossref_primary_10_1002_edn3_456 crossref_primary_10_1002_edn3_535 crossref_primary_10_3897_mbmg_7_103856 crossref_primary_10_1016_j_ecolind_2023_109915 crossref_primary_10_1139_cjfas_2022_0162 crossref_primary_10_1002_edn3_70073 crossref_primary_10_3389_fevo_2022_913279 crossref_primary_10_1111_1755_0998_13934 crossref_primary_10_1016_j_scitotenv_2023_162322 crossref_primary_10_1038_s42003_021_02031_2 crossref_primary_10_1002_edn3_264 crossref_primary_10_1002_edn3_341 crossref_primary_10_1002_edn3_266 crossref_primary_10_1038_s41598_022_25274_3 crossref_primary_10_1111_fwb_13962 crossref_primary_10_7202_1091884ar crossref_primary_10_1371_journal_pone_0314210 crossref_primary_10_3390_fishes9100396 crossref_primary_10_1002_edn3_444 crossref_primary_10_3389_fmars_2023_1284953 crossref_primary_10_1371_journal_pone_0272660 crossref_primary_10_1002_edn3_178 crossref_primary_10_1002_edn3_574 crossref_primary_10_1371_journal_pone_0296310 crossref_primary_10_3897_mbmg_5_66557 crossref_primary_10_1002_edn3_517 crossref_primary_10_1016_j_ecolind_2023_111014 crossref_primary_10_1111_fme_12572 crossref_primary_10_1016_j_ecolind_2022_108785 crossref_primary_10_1016_j_envres_2025_121238 crossref_primary_10_1016_j_ecolind_2022_109754 crossref_primary_10_3390_ijerph19159445 crossref_primary_10_1111_1755_0998_13715 crossref_primary_10_1002_edn3_364 crossref_primary_10_1002_edn3_486 crossref_primary_10_2478_aoas_2022_0073 crossref_primary_10_1002_edn3_241 |
Cites_doi | 10.1371/journal.pone.0157366 10.1016/j.jembe.2018.09.004 10.1111/1755-0998.12907 10.1002/ece3.4213 10.1002/edn3.88 10.1111/1365-2664.12306 10.1021/es404734p 10.1038/srep46294 10.15517/rbt.v62i4.13231 10.1371/journal.pone.0169334 10.1111/1755-0998.12433 10.1371/journal.pone.0088786 10.1111/2041-210X.12595 10.1111/mec.14350 10.1038/s41598-018-28424-8 10.1016/j.gecco.2019.e00547 10.1139/gen-2015-0218 10.1371/journal.pone.0086175 10.1002/edn3.7 10.1016/B978-0-444-53868-0.50018-6 10.1371/journal.pone.0210357 10.1111/1755-0998.12522 10.1017/S1464793105006950 10.1016/j.tree.2016.01.002 10.1371/journal.pone.0165252 10.1016/j.biocon.2015.12.023 10.1111/mec.13481 10.1016/j.ecolind.2017.03.053 10.1111/1755-0998.12895 10.1139/cjfas-2017-0114 10.1016/j.biocon.2014.11.040 10.1111/j.1365-294X.2012.05519.x 10.1002/ece3.3764 10.1093/bioinformatics/btu170 10.1002/edn3.38 10.1002/ece3.4653 10.1002/edn3.35 10.1371/journal.pone.0112611 10.1111/mec.13660 10.1016/j.tree.2015.08.008 10.1371/journal.pone.0130324 10.1002/ece3.4013 10.1073/pnas.70.7.2069 10.1111/fwb.12846 10.1371/journal.pone.0041732 10.1002/edn3.5 10.1093/nar/gkr732 10.1038/s42003-017-0005-3 10.1093/bioinformatics/btr507 10.1002/edn3.112 10.1007/s10531-019-01709-8 10.1371/journal.pone.0176343 10.1016/j.biocon.2014.11.019 10.1371/journal.pone.0185043 10.1007/s10592-015-0775-4 10.1016/j.biocon.2016.03.010 10.1371/journal.pone.0022746 10.1111/j.1365-294X.2012.05600.x 10.1016/j.biocon.2014.11.038 10.1038/srep40368 10.1111/mec.14920 10.1002/ece3.4802 10.1016/j.soilbio.2007.06.020 10.1111/1365-2664.12598 10.1111/jfb.14177 10.1111/j.1365-294X.2011.05418.x 10.1002/edn3.111 10.1111/mec.13428 10.1371/journal.pone.0023398 10.1016/j.ab.2006.01.051 10.1371/journal.pone.0035868 10.1111/1755-0998.12338 10.1890/15-1733.1 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ M2P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY Q9U DOA |
DOI | 10.1002/edn3.135 |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journal Collection url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2637-4943 |
EndPage | 120 |
ExternalDocumentID | oai_doaj_org_article_81dbf525d1c648dcae9cac1eb92b45e4 10_1002_edn3_135 EDN3135 |
