Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment

Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material a...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental DNA (Hoboken, N.J.) Vol. 3; no. 1; pp. 105 - 120
Main Authors Boivin‐Delisle, Damien, Laporte, Martin, Burton, Frédéric, Dion, René, Normandeau, Eric, Bernatchez, Louis
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.01.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems. We showed that eDNA metacording outperform gillnets survey to detect freshwater fish communities. Our results also suggest that eDNA metabarcoding can be used to infer fish abundance and biomass. Together, it suggest that eDNA is a usable tool for fish conservation and management.
AbstractList Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems. We showed that eDNA metacording outperform gillnets survey to detect freshwater fish communities. Our results also suggest that eDNA metabarcoding can be used to infer fish abundance and biomass. Together, it suggest that eDNA is a usable tool for fish conservation and management.
Abstract Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems.
Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye (Sander vitreus), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR (r = 0.78, p < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems.
Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as gillnet surveys, are widely used to estimate distribution and abundance of fish. However, gillnet surveys can be costly in terms of material and human resources, may cause unwanted mortality in the fish communities being studied, and is subject to size and species selection bias. Detecting allochthonous DNA released by species in their environment (i.e., environmental DNA, hereafter eDNA) could be used as a noninvasive and less costly alternative. In this study, we directly compare eDNA metabarcoding and gillnets for monitoring freshwater fish communities in terms of species richness and relative species abundance. Metabarcoding was performed with the 12S Mifish primers. We also used species‐specific quantitative PCR (qPCR) for the most abundant species, the walleye ( Sander vitreus ), to compare estimated relative abundance with metabarcoding and gillnet captures. Water sample collection, prior to gillnet assessment, was performed on 17 sites in the hydroelectric impoundment of the Rupert River (James Bay, Canada), comparing two water filtration methods. After controlling for amplification biases and repeatability, we show that fish communities’ complexity is better represented using eDNA metabarcoding than previously recorded gillnet data and that metabarcoding read count correlates with qPCR ( r  = 0.78, p  < .001) in reflecting walleye abundance. Finally, based on partial redundancy analysis, we identified alpha chlorophyll, pH, and dissolved oxygen as environmental variable candidates that may influence differences in fish relative abundance between metabarcoding and gillnets. Altogether, our study demonstrates that the proposed eDNA metabarcoding method can be used as an efficient alternative or complementary technique adapted to the biomonitoring of the fish communities in boreal aquatic ecosystems.
Author Bernatchez, Louis
Normandeau, Eric
Dion, René
Boivin‐Delisle, Damien
Burton, Frédéric
Laporte, Martin
Author_xml – sequence: 1
  givenname: Damien
  surname: Boivin‐Delisle
  fullname: Boivin‐Delisle, Damien
  organization: Université Laval
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-0622-123X
  surname: Laporte
  fullname: Laporte, Martin
  email: uni.mlaporte@gmail.com
  organization: Université Laval
– sequence: 3
  givenname: Frédéric
  surname: Burton
  fullname: Burton, Frédéric
  organization: Études Environnementales et Relations avec les Communautés
– sequence: 4
  givenname: René
  surname: Dion
  fullname: Dion, René
  organization: Hydro‐Québec Environnement Naturel et Humain
– sequence: 5
  givenname: Eric
  surname: Normandeau
  fullname: Normandeau, Eric
  organization: Université Laval
– sequence: 6
  givenname: Louis
  orcidid: 0000-0002-8085-9709
  surname: Bernatchez
  fullname: Bernatchez, Louis
  organization: Université Laval
