Advances in Strain‐Induced Noble Metal Nanohybrids for Electro‐Catalysis: From Theoretical Mechanisms to Practical Use
In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabricat...
Saved in:
Published in | ChemElectroChem Vol. 11; no. 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.08.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided.
In this review, we provide a summary of recent advances in approaches to controlling noble metal nanohybrids, characterization techniques, and studies of electrocatalysis applications. Additionally, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. The perspectives on the future research of noble metal hybrid electrocatalysts were also provided. |
---|---|
AbstractList | Abstract In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided. In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided. In this review, we provide a summary of recent advances in approaches to controlling noble metal nanohybrids, characterization techniques, and studies of electrocatalysis applications. Additionally, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. The perspectives on the future research of noble metal hybrid electrocatalysts were also provided. In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided. |
Author | Li, Ling‐Tong Chu, You‐Qun Chen, Zhao‐Yang Zhao, Feng‐Ming Zhu, Ying‐Hong |
Author_xml | – sequence: 1 givenname: Zhao‐Yang orcidid: 0000-0002-8613-7053 surname: Chen fullname: Chen, Zhao‐Yang organization: Zhejiang University of Technology – sequence: 2 givenname: Ling‐Tong surname: Li fullname: Li, Ling‐Tong organization: Zhejiang University of Technology – sequence: 3 givenname: Feng‐Ming surname: Zhao fullname: Zhao, Feng‐Ming organization: Zhejiang University of Technology – sequence: 4 givenname: Ying‐Hong surname: Zhu fullname: Zhu, Ying‐Hong organization: Zhejiang University of Technology – sequence: 5 givenname: You‐Qun surname: Chu fullname: Chu, You‐Qun email: chenzhy@zjut.edu.cn, chuyq@zjut.edu.cn organization: Zhejiang University of Technology |
BookMark | eNqFkc1uEzEUhS3USpS2W9aWWCf4bxwPu2qUlkhpQaJdW_65Jo4m42JPQOmqj9Bn5ElwGVTYsbpX1985PtJ5g46GNABCbymZU0LYewe9mzPCBCG0Ea_QCaOtnBFG5dE_-2t0XsqWVIaShit5gh4u_HczOCg4DvjLmE0cfj4-rQa_d-DxTbI94GsYTY9vzJA2B5ujLzikjJc9uDGnSnemvh9KLB_wZU47fLuBlGGMrqquwW3MEMuu4DHhz9m46X5X4AwdB9MXOP8zT9Hd5fK2-zhbf7padRfrmeNEiVkbhCTUNMypBQjObKskhcA8qNaGdiGFU4GbYHhoCOcBrFTU0oWyxDrSCH6KVpOvT2ar73PcmXzQyUT9-5DyV21yTdWDbprWN1RKLygTZuFso5R1QkojjPPKV693k9d9Tt_2UEa9Tfs81Pi6hpWKcEpYpeYT5XIqJUN4-ZUS_VyXfq5Lv9RVBe0k-BF7OPyH1t1y3f3V_gLwEZyf |
Cites_doi | 10.1021/acsenergylett.9b00191 10.1021/ja801566d 10.1021/acsami.1c13171 10.1103/PhysRevB.102.085421 10.1021/jacs.0c08962 10.1016/j.apcatb.2021.120914 10.1002/adfm.202112362 10.1002/anie.202003654 10.1021/jacs.7b00165 10.1126/science.aah6133 10.1103/PhysRevLett.93.156801 10.1021/acs.jpclett.7b02525 10.1021/acs.chemmater.3c02956 10.1021/acs.langmuir.2c02673 10.1002/anie.202301269 10.1038/s41893-023-01101-z 10.1002/smll.202302238 10.1016/j.ijhydene.2021.07.006 10.1039/D0TA12152E 10.1021/acsami.2c19879 10.1002/cnma.201700167 10.1038/s41467-022-32581-w 10.1038/nmat4715 10.1016/j.cej.2018.11.099 10.1038/s41467-021-21956-0 10.1021/jacs.5b03034 10.1088/1361-6463/aa6b4a 10.1016/j.jcat.2011.09.039 10.1126/science.aaf7680 