Genre | article |
GeographicLocations | Rupert River Canada |
GeographicLocations_xml | – name: Canada – name: Rupert River |
GrantInformation_xml | – fundername: Mitacs funderid: IT08411 |
GroupedDBID | 0R~ 1OC 24P 88I AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ATCPS AVUZU AZQEC BENPR BHPHI CCPQU DWQXO EBS EDH EJD GNUQQ GROUPED_DOAJ HCIFZ IAO IEP IHR ITC M2P M~E OK1 PATMY PIMPY PQQKQ PYCSY WIN AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY PKEHL PQEST PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c3085-23e55ce90cb3bce8916e708669a1aea4842949be2dbe840574c817abdee17f903 |
IEDL.DBID | BENPR |
ISSN | 2637-4943 |
IngestDate | Wed Aug 27 01:30:59 EDT 2025 Fri Jul 25 03:42:49 EDT 2025 Tue Jul 01 01:32:07 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Wed Jan 22 16:30:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3085-23e55ce90cb3bce8916e708669a1aea4842949be2dbe840574c817abdee17f903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0622-123X 0000-0002-8085-9709 |
OpenAccessLink | https://www.proquest.com/docview/2478782047?pq-origsite=%requestingapplication% |
PQID | 2478782047 |
PQPubID | 4570191 |
PageCount | 0 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81dbf525d1c648dcae9cac1eb92b45e4 proquest_journals_2478782047 crossref_citationtrail_10_1002_edn3_135 crossref_primary_10_1002_edn3_135 wiley_primary_10_1002_edn3_135_EDN3135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Environmental DNA (Hoboken, N.J.) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2007; 39 2017; 7 2015; 183 2015; 30 2019; 14 2019; 17 2016; 31 2014; 62 2018; 8 2017; 74 2018; 2 2020; 2 2018; 1 2017; 79 2019; 28 2019; 510 2014; 9 2012; 24 2011; 27 2014; 51 2012; 21 2016; 197 2016; 194 2017; 62 2015; 15 2019; 9 2015; 58 1973; 70 2017; 26 2019; 1 2015; 10 2014; 48 2016; 53 2006; 351 2011; 39 2016; 17 2011; 6 2016; 16 2016; 59 2016; 11 2006; 81 2018; 18 2016; 7 2020 2017; 12 2019 2018 2017 2016 2014; 30 2018; 12 2012; 7 2016; 26 2016; 25 2018; 15 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 Fukaya K. (e_1_2_9_27_1) 2018 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Chatterjee S. (e_1_2_9_12_1) 2017 Miya M. (e_1_2_9_53_1) 2015; 58 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 World Wide Fund for Nature (e_1_2_9_80_1) 2018 Menning D. (e_1_2_9_52_1) 2018; 12 e_1_2_9_30_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 Piñol J. (e_1_2_9_58_1) 2018; 15 e_1_2_9_59_1 R Core Team (e_1_2_9_61_1) 2016 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 Ushio M. (e_1_2_9_77_1) 2018; 2 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 Oksanen J. (e_1_2_9_56_1) 2016 |
References_xml | – volume: 15 start-page: 543 year: 2015 end-page: 556 article-title: Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data publication-title: Molecular Ecology Resources – volume: 8 start-page: 6330 year: 2018 end-page: 6341 article-title: Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt ( ) publication-title: Ecology and Evolution – volume: 74 start-page: 1 year: 2017 end-page: 5 article-title: At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 197 start-page: 131 year: 2016 end-page: 138 article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system publication-title: Biological Conservation – volume: 12 year: 2017 article-title: A noninvasive tool to assess the distribution of Pacific Lamprey ( ) in the Columbia River basin publication-title: PLoS One – volume: 12 year: 2017 article-title: Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding publication-title: PLoS One – volume: 7 start-page: 