BookMark eNp1kctuFDEQRVsoSIQQiU-wxIZNT-y2-8UumgQSKQobsrb8qJ7xqNs12O6M5lvys7gZkBCCVZVKp25d1X1bnHn0UBTvGV0xSqsrsJ6vGK9fFedVw9tS9IKf_dG_KS5j3NGMspZRzs6Ll6fo_IaAf3YB_QQ-qZHcPF6TAQPRDif0LmFYGBzIECBuDypBIIOLW2JwmuYMOIifyBqnvQouoicHl7YEYlJ6zBhYsnHj6CGROIdnOEbiPFFEY4B8bXu0AWEEk4IzxE17nL1dnLwrXg9qjHD5q14UT59vv63vyoevX-7X1w-l4bSry4pDXRvoqdFcG-h61kBLu6bpFVOgRCeqXvQaKquhE7RuhelYq7QFYO3QU35R3J90Laqd3Ac3qXCUqJz8OcCwkSokZ0aQHbN6qKvaMtOIzhoFvVGGge4rLWoQWevDSWsf8PucXyB3OAef7ctKtF3bVVS0mVqdKBMwxgCDNC6p5NCnoNwoGZVLnnLJU-Y888LHvxZ-2_wHWp7Qgxvh-F9O3t488oX_AUp0tNs
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e17102
crossref_primary_10_1002_edn3_505
crossref_primary_10_1002_edn3_224
crossref_primary_10_1002_edn3_70019
crossref_primary_10_1002_edn3_348
crossref_primary_10_1002_edn3_424
crossref_primary_10_1111_mec_16364
crossref_primary_10_1111_mec_16202
crossref_primary_10_1002_edn3_70054
crossref_primary_10_1007_s12562_020_01461_x
crossref_primary_10_1002_edn3_355
crossref_primary_10_1016_j_ecolind_2024_112538
crossref_primary_10_1002_edn3_459
crossref_primary_10_1016_j_ecolind_2024_112467
crossref_primary_10_1002_edn3_456
crossref_primary_10_1002_edn3_535
crossref_primary_10_3897_mbmg_7_103856
crossref_primary_10_1016_j_ecolind_2023_109915
crossref_primary_10_1139_cjfas_2022_0162
crossref_primary_10_1002_edn3_70073
crossref_primary_10_3389_fevo_2022_913279
crossref_primary_10_1111_1755_0998_13934
crossref_primary_10_1016_j_scitotenv_2023_162322
crossref_primary_10_1038_s42003_021_02031_2
crossref_primary_10_1002_edn3_264
crossref_primary_10_1002_edn3_341
crossref_primary_10_1002_edn3_266
crossref_primary_10_1038_s41598_022_25274_3
crossref_primary_10_1111_fwb_13962
crossref_primary_10_7202_1091884ar
crossref_primary_10_1371_journal_pone_0314210
crossref_primary_10_3390_fishes9100396
crossref_primary_10_1002_edn3_444
crossref_primary_10_3389_fmars_2023_1284953
crossref_primary_10_1371_journal_pone_0272660
crossref_primary_10_1002_edn3_178
crossref_primary_10_1002_edn3_574
crossref_primary_10_1371_journal_pone_0296310
crossref_primary_10_3897_mbmg_5_66557
crossref_primary_10_1002_edn3_517
crossref_primary_10_1016_j_ecolind_2023_111014
crossref_primary_10_1111_fme_12572
crossref_primary_10_1016_j_ecolind_2022_108785
crossref_primary_10_1016_j_envres_2025_121238
crossref_primary_10_1016_j_ecolind_2022_109754
crossref_primary_10_3390_ijerph19159445
crossref_primary_10_1111_1755_0998_13715
crossref_primary_10_1002_edn3_364
crossref_primary_10_1002_edn3_486
crossref_primary_10_2478_aoas_2022_0073
crossref_primary_10_1002_edn3_241
Cites_doi 10.1371/journal.pone.0157366
10.1016/j.jembe.2018.09.004
10.1111/1755-0998.12907
10.1002/ece3.4213
10.1002/edn3.88
10.1111/1365-2664.12306
10.1021/es404734p
10.1038/srep46294
10.15517/rbt.v62i4.13231
10.1371/journal.pone.0169334
10.1111/1755-0998.12433
10.1371/journal.pone.0088786
10.1111/2041-210X.12595
10.1111/mec.14350
10.1038/s41598-018-28424-8
10.1016/j.gecco.2019.e00547
10.1139/gen-2015-0218
10.1371/journal.pone.0086175
10.1002/edn3.7
10.1016/B978-0-444-53868-0.50018-6
10.1371/journal.pone.0210357
10.1111/1755-0998.12522
10.1017/S1464793105006950
10.1016/j.tree.2016.01.002
10.1371/journal.pone.0165252
10.1016/j.biocon.2015.12.023
10.1111/mec.13481
10.1016/j.ecolind.2017.03.053
10.1111/1755-0998.12895
10.1139/cjfas-2017-0114
10.1016/j.biocon.2014.11.040
10.1111/j.1365-294X.2012.05519.x
10.1002/ece3.3764
10.1093/bioinformatics/btu170
10.1002/edn3.38
10.1002/ece3.4653
10.1002/edn3.35
10.1371/journal.pone.0112611
10.1111/mec.13660
10.1016/j.tree.2015.08.008
10.1371/journal.pone.0130324
10.1002/ece3.4013
10.1073/pnas.70.7.2069
10.1111/fwb.12846
10.1371/journal.pone.0041732
10.1002/edn3.5
10.1093/nar/gkr732
10.1038/s42003-017-0005-3
10.1093/bioinformatics/btr507
10.1002/edn3.112
10.1007/s10531-019-01709-8
10.1371/journal.pone.0176343
10.1016/j.biocon.2014.11.019
10.1371/journal.pone.0185043
10.1007/s10592-015-0775-4
10.1016/j.biocon.2016.03.010
10.1371/journal.pone.0022746
10.1111/j.1365-294X.2012.05600.x
10.1016/j.biocon.2014.11.038
10.1038/srep40368
10.1111/mec.14920
10.1002/ece3.4802
10.1016/j.soilbio.2007.06.020
10.1111/1365-2664.12598
10.1111/jfb.14177
10.1111/j.1365-294X.2011.05418.x
10.1002/edn3.111
10.1111/mec.13428
10.1371/journal.pone.0023398
10.1016/j.ab.2006.01.051
10.1371/journal.pone.0035868
10.1111/1755-0998.12338
10.1890/15-1733.1
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd
2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
DOA
DOI 10.1002/edn3.135
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2637-4943
EndPage 120
ExternalDocumentID oai_doaj_org_article_81dbf525d1c648dcae9cac1eb92b45e4
10_1002_edn3_135
EDN3135
Genre article
GeographicLocations Rupert River
Canada
GeographicLocations_xml – name: Canada
– name: Rupert River
GrantInformation_xml – fundername: Mitacs
  funderid: IT08411
GroupedDBID 0R~
1OC
24P
88I
AAHHS
ABUWG
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AVUZU
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
EBS
EDH
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IEP
IHR
ITC
M2P
M~E
OK1
PATMY
PIMPY
PQQKQ
PYCSY
WIN
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c3085-23e55ce90cb3bce8916e708669a1aea4842949be2dbe840574c817abdee17f903
IEDL.DBID BENPR
ISSN 2637-4943
IngestDate Wed Aug 27 01:30:59 EDT 2025
Fri Jul 25 03:42:49 EDT 2025
Tue Jul 01 01:32:07 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Jan 22 16:30:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3085-23e55ce90cb3bce8916e708669a1aea4842949be2dbe840574c817abdee17f903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0622-123X
0000-0002-8085-9709
OpenAccessLink https://www.proquest.com/docview/2478782047?pq-origsite=%requestingapplication%
PQID 2478782047
PQPubID 4570191
PageCount 0
ParticipantIDs doaj_primary_oai_doaj_org_article_81dbf525d1c648dcae9cac1eb92b45e4
proquest_journals_2478782047
crossref_citationtrail_10_1002_edn3_135
crossref_primary_10_1002_edn3_135
wiley_primary_10_1002_edn3_135_EDN3135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Environmental DNA (Hoboken, N.J.)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2007; 39
2017; 7
2015; 183
2015; 30
2019; 14
2019; 17
2016; 31
2014; 62
2018; 8
2017; 74
2018; 2
2020; 2
2018; 1
2017; 79
2019; 28
2019; 510
2014; 9
2012; 24
2011; 27
2014; 51
2012; 21
2016; 197
2016; 194
2017; 62
2015; 15
2019; 9
2015; 58
1973; 70
2017; 26
2019; 1
2015; 10
2014; 48
2016; 53
2006; 351
2011; 39
2016; 17
2011; 6
2016; 16
2016; 59
2016; 11
2006; 81
2018; 18
2016; 7
2020
2017; 12
2019
2018
2017
2016
2014; 30
2018; 12
2012; 7
2016; 26
2016; 25
2018; 15
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
Fukaya K. (e_1_2_9_27_1) 2018
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Chatterjee S. (e_1_2_9_12_1) 2017
Miya M. (e_1_2_9_53_1) 2015; 58
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
World Wide Fund for Nature (e_1_2_9_80_1) 2018
Menning D. (e_1_2_9_52_1) 2018; 12
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
Piñol J. (e_1_2_9_58_1) 2018; 15
e_1_2_9_59_1
R Core Team (e_1_2_9_61_1) 2016
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
Ushio M. (e_1_2_9_77_1) 2018; 2
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Oksanen J. (e_1_2_9_56_1) 2016
References_xml – volume: 15
  start-page: 543
  year: 2015
  end-page: 556
  article-title: Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data
  publication-title: Molecular Ecology Resources
– volume: 8
  start-page: 6330
  year: 2018
  end-page: 6341
  article-title: Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt ( )
  publication-title: Ecology and Evolution
– volume: 74
  start-page: 1
  year: 2017
  end-page: 5
  article-title: At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 197
  start-page: 131
  year: 2016
  end-page: 138
  article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system
  publication-title: Biological Conservation
– volume: 12
  year: 2017
  article-title: A noninvasive tool to assess the distribution of Pacific Lamprey ( ) in the Columbia River basin
  publication-title: PLoS One
– volume: 12
  year: 2017
  article-title: Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding
  publication-title: PLoS One
– volume: 7
  start-page: 1299
  year: 2016
  end-page: 1307
  article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species
  publication-title: Methods in Ecology and Evolution
– volume: 1
  start-page: 5
  year: 2019
  end-page: 13
  article-title: Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature
  publication-title: Environmental DNA
– volume: 9
  start-page: 1135
  year: 2019
  end-page: 1146
  article-title: Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution
  publication-title: Ecology and Evolution
– volume: 12
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA
  publication-title: Conservation Genetics Resources
– volume: 70
  start-page: 2069
  year: 1973
  end-page: 2071
  article-title: Predator‐prey patterns
  publication-title: Proceedings of the National Academy of Science of the United States of America
– volume: 48
  start-page: 1819
  year: 2014
  end-page: 1827
  article-title: Environmental Conditions Influence eDNA Persistence in Aquatic Systems
  publication-title: Environmental Science & Technology
– volume: 2
  start-page: 255
  year: 2020
  end-page: 260
  article-title: Pathway to Increase Standards and Competency of eDNA Surveys (PISCeS)—Advancing collaboration and standardization efforts in the field of eDNA
  publication-title: Environmental DNA
– volume: 183
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Environmental DNA‐An emerging tool in conservation for monitoring past and present biodiversity
  publication-title: Biological Conservations
– volume: 194
  start-page: 209
  year: 2016
  end-page: 216
  article-title: Understanding environmental DNA detection probabilities: A case study using a stream‐dwelling char
  publication-title: Biological Conservation
– volume: 31
  start-page: 171
  issue: 3
  year: 2016
  end-page: 172
  article-title: Emerging technologies to conserve biodiversity: Further opportunities via genomics. Response to Pimm et al
  publication-title: Trends in Ecology & Evolution
– volume: 6
  year: 2011
  article-title: Molecular detection of vertebrates in stream water: A demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders
  publication-title: PLoS One
– year: 2018
– volume: 25
  start-page: 527
  year: 2016
  end-page: 541
  article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA
  publication-title: Molecular Ecology
– volume: 26
  start-page: 1645
  year: 2016
  end-page: 1659
  article-title: A framework for inferring biological communities from environmental DNA
  publication-title: Ecological Applications
– volume: 510
  start-page: 31
  year: 2019
  end-page: 45
  article-title: Species‐specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 21
  start-page: 2039
  year: 2012
  end-page: 2044
  article-title: Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next‐generation DNA sequencing
  publication-title: Molecular Ecology
– volume: 21
  start-page: 2555
  year: 2012
  end-page: 2558
  article-title: Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA
  publication-title: Molecular Ecology
– volume: 8
  start-page: 7763
  year: 2018
  end-page: 7777
  article-title: eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity
  publication-title: Ecology and Evolution
– volume: 9
  year: 2014
  article-title: Transport distance of invertebrate environmental DNA in a natural river
  publication-title: PLoS One
– volume: 18
  start-page: 940
  year: 2018
  end-page: 952
  article-title: Towards robust and repeatable sampling methods in eDNA‐based studies
  publication-title: Molecular Ecology Resources
– volume: 39
  start-page: 2977
  year: 2007
  end-page: 2991
  article-title: Cycling of extracellular DNA in the soil environment
  publication-title: Soil Biology and Biochemistry
– volume: 2
  start-page: 362
  year: 2020
  end-page: 372
  article-title: Caged fish experiment and hydrodynamic bidimensional modeling highlight the importance to consider 2D dispersion in fluvial environmental DNA studies
  publication-title: Environmental DNA
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 81
  start-page: 163
  year: 2006
  article-title: Freshwater biodiversity: Importance, threats, status and conservation challenges
  publication-title: Biological Reviews
– volume: 26
  start-page: 58721
  year: 2017
  end-page: 65895
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Molecular Ecology
– volume: 9
  year: 2014
  article-title: Using environmental DNA to census marine fishes in a large mesocosm
  publication-title: PLoS One
– volume: 1
  start-page: 4
  year: 2018
  article-title: Acidity promotes degradation of multi‐species environmental DNA in lotic mesocosms
  publication-title: Communications Biology
– volume: 10
  start-page: 1
  year: 2015
  end-page: 16
  article-title: Can DNA‐based ecosystem assessments quantify species abundance? Testing primer bias and biomass‐sequence relationships with an innovative metabarcoding protocol
  publication-title: PLoS One