1299 year: 2016 end-page: 1307 article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species publication-title: Methods in Ecology and Evolution – volume: 1 start-page: 5 year: 2019 end-page: 13 article-title: Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature publication-title: Environmental DNA – volume: 9 start-page: 1135 year: 2019 end-page: 1146 article-title: Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution publication-title: Ecology and Evolution – volume: 12 start-page: 1 year: 2018 end-page: 15 article-title: Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA publication-title: Conservation Genetics Resources – volume: 70 start-page: 2069 year: 1973 end-page: 2071 article-title: Predator‐prey patterns publication-title: Proceedings of the National Academy of Science of the United States of America – volume: 48 start-page: 1819 year: 2014 end-page: 1827 article-title: Environmental Conditions Influence eDNA Persistence in Aquatic Systems publication-title: Environmental Science & Technology – volume: 2 start-page: 255 year: 2020 end-page: 260 article-title: Pathway to Increase Standards and Competency of eDNA Surveys (PISCeS)—Advancing collaboration and standardization efforts in the field of eDNA publication-title: Environmental DNA – volume: 183 start-page: 4 year: 2015 end-page: 18 article-title: Environmental DNA‐An emerging tool in conservation for monitoring past and present biodiversity publication-title: Biological Conservations – volume: 194 start-page: 209 year: 2016 end-page: 216 article-title: Understanding environmental DNA detection probabilities: A case study using a stream‐dwelling char publication-title: Biological Conservation – volume: 31 start-page: 171 issue: 3 year: 2016 end-page: 172 article-title: Emerging technologies to conserve biodiversity: Further opportunities via genomics. Response to Pimm et al publication-title: Trends in Ecology & Evolution – volume: 6 year: 2011 article-title: Molecular detection of vertebrates in stream water: A demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders publication-title: PLoS One – year: 2018 – volume: 25 start-page: 527 year: 2016 end-page: 541 article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA publication-title: Molecular Ecology – volume: 26 start-page: 1645 year: 2016 end-page: 1659 article-title: A framework for inferring biological communities from environmental DNA publication-title: Ecological Applications – volume: 510 start-page: 31 year: 2019 end-page: 45 article-title: Species‐specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea publication-title: Journal of Experimental Marine Biology and Ecology – volume: 21 start-page: 2039 year: 2012 end-page: 2044 article-title: Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next‐generation DNA sequencing publication-title: Molecular Ecology – volume: 21 start-page: 2555 year: 2012 end-page: 2558 article-title: Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA publication-title: Molecular Ecology – volume: 8 start-page: 7763 year: 2018 end-page: 7777 article-title: eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity publication-title: Ecology and Evolution – volume: 9 year: 2014 article-title: Transport distance of invertebrate environmental DNA in a natural river publication-title: PLoS One – volume: 18 start-page: 940 year: 2018 end-page: 952 article-title: Towards robust and repeatable sampling methods in eDNA‐based studies publication-title: Molecular Ecology Resources – volume: 39 start-page: 2977 year: 2007 end-page: 2991 article-title: Cycling of extracellular DNA in