– volume: 21
  start-page: 2565
  year: 2012
  end-page: 2573
  article-title: Monitoring endangered freshwater biodiversity using environmental DNA
  publication-title: Molecular Ecology
– volume: 351
  start-page: 308
  year: 2006
  end-page: 310
  article-title: SPUD: A quantitative PCA assay for the detection of inhibitors in nucleic acid preparations
  publication-title: Analytical Biochemistry
– volume: 28
  start-page: 420
  year: 2019
  end-page: 430
  article-title: How quantitative is metabarcoding: A meta‐analytical approach
  publication-title: Molecular Ecology
– volume: 6
  start-page: 8
  year: 2011
  end-page: 11
  article-title: Persistence of environmental DNA in freshwater ecosystems
  publication-title: PLoS One
– volume: 16
  start-page: 29
  year: 2016
  end-page: 41
  article-title: Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding
  publication-title: Molecular Ecology Resources
– volume: 28
  start-page: 983
  year: 2019
  end-page: 1001
  article-title: Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA
  publication-title: Biodiversity and Conservation
– volume: 14
  year: 2019
  article-title: Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods
  publication-title: PLoS One
– volume: 8
  year: 2018
  article-title: Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation
  publication-title: Scientific Reports
– volume: 51
  start-page: 1450
  year: 2014
  end-page: 1459
  article-title: The detection of aquatic animal species using environmental DNA – A review of eDNA as a survey tool in ecology
  publication-title: Journal of Applied Ecology
– volume: 11
  start-page: 1
  year: 2016
  end-page: 19
  article-title: Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system
  publication-title: PLoS One
– volume: 59
  start-page: 991
  year: 2016
  end-page: 1007
  article-title: Improving herpetological surveys in eastern North America using the environmental DNA method
  publication-title: Genome
– volume: 12
  year: 2017
  article-title: Persistence of marine fish environmental DNA and the influence of sunlight
  publication-title: PLoS One
– volume: 7
  start-page: 3
  year: 2012
  end-page: 10
  article-title: Estimation of fish biomass using environmental DNA
  publication-title: PLoS One
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: A flexible trimmer for Illumina Sequence Data
  publication-title: Bioinformatics
– volume: 53
  start-page: 1148
  year: 2016
  end-page: 1157
  article-title: Quantifying relative fish abundance with eDNA: A promising tool for fisheries management
  publication-title: Journal of Applied Ecology
– volume: 7
  year: 2017
  article-title: Environmental DNA metabarcoding reveals local fish communities in a species‐rich coastal sea
  publication-title: Scientific Reports
– volume: 30
  start-page: 685
  year: 2015
  end-page: 696
  article-title: Emerging technologies to conserve biodiversity
  publication-title: Trends in Ecology & Evolution
– year: 2016
– volume: 24
  year: 2012
– year: 2020
  article-title: Comparing environmental metabarcoding and trawling survey of demersal fish communities in the Gulf of St. Lawrence, Canada
  publication-title: Environmental DNA
– volume: 25
  start-page: 929
  year: 2016
  end-page: 942
  article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding
  publication-title: Molecular Ecology
– volume: 7
  start-page: 1
  year: 2012
  end-page: 9
  article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples
  publication-title: PLoS One
– volume: 8
  start-page: 11964
  year: 2018
  end-page: 11974
  article-title: Environmental DNA analysis as a non‐invasive quantitative tool for reproductive migration of a threatened endemic fish in rivers
  publication-title: Ecology and Evolution
– volume: 8
  start-page: 3468
  year: 2018
  end-page: 3477
  article-title: An analytical framework for estimating aquatic species density from environmental DNA
  publication-title: Ecology and Evolution
– start-page: 14
  year: 2017
  article-title: An analysis of threats to marine biodiversity and aquatic ecosystems
  publication-title: SSRN Electronic Journal
– volume: 7
  year: 2017
  article-title: Seasonal variation in environmental DNA in relation to population size and environmental factors
  publication-title: Scientific Reports
– volume: 62