the soil environment publication-title: Soil Biology and Biochemistry – volume: 2 start-page: 362 year: 2020 end-page: 372 article-title: Caged fish experiment and hydrodynamic bidimensional modeling highlight the importance to consider 2D dispersion in fluvial environmental DNA studies publication-title: Environmental DNA – volume: 27 start-page: 2957 year: 2011 end-page: 2963 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 81 start-page: 163 year: 2006 article-title: Freshwater biodiversity: Importance, threats, status and conservation challenges publication-title: Biological Reviews – volume: 26 start-page: 58721 year: 2017 end-page: 65895 article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities publication-title: Molecular Ecology – volume: 9 year: 2014 article-title: Using environmental DNA to census marine fishes in a large mesocosm publication-title: PLoS One – volume: 1 start-page: 4 year: 2018 article-title: Acidity promotes degradation of multi‐species environmental DNA in lotic mesocosms publication-title: Communications Biology – volume: 10 start-page: 1 year: 2015 end-page: 16 article-title: Can DNA‐based ecosystem assessments quantify species abundance? Testing primer bias and biomass‐sequence relationships with an innovative metabarcoding protocol publication-title: PLoS One – volume: 21 start-page: 2565 year: 2012 end-page: 2573 article-title: Monitoring endangered freshwater biodiversity using environmental DNA publication-title: Molecular Ecology – volume: 351 start-page: 308 year: 2006 end-page: 310 article-title: SPUD: A quantitative PCA assay for the detection of inhibitors in nucleic acid preparations publication-title: Analytical Biochemistry – volume: 28 start-page: 420 year: 2019 end-page: 430 article-title: How quantitative is metabarcoding: A meta‐analytical approach publication-title: Molecular Ecology – volume: 6 start-page: 8 year: 2011 end-page: 11 article-title: Persistence of environmental DNA in freshwater ecosystems publication-title: PLoS One – volume: 16 start-page: 29 year: 2016 end-page: 41 article-title: Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding publication-title: Molecular Ecology Resources – volume: 28 start-page: 983 year: 2019 end-page: 1001 article-title: Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA publication-title: Biodiversity and Conservation – volume: 14 year: 2019 article-title: Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods publication-title: PLoS One – volume: 8 year: 2018 article-title: Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation publication-title: Scientific Reports – volume: 51 start-page: 1450 year: 2014 end-page: 1459 article-title: The detection of aquatic animal species using environmental DNA – A review of eDNA as a survey tool in ecology publication-title: Journal of Applied Ecology – volume: 11 start-page: 1 year: 2016 end-page: 19 article-title: Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system publication-title: PLoS One – volume: 59 start-page: 991 year: 2016 end-page: 1007 article-title: Improving herpetological surveys in eastern North America using the environmental DNA method publication-title: Genome – volume: 12 year: 2017 article-title: Persistence of marine fish environmental DNA and the influence of sunlight publication-title: PLoS One – volume: 7 start-page: 3 year: 2012 end-page: 10 article-title: Estimation of fish biomass using environmental DNA publication-title: PLoS One – volume: 30 start-page: 2114 year: 2014 end-page: 2120 article-title: Trimmomatic: A flexible trimmer for Illumina Sequence Data publication-title: Bioinformatics – volume: 53 start-page: 1148 year: 2016 end-page: 1157 article-title: Quantifying relative fish abundance with eDNA: A promising tool for fisheries management publication-title: Journal of Applied Ecology – volume: 7 year: 2017 article-title: Environmental DNA metabarcoding reveals local fish communities in a species‐rich coastal sea publication-title: Scientific Reports – volume: 30 start-page: 685 year: 2015 end-page: 696 article-title: Emerging technologies to conserve biodiversity publication-title: Trends in Ecology & Evolution – year: 2016 – volume: 24 year: 2012 – year: 2020 article-title: Comparing environmental metabarcoding and trawling survey of demersal fish communities in the Gulf of St. Lawrence, Canada publication-title: Environmental DNA – volume: 25 start-page: 929 year: 2016 end-page: 942 article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding publication-title: Molecular Ecology – volume: 7 start-page: 1 year: 2012 end-page: 9 article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples publication-title: PLoS One – volume: 8 start-page: 11964 year: 2018 end-page: 11974 article-title: Environmental DNA analysis as a non‐invasive quantitative tool for reproductive migration of a threatened endemic fish in rivers publication-title: Ecology and Evolution – volume: 8 start-page: 3468 year: 2018 end-page: 3477 article-title: An analytical framework for estimating aquatic species density from environmental DNA publication-title: Ecology and Evolution – start-page: 14 year: 2017 article-title: An analysis of threats to marine biodiversity and aquatic ecosystems publication-title: SSRN Electronic Journal – volume: 7 year: 2017 article-title: Seasonal variation in environmental DNA in relation to population size and environmental factors publication-title: Scientific Reports – volume: 62 start-page: 1273 year: 2014 end-page: 1284 article-title: History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments publication-title: Revista De Biología Tropical – year: 2018 article-title: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling publication-title: Biorxiv – volume: 62 start-page: 30 year: 2017 end-page: 39 article-title: Environmental DNA analysis for estimating the abundance and biomass of stream fish publication-title: Freshwater Biology – volume: 9 year: 2014 article-title: The relationship between the distribution of common carp and their environmental DNA in a small lake publication-title: PLoS One – volume: 183 start-page: 1 year: 2015 end-page: 3 article-title: Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms publication-title: Biological Conservation – volume: 18 start-page: 927 year: 2018 end-page: 939 article-title: Minimizing polymerase biases in metabarcoding publication-title: Molecular Ecology Resources – volume: 183 start-page: 85 year: 2015 end-page: 92 article-title: Quantifying effects of UV‐B, temperature, and pH on eDNA degradation in aquatic microcosms publication-title: Biological Conservation – volume: 1 start-page: 26 year: 2019 end-page: 39 article-title: Temporal and spatial variation in distribution of fish environmental DNA in England's largest lake publication-title: Environmental DNA – volume: 2 year: 2018 article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing publication-title: Metabarcoding and Metagenomics – volume: 79 start-page: 37 year: 2017 end-page: 46 article-title: Anthropogenic stressors and riverine fish extinctions publication-title: Ecological Indicators – volume: 11 year: 2016 article-title: Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes publication-title: PLoS One – volume: 25 start-page: 3101 year: 2016 end-page: 3119 article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods publication-title: Molecular Ecology – volume: 17 year: 2019 article-title: Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA publication-title: Global Ecology and Conservation – volume: 1 start-page: 368 year: 2019 end-page: 384 article-title: Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears publication-title: Environmental DNA – volume: 17 start-page: 1 year: 2016 end-page: 17 article-title: The ecology of environmental DNA and implications for conservation genetics publication-title: Conservation Genetics – volume: 15 start-page: 1 year: 2018 end-page: 12 article-title: Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods publication-title: Molecular Ecology Resources – volume: 16 start-page: 1401 year: 2016 end-page: 1414 article-title: Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions publication-title: Molecular Ecology Resources – volume: 1 start-page: 342 year: 2019 end-page: 358 article-title: Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity publication-title: Environmental DNA – volume: 58 start-page: 257 year: 2015 article-title: MiFish, a set of universal primers for metabarcoding environmental DNA from fishes: Detection of > 230 species from aquarium tanks and coral reefs in the subtropical western North Pacific publication-title: Genome – volume: 39 year: 2011 article-title: EcoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis publication-title: Nucleic Acids Research – year: 2019 article-title: Environmental DNA is not the tool by itself publication-title: Journal of Fish Biology – ident: e_1_2_9_13_1 doi: 10.1371/journal.pone.0157366 – ident: e_1_2_9_36_1 doi: 10.1016/j.jembe.2018.09.004 – ident: e_1_2_9_19_1 doi: 10.1111/1755-0998.12907 – ident: e_1_2_9_40_1 doi: 10.1002/ece3.4213 – ident: e_1_2_9_43_1 doi: 10.1002/edn3.88 – ident: e_1_2_9_62_1 doi: 10.1111/1365-2664.12306 – ident: e_1_2_9_7_1 doi: 10.1021/es404734p – ident: e_1_2_9_9_1 doi: 10.1038/srep46294 – ident: e_1_2_9_18_1 doi: 10.15517/rbt.v62i4.13231 – ident: e_1_2_9_10_1 doi: 10.1371/journal.pone.0169334 – ident: e_1_2_9_24_1 doi: 10.1111/1755-0998.12433 – volume: 12 start-page: 1 year: 2018 ident: e_1_2_9_52_1 article-title: Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA publication-title: Conservation Genetics Resources – ident: e_1_2_9_14_1 doi: 10.1371/journal.pone.0088786 – ident: e_1_2_9_30_1 doi: 10.1111/2041-210X.12595 – ident: e_1_2_9_15_1 doi: 10.1111/mec.14350 – start-page: 482489 year: 2018 ident: e_1_2_9_27_1 article-title: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling publication-title: Biorxiv – ident: e_1_2_9_59_1 doi: 10.1038/s41598-018-28424-8 – ident: e_1_2_9_64_1 doi: 10.1016/j.gecco.2019.e00547 – ident: e_1_2_9_39_1 doi: 10.1139/gen-2015-0218 – ident: e_1_2_9_34_1 doi: 10.1371/journal.pone.0086175 – ident: e_1_2_9_82_1 doi: 10.1002/edn3.7 – ident: e_1_2_9_46_1 doi: 10.1016/B978-0-444-53868-0.50018-6 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0210357 – ident: e_1_2_9_41_1 doi: 10.1111/1755-0998.12522 – ident: e_1_2_9_21_1 doi: 10.1017/S1464793105006950 – ident: e_1_2_9_72_1 doi: 10.1016/j.tree.2016.01.002 – ident: e_1_2_9_75_1 doi: 10.1371/journal.pone.0165252 – ident: e_1_2_9_79_1 doi: 10.1016/j.biocon.2015.12.023 – ident: e_1_2_9_60_1 doi: 10.1111/mec.13481 – ident: e_1_2_9_17_1 doi: 10.1016/j.ecolind.2017.03.053 – ident: e_1_2_9_54_1 doi: 10.1111/1755-0998.12895 – ident: e_1_2_9_35_1 doi: 10.1139/cjfas-2017-0114 – ident: e_1_2_9_29_1 doi: 10.1016/j.biocon.2014.11.040 