  start-page: 1273
  year: 2014
  end-page: 1284
  article-title: History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments
  publication-title: Revista De Biología Tropical
– year: 2018
  article-title: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling
  publication-title: Biorxiv
– volume: 62
  start-page: 30
  year: 2017
  end-page: 39
  article-title: Environmental DNA analysis for estimating the abundance and biomass of stream fish
  publication-title: Freshwater Biology
– volume: 9
  year: 2014
  article-title: The relationship between the distribution of common carp and their environmental DNA in a small lake
  publication-title: PLoS One
– volume: 183
  start-page: 1
  year: 2015
  end-page: 3
  article-title: Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms
  publication-title: Biological Conservation
– volume: 18
  start-page: 927
  year: 2018
  end-page: 939
  article-title: Minimizing polymerase biases in metabarcoding
  publication-title: Molecular Ecology Resources
– volume: 183
  start-page: 85
  year: 2015
  end-page: 92
  article-title: Quantifying effects of UV‐B, temperature, and pH on eDNA degradation in aquatic microcosms
  publication-title: Biological Conservation
– volume: 1
  start-page: 26
  year: 2019
  end-page: 39
  article-title: Temporal and spatial variation in distribution of fish environmental DNA in England's largest lake
  publication-title: Environmental DNA
– volume: 2
  year: 2018
  article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing
  publication-title: Metabarcoding and Metagenomics
– volume: 79
  start-page: 37
  year: 2017
  end-page: 46
  article-title: Anthropogenic stressors and riverine fish extinctions
  publication-title: Ecological Indicators
– volume: 11
  year: 2016
  article-title: Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes
  publication-title: PLoS One
– volume: 25
  start-page: 3101
  year: 2016
  end-page: 3119
  article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods
  publication-title: Molecular Ecology
– volume: 17
  year: 2019
  article-title: Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA
  publication-title: Global Ecology and Conservation
– volume: 1
  start-page: 368
  year: 2019
  end-page: 384
  article-title: Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears
  publication-title: Environmental DNA
– volume: 17
  start-page: 1
  year: 2016
  end-page: 17
  article-title: The ecology of environmental DNA and implications for conservation genetics
  publication-title: Conservation Genetics
– volume: 15
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods
  publication-title: Molecular Ecology Resources
– volume: 16
  start-page: 1401
  year: 2016
  end-page: 1414
  article-title: Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions
  publication-title: Molecular Ecology Resources
– volume: 1
  start-page: 342
  year: 2019
  end-page: 358
  article-title: Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity
  publication-title: Environmental DNA
– volume: 58
  start-page: 257
  year: 2015
  article-title: MiFish, a set of universal primers for metabarcoding environmental DNA from fishes: Detection of > 230 species from aquarium tanks and coral reefs in the subtropical western North Pacific
  publication-title: Genome
– volume: 39
  year: 2011
  article-title: EcoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis
  publication-title: Nucleic Acids Research
– year: 2019
  article-title: Environmental DNA is not the tool by itself
  publication-title: Journal of Fish Biology
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0157366
– ident: e_1_2_9_36_1
  doi: 10.1016/j.jembe.2018.09.004
– ident: e_1_2_9_19_1
  doi: 10.1111/1755-0998.12907
– ident: e_1_2_9_40_1
  doi: 10.1002/ece3.4213
– ident: e_1_2_9_43_1
  doi: 10.1002/edn3.88
– ident: e_1_2_9_62_1
  doi: 10.1111/1365-2664.12306
– ident: e_1_2_9_7_1
  doi: 10.1021/es404734p
– ident: e_1_2_9_9_1
  doi: 10.1038/srep46294
– ident: e_1_2_9_18_1
  doi: 10.15517/rbt.v62i4.13231
– ident: e_1_2_9_10_1
  doi: 10.1371/journal.pone.0169334
– ident: e_1_2_9_24_1
  doi: 10.1111/1755-0998.12433
– volume: 12
  start-page: 1
  year: 2018
  ident: e_1_2_9_52_1
  article-title: Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA
  publication-title: Conservation Genetics Resources
– ident: e_1_2_9_14_1