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365-294X.2012.05519.x – ident: e_1_2_9_11_1 doi: 10.1002/ece3.3764 – volume-title: Living Planet Report‐2018: Aiming higher year: 2018 ident: e_1_2_9_80_1 – ident: e_1_2_9_8_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_2_9_65_1 doi: 10.1002/edn3.38 – ident: e_1_2_9_51_1 doi: 10.1002/ece3.4653 – ident: e_1_2_9_45_1 doi: 10.1002/edn3.35 – ident: e_1_2_9_22_1 doi: 10.1371/journal.pone.0112611 – ident: e_1_2_9_31_1 doi: 10.1111/mec.13660 – ident: e_1_2_9_57_1 doi: 10.1016/j.tree.2015.08.008 – ident: e_1_2_9_23_1 doi: 10.1371/journal.pone.0130324 – ident: e_1_2_9_32_1 doi: 10.1002/ece3.4013 – ident: e_1_2_9_83_1 doi: 10.1073/pnas.70.7.2069 – volume: 2 start-page: e23297 year: 2018 ident: e_1_2_9_77_1 article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing publication-title: Metabarcoding and Metagenomics – ident: e_1_2_9_20_1 doi: 10.1111/fwb.12846 – ident: e_1_2_9_73_1 doi: 10.1371/journal.pone.0041732 – ident: e_1_2_9_44_1 doi: 10.1002/edn3.5 – volume: 15 start-page: 1 year: 2018 ident: e_1_2_9_58_1 article-title: Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods publication-title: Molecular Ecology Resources – ident: e_1_2_9_63_1 doi: 10.1093/nar/gkr732 – ident: e_1_2_9_66_1 doi: 10.1038/s42003-017-0005-3 – ident: e_1_2_9_50_1 doi: 10.1093/bioinformatics/btr507 – ident: e_1_2_9_49_1 doi: 10.1002/edn3.112 – ident: e_1_2_9_69_1 doi: 10.1007/s10531-019-01709-8 – ident: e_1_2_9_4_1 doi: 10.1371/journal.pone.0176343 – ident: e_1_2_9_76_1 doi: 10.1016/j.biocon.2014.11.019 – ident: e_1_2_9_3_1 doi: 10.1371/journal.pone.0185043 – ident: e_1_2_9_6_1 doi: 10.1007/s10592-015-0775-4 – ident: e_1_2_9_67_1 doi: 10.1016/j.biocon.2016.03.010 – ident: e_1_2_9_28_1 doi: 10.1371/journal.pone.0022746 – ident: e_1_2_9_48_1 doi: 10.1111/j.1365-294X.2012.05600.x – ident: e_1_2_9_70_1 doi: 10.1016/j.biocon.2014.11.038 – volume: 58 start-page: 257 year: 2015 ident: e_1_2_9_53_1 article-title: MiFish, a set of universal primers for metabarcoding environmental DNA from fishes: Detection of > 230 species from aquarium tanks and coral reefs in the subtropical western North Pacific publication-title: Genome – ident: e_1_2_9_81_1 doi: 10.1038/srep40368 – start-page: 14 year: 2017 ident: e_1_2_9_12_1 article-title: An analysis of threats to marine biodiversity and aquatic ecosystems publication-title: SSRN Electronic Journal – ident: e_1_2_9_42_1 doi: 10.1111/mec.14920 – ident: e_1_2_9_33_1 doi: 10.1002/ece3.4802 – ident: e_1_2_9_47_1 doi: 10.1016/j.soilbio.2007.06.020 – ident: e_1_2_9_37_1 doi: 10.1111/1365-2664.12598 – ident: e_1_2_9_38_1 doi: 10.1111/jfb.14177 – ident: e_1_2_9_74_1 doi: 10.1111/j.1365-294X.2011.05418.x – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_9_61_1 – ident: e_1_2_9_2_1 doi: 10.1002/edn3.111 – volume-title: vegan: Community ecology package. R package version 2.5‐2 year: 2016 ident: e_1_2_9_56_1 – ident: e_1_2_9_78_1 doi: 10.1111/mec.13428 – ident: e_1_2_9_16_1 doi: 10.1371/journal.pone.0023398 – ident: e_1_2_9_55_1 doi: 10.1016/j.ab.2006.01.051 – ident: e_1_2_9_71_1 doi: 10.1371/journal.pone.0035868 – ident: e_1_2_9_25_1 doi: 10.1111/1755-0998.12338 – ident: e_1_2_9_68_1 doi: 10.1890/15-1733.1 |
SSID | ssj0002171031 |
Score | 2.413204 |
Snippet | Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as... Abstract Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods,... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105 |