  doi: 10.1371/journal.pone.0088786
– ident: e_1_2_9_30_1
  doi: 10.1111/2041-210X.12595
– ident: e_1_2_9_15_1
  doi: 10.1111/mec.14350
– start-page: 482489
  year: 2018
  ident: e_1_2_9_27_1
  article-title: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling
  publication-title: Biorxiv
– ident: e_1_2_9_59_1
  doi: 10.1038/s41598-018-28424-8
– ident: e_1_2_9_64_1
  doi: 10.1016/j.gecco.2019.e00547
– ident: e_1_2_9_39_1
  doi: 10.1139/gen-2015-0218
– ident: e_1_2_9_34_1
  doi: 10.1371/journal.pone.0086175
– ident: e_1_2_9_82_1
  doi: 10.1002/edn3.7
– ident: e_1_2_9_46_1
  doi: 10.1016/B978-0-444-53868-0.50018-6
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0210357
– ident: e_1_2_9_41_1
  doi: 10.1111/1755-0998.12522
– ident: e_1_2_9_21_1
  doi: 10.1017/S1464793105006950
– ident: e_1_2_9_72_1
  doi: 10.1016/j.tree.2016.01.002
– ident: e_1_2_9_75_1
  doi: 10.1371/journal.pone.0165252
– ident: e_1_2_9_79_1
  doi: 10.1016/j.biocon.2015.12.023
– ident: e_1_2_9_60_1
  doi: 10.1111/mec.13481
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ecolind.2017.03.053
– ident: e_1_2_9_54_1
  doi: 10.1111/1755-0998.12895
– ident: e_1_2_9_35_1
  doi: 10.1139/cjfas-2017-0114
– ident: e_1_2_9_29_1
  doi: 10.1016/j.biocon.2014.11.040
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365-294X.2012.05519.x
– ident: e_1_2_9_11_1
  doi: 10.1002/ece3.3764
– volume-title: Living Planet Report‐2018: Aiming higher
  year: 2018
  ident: e_1_2_9_80_1
– ident: e_1_2_9_8_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_9_65_1
  doi: 10.1002/edn3.38
– ident: e_1_2_9_51_1
  doi: 10.1002/ece3.4653
– ident: e_1_2_9_45_1
  doi: 10.1002/edn3.35
– ident: e_1_2_9_22_1
  doi: 10.1371/journal.pone.0112611
– ident: e_1_2_9_31_1
  doi: 10.1111/mec.13660
– ident: e_1_2_9_57_1
  doi: 10.1016/j.tree.2015.08.008
– ident: e_1_2_9_23_1
  doi: 10.1371/journal.pone.0130324
– ident: e_1_2_9_32_1
  doi: 10.1002/ece3.4013
– ident: e_1_2_9_83_1
  doi: 10.1073/pnas.70.7.2069
– volume: 2
  start-page: e23297
  year: 2018
  ident: e_1_2_9_77_1
  article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing
  publication-title: Metabarcoding and Metagenomics
– ident: e_1_2_9_20_1
  doi: 10.1111/fwb.12846
– ident: e_1_2_9_73_1
  doi: 10.1371/journal.pone.0041732
– ident: e_1_2_9_44_1
  doi: 10.1002/edn3.5
– volume: 15
  start-page: 1
  year: 2018
  ident: e_1_2_9_58_1
  article-title: Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods
  publication-title: Molecular Ecology Resources
– ident: e_1_2_9_63_1
  doi: 10.1093/nar/gkr732
– ident: e_1_2_9_66_1
  doi: 10.1038/s42003-017-0005-3
– ident: e_1_2_9_50_1
  doi: 10.1093/bioinformatics/btr507
– ident: e_1_2_9_49_1
  doi: 10.1002/edn3.112
– ident: e_1_2_9_69_1
  doi: 10.1007/s10531-019-01709-8
– ident: e_1_2_9_4_1
  doi: 10.1371/journal.pone.0176343
– ident: e_1_2_9_76_1
  doi: 10.1016/j.biocon.2014.11.019
– ident: e_1_2_9_3_1
  doi: 10.1371/journal.pone.0185043
– ident: e_1_2_9_6_1
  doi: 10.1007/s10592-015-0775-4
– ident: e_1_2_9_67_1
  doi: 10.1016/j.biocon.2016.03.010
– ident: e_1_2_9_28_1
  doi: 10.1371/journal.pone.0022746
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1365-294X.2012.05600.x
– ident: e_1_2_9_70_1
  doi: 10.1016/j.biocon.2014.11.038
– volume: 58
  start-page: 257
  year: 2015
  ident: e_1_2_9_53_1
  article-title: MiFish, a set of universal primers for metabarcoding environmental DNA from fishes: Detection of > 230 species from aquarium tanks and coral reefs in the subtropical western North Pacific
  publication-title: Genome
– ident: e_1_2_9_81_1
  doi: 10.1038/srep40368
– start-page: 14
  year: 2017
  ident: e_1_2_9_12_1
  article-title: An analysis of threats to marine biodiversity and aquatic ecosystems
  publication-title: SSRN Electronic Journal
– ident: e_1_2_9_42_1
  doi: 10.1111/mec.14920
– ident: e_1_2_9_33_1
  doi: 10.1002/ece3.4802
– ident: e_1_2_9_47_1
  doi: 10.1016/j.soilbio.2007.06.020
– ident: e_1_2_9_37_1
  doi: 10.1111/1365-2664.12598
– ident: e_1_2_9_38_1
  doi: 10.1111/jfb.14177
– ident: e_1_2_9_74_1
  doi: 10.1111/j.1365-294X.2011.05418.x
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_9_61_1
– ident: e_1_2_9_2_1
  doi: 10.1002/edn3.111
– volume-title: vegan: Community ecology package. R package version 2.5‐2
  year: 2016
  ident: e_1_2_9_56_1
– ident: e_1_2_9_78_1
  doi: 10.1111/mec.13428
– ident: e_1_2_9_16_1
  doi: 10.1371/journal.pone.0023398
– ident: e_1_2_9_55_1
  doi: 10.1016/j.ab.2006.01.051
– ident: e_1_2_9_71_1
  doi: 10.1371/journal.pone.0035868
– ident: e_1_2_9_25_1
  doi: 10.1111/1755-0998.12338
– ident: e_1_2_9_68_1
  doi: 10.1890/15-1733.1
SSID ssj0002171031
Score 2.413204
Snippet Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods, such as...
Abstract Accurate data characterizing species distribution and abundance are critical for conservation and management of aquatic resources. Inventory methods,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms Abundance
Aquatic ecosystems
Biodiversity
Biomass
Biomonitoring
Chlorophyll
Deoxyribonucleic acid
Dissolved oxygen
DNA
environmental DNA
Experiments
Fish
Freshwater fish
freshwater fish communities
Geographical distribution
Human resources
Laboratories
metabarcoding
Polls & surveys
qPCR
Redundancy
Relative abundance
Resource conservation
Resource management
Sander vitreus
Species richness
Water analysis
Water filtration
Water purification
Water sampling
Title Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fedn3.135
https://www.proquest.com/docview/2478782047
https://doaj.org/article/81dbf525d1c648dcae9cac1eb92b45e4
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9si-CL-Iln6zGC6FNostkkG1-kH1eK0KOIhb6F_Zj0Amdy5q6VvviP-M86k-TOFtSXBJIlLJmZnd_M7sxPiHdxlPDuGNm3zWSgdJoEVro40A7T0muLVnPt8Nk0Pb1Qny-TyyHhthyOVa7XxG6h9o3jHPm-5C4y5K5U9mnxPWDWKN5dHSg0tsQOLcGagq-dw8n0_Msmy0KAm3kM1l1nQ7mPvo6Z7OGeH-ra9d_DmHeRaudqTp6IxwNGhINeqE_FA6yfiYc9a-Ttc_Gr2-aHOyVqNPh4egCEP4HL6Tsz5XwdNCWUFE_PfhCibKGsljNwfUUI91H9CEcbFkLghCzQpEx_TN7DVTWf17iC5XV7Q-KGqgYDpDGELGF269umZ9CpHFTfFkzOxDN5IS5OJl-PToOBYyFwMdcdyBiTxGEeOhtbh5rQImYU5qS5iQwapclfqdyi9BY1gzvldJQZ6xGjrMzD-KXYrpsaXwnwNo8p2kIkISkdSlMqW4aE3r1JSvKBI_Fh_ccLNzQgZx6MedG3TpYFy6Yg2YzE283IRd904y9jDllom_fcJrt70LRXxWB1BYFxWyYy8ZFLlfbOYO6Mi9Dm0qoE1UjsrUVeDLa7LP5o2ki879Tgn5MoJsfTmO6v__-dXfFI8lGYLnOzJ7ZX7TW-ISyzsmOxJdX5eFDbcZcRoOvZz8lvjar7sQ
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3battAEF1Sh9K-lF6pm7TdQi9PItJqdSuUksQOTpOIUhLIm7KXUWxwJUd2Gvwt_Yd-Y2d0cRNo-5YngbQsi2Z29szszBzG3vpeQLdjuL91JBwZh4GjhfGd2ECY21iDjql2-CgNRyfyy2lwusZ-dbUwlFbZ2cTaUNvSUIx8S1AXGTyuZPR5duEQaxTdrnYUGo1aHMDyCl22-af9Acr3nRB7w-PdkdOyCjjGp0x74UMQGEhco31tIEZ8BBEC-zBRngIlY7TQMtEgrIaY4Iw0sRcpbQG8KE9cH-e9w9alj65Mj63vDNOv31ZRHQT4xJvQdbl1xRbYwidyiRvnXk0PcAPTXkfG9dG295A9aDEp326U6BFbg-Ixu9uwVC6fsJ91WgG_VhKHgwfpNke8y6l8vzYLFB_kZc5z9N_HV4hgK55P5mNumgoU6tv6ke-uWA85BYA5Lko1afmWn0-m0wIWfH5Z_UD14pOCK44aikiWj5e2KhvGnonhk-8zIoOilTxlJ7fy95-xXlEW8JxxqxMfvTsAVAoZu0LlUucuegtWBTmeuX32ofvjmWkbnhPvxjRrWjWLjGSToWz67M1q5Kxp8vGXMTsktNV3astdvyir86zd5RmCf50HIrCeCWVsjYLEKOOBToSWAcg-2-xEnrW2Yp790ew-e1-rwT8XkQ0HqY_PF_-f5zW7Nzo-OswO99ODDXZfUBpOHTXaZL1FdQkvEUct9KtWeTk7u-398huBhTVk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELXKViBeEFextICRuDxFmzjODQmhtrurlkJUISr1zY3tSXelJdlmt1T7LfwJX8dMLksrAW99ipRYlpUZj8-MZ-Yw9tr3Arodw_2tI-HIOAwcLYzvxAbC3MYadEy1w1_ScP9YfjoJTjbYr64WhtIqO5tYG2pbGoqRDwR1kcHjSkaDvE2LOBqOP87PHWKQopvWjk6jUZFDWF2i-7b4cDBEWb8RYjz6trfvtAwDjvEp6174EAQGEtdoXxuIEStBhCA_TDIvg0zGaK1lokFYDTFBG2liL8q0BfCiPHF9nPcW24zQK3J7bHN3lB59XUd4EOwTh0LX8dYVA7CFT0QT187AmirgGr69ipLrY258n91r8SnfaRTqAduA4iG73TBWrh6xn3WKAb9SHoeDh-kOR-zLqZS_NhEUK-RlznP05SeXiGYrnk8XE26aahTq4fqe760ZEDkFgzkuKmtS9C0_m85mBSz54qL6garGpwXPOGorolo-WdmqbNh7poZPv8-JGIpW8pgd38jff8J6RVnAU8atTnz09ABQQWTsiiyXOnfRc7BZkOP522fvuj-uTNv8nDg4Zqpp2ywUyUahbPrs1XrkvGn48ZcxuyS09Xdq0V2_KKsz1e54hY6AzgMRWM-EMrYmg8RkxgOdCC0DkH223YlctXZjof5oeZ-9rdXgn4tQo2Hq4_PZ_-d5ye7gPlGfD9LDLXZXUEZOHUDaZr1ldQHPEVIt9YtWdzk7vent8huHkjmZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+environmental+DNA+for+biomonitoring+of+freshwater+fish+communities%3A+Comparison+with+established+gillnet+surveys+in+a+boreal+hydroelectric+impoundment&rft.jtitle=Environmental+DNA+%28Hoboken%2C+N.J.%29&rft.au=Boivin%E2%80%90Delisle%2C+Damien&rft.au=Laporte%2C+Martin&rft.au=Burton%2C+Fr%C3%A9d%C3%A9ric&rft.au=Dion%2C+Ren%C3%A9&rft.date=2021-01-01&rft.issn=2637-4943&rft.eissn=2637-4943&rft.volume=3&rft.issue=1&rft.spage=105&rft.epage=120&rft_id=info:doi/10.1002%2Fedn3.135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_edn3_135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-4943&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-4943&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-4943&client=summon