SubjectTerms | Abundance Aquatic ecosystems Biodiversity Biomass Biomonitoring Chlorophyll Deoxyribonucleic acid Dissolved oxygen DNA environmental DNA Experiments Fish Freshwater fish freshwater fish communities Geographical distribution Human resources Laboratories metabarcoding Polls & surveys qPCR Redundancy Relative abundance Resource conservation Resource management Sander vitreus Species richness Water analysis Water filtration Water purification Water sampling |
Title | Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fedn3.135 https://www.proquest.com/docview/2478782047 https://doaj.org/article/81dbf525d1c648dcae9cac1eb92b45e4 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9si-CL-Iln6zGC6FNostkkG1-kH1eK0KOIhb6F_Zj0Amdy5q6VvviP-M86k-TOFtSXBJIlLJmZnd_M7sxPiHdxlPDuGNm3zWSgdJoEVro40A7T0muLVnPt8Nk0Pb1Qny-TyyHhthyOVa7XxG6h9o3jHPm-5C4y5K5U9mnxPWDWKN5dHSg0tsQOLcGagq-dw8n0_Msmy0KAm3kM1l1nQ7mPvo6Z7OGeH-ra9d_DmHeRaudqTp6IxwNGhINeqE_FA6yfiYc9a-Ttc_Gr2-aHOyVqNPh4egCEP4HL6Tsz5XwdNCWUFE_PfhCibKGsljNwfUUI91H9CEcbFkLghCzQpEx_TN7DVTWf17iC5XV7Q-KGqgYDpDGELGF269umZ9CpHFTfFkzOxDN5IS5OJl-PToOBYyFwMdcdyBiTxGEeOhtbh5rQImYU5qS5iQwapclfqdyi9BY1gzvldJQZ6xGjrMzD-KXYrpsaXwnwNo8p2kIkISkdSlMqW4aE3r1JSvKBI_Fh_ccLNzQgZx6MedG3TpYFy6Yg2YzE283IRd904y9jDllom_fcJrt70LRXxWB1BYFxWyYy8ZFLlfbOYO6Mi9Dm0qoE1UjsrUVeDLa7LP5o2ki879Tgn5MoJsfTmO6v__-dXfFI8lGYLnOzJ7ZX7TW-ISyzsmOxJdX5eFDbcZcRoOvZz8lvjar7sQ |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3battAEF1Sh9K-lF6pm7TdQi9PItJqdSuUksQOTpOIUhLIm7KXUWxwJUd2Gvwt_Yd-Y2d0cRNo-5YngbQsi2Z29szszBzG3vpeQLdjuL91JBwZh4GjhfGd2ECY21iDjql2-CgNRyfyy2lwusZ-dbUwlFbZ2cTaUNvSUIx8S1AXGTyuZPR5duEQaxTdrnYUGo1aHMDyCl22-af9Acr3nRB7w-PdkdOyCjjGp0x74UMQGEhco31tIEZ8BBEC-zBRngIlY7TQMtEgrIaY4Iw0sRcpbQG8KE9cH-e9w9alj65Mj63vDNOv31ZRHQT4xJvQdbl1xRbYwidyiRvnXk0PcAPTXkfG9dG295A9aDEp326U6BFbg-Ixu9uwVC6fsJ91WgG_VhKHgwfpNke8y6l8vzYLFB_kZc5z9N_HV4hgK55P5mNumgoU6tv6ke-uWA85BYA5Lko1afmWn0-m0wIWfH5Z_UD14pOCK44aikiWj5e2KhvGnonhk-8zIoOilTxlJ7fy95-xXlEW8JxxqxMfvTsAVAoZu0LlUucuegtWBTmeuX32ofvjmWkbnhPvxjRrWjWLjGSToWz67M1q5Kxp8vGXMTsktNV3astdvyir86zd5RmCf50HIrCeCWVsjYLEKOOBToSWAcg-2-xEnrW2Yp790ew-e1-rwT8XkQ0HqY_PF_-f5zW7Nzo-OswO99ODDXZfUBpOHTXaZL1FdQkvEUct9KtWeTk7u-398huBhTVk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELXKViBeEFextICRuDxFmzjODQmhtrurlkJUISr1zY3tSXelJdlmt1T7LfwJX8dMLksrAW99ipRYlpUZj8-MZ-Yw9tr3Arodw_2tI-HIOAwcLYzvxAbC3MYadEy1w1_ScP9YfjoJTjbYr64WhtIqO5tYG2pbGoqRDwR1kcHjSkaDvE2LOBqOP87PHWKQopvWjk6jUZFDWF2i-7b4cDBEWb8RYjz6trfvtAwDjvEp6174EAQGEtdoXxuIEStBhCA_TDIvg0zGaK1lokFYDTFBG2liL8q0BfCiPHF9nPcW24zQK3J7bHN3lB59XUd4EOwTh0LX8dYVA7CFT0QT187AmirgGr69ipLrY258n91r8SnfaRTqAduA4iG73TBWrh6xn3WKAb9SHoeDh-kOR-zLqZS_NhEUK-RlznP05SeXiGYrnk8XE26aahTq4fqe760ZEDkFgzkuKmtS9C0_m85mBSz54qL6garGpwXPOGorolo-WdmqbNh7poZPv8-JGIpW8pgd38jff8J6RVnAU8atTnz09ABQQWTsiiyXOnfRc7BZkOP522fvuj-uTNv8nDg4Zqpp2ywUyUahbPrs1XrkvGn48ZcxuyS09Xdq0V2_KKsz1e54hY6AzgMRWM-EMrYmg8RkxgOdCC0DkH223YlctXZjof5oeZ-9rdXgn4tQo2Hq4_PZ_-d5ye7gPlGfD9LDLXZXUEZOHUDaZr1ldQHPEVIt9YtWdzk7vent8huHkjmZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+environmental+DNA+for+biomonitoring+of+freshwater+fish+communities%3A+Comparison+with+established+gillnet+surveys+in+a+boreal+hydroelectric+impoundment&rft.jtitle=Environmental+DNA+%28Hoboken%2C+N.J.%29&rft.au=Boivin%E2%80%90Delisle%2C+Damien&rft.au=Laporte%2C+Martin&rft.au=Burton%2C+Fr%C3%A9d%C3%A9ric&rft.au=Dion%2C+Ren%C3%A9&rft.date=2021-01-01&rft.issn=2637-4943&rft.eissn=2637-4943&rft.volume=3&rft.issue=1&rft.spage=105&rft.epage=120&rft_id=info:doi/10.1002%2Fedn3.135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_edn3_135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-4943&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-4943&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-4943&client=summon |