10.1016/S0079-6425(00)00009-8 10.1021/jacsau.0c00022 10.1021/acsenergylett.9b00845 10.1038/nmat3698 10.1021/acs.jpclett.7b01083 10.1016/S1872-2067(22)64186-X 10.1002/adfm.202006484 10.1126/science.aaf5050 10.1002/smll.201603423 10.1039/D1NR02232F 10.1002/smll.202309675 10.3389/fchem.2023.1138932 10.1039/D3SC02862C 10.1103/PhysRevLett.81.2819 10.1021/ja505716v 10.1002/adma.201302820 10.1038/nmat4115 10.1002/celc.202300659 10.1002/celc.202200651 10.1021/nn506721f 10.1088/1361-6528/ac75f8 10.1126/science.1141483 10.1021/acs.inorgchem.3c00293 10.1038/am.2015.4 10.1016/j.jallcom.2023.170430 10.1126/science.aaw7493 10.1002/anie.202110636 10.1016/j.trechm.2023.08.004 10.1021/acs.nanolett.6b04731 10.1016/j.isci.2023.107072 10.1021/ja711093j 10.1039/C4CS00484A 10.1126/science.aaz7555 10.1126/science.1172104 10.1002/anie.202203564 10.1039/C8CS00846A 10.1021/ja105401p 10.1021/acsanm.3c00969 10.1126/science.aad8892 10.1016/j.mser.2010.06.014 10.1021/acsanm.1c03004 10.1002/adfm.202208760 10.1021/acsenergylett.8b00454 10.1002/sstr.202200390 10.1016/j.nanoen.2016.02.018 10.1002/adma.201903616 10.1021/acsnano.1c11145 10.1038/s41467-020-16237-1 10.1038/nature01638 10.1038/s41598-022-06595-9 10.1021/acs.chemrev.9b00443 10.1038/s41467-023-38237-7 10.1016/j.apcatb.2017.08.085 10.1002/adma.201701331 10.1002/anie.202014017 10.1021/nl3022434 10.1016/j.jcat.2014.12.033 10.1021/jacsau.2c00138 10.1007/s40820-023-01060-2 10.1016/j.apsusc.2023.158286 10.1126/science.1135941 10.1021/acscatal.0c03406 10.1021/acs.nanolett.3c03178 10.1021/acs.chemrev.2c00880 10.1103/PhysRevB.39.12554 10.1039/C5NR02529J 10.1021/jacs.6b07213 10.1126/science.1134569 10.1038/nmat2083 10.1103/PhysRevB.33.3657 10.1002/adma.202207555 10.1038/s41467-019-11765-x 10.1021/acs.chemmater.7b00046 10.1021/acscentsci.0c01532 10.1016/j.apcatb.2020.119281 10.3389/fchem.2022.865214 10.1016/j.jallcom.2023.169245 10.1021/acscatal.6b00997 10.1021/jz300192b 10.1021/acsnano.3c04516 10.1038/s41467-023-41097-w 10.1002/adfm.201910107 10.1002/anie.201601016 10.1002/adma.201807166 10.1039/D2MA01018F 10.1038/ncomms11850 10.1021/ja408768e 10.1021/acs.nanolett.3c00535 10.1038/ncomms2472 10.1021/nl102369k 10.1016/j.apsadv.2022.100332 10.1039/C6CY01677D 10.1016/j.chempr.2020.06.004 10.1002/adma.201907879 10.1021/ja2047655 10.1016/j.mtener.2021.100920 10.1021/acsmaterialslett.1c00124 10.1021/acscatal.7b00410 10.1021/acs.accounts.6b00596 10.1039/D1NR07019C 10.1002/admi.202201934 10.1002/cssc.201300447 10.1002/adma.202008508 10.1016/j.electacta.2012.10.124 10.1038/s41586-021-03870-z 10.1021/jacs.9b12005 10.1016/S0304-3991(98)00035-7 10.1002/anie.200462335 10.1126/science.aaa1394 10.1039/D2TA01045C 10.1002/smll.202103064 10.1021/acs.nanolett.0c04395 10.1021/jacs.9b10709 10.1021/nn502259g 10.1038/s41467-018-03372-z 10.1016/j.jhazmat.2022.128998 10.1002/adfm.202007423 10.1021/acscatal.0c00224 10.1021/acscatal.2c01944 10.1038/s41467-023-40246-5 10.1039/D2NR05810C 10.1039/C8CP06756B 10.1021/nl8034724 10.1016/j.apsusc.2023.156945 10.1126/science.1217654 10.1021/acsami.0c13303 10.1002/adma.202006292 10.1021/acsami.1c22601 10.1002/adfm.202106401 10.1021/acs.chemrev.0c00454 10.1002/adma.202209307 10.1021/acs.chemrev.3c00081 10.1038/s41467-023-39822-6 10.1002/celc.202201007 10.1021/acs.jpclett.5b01746 10.1021/nn303298s 10.1021/acscatal.0c00040 10.1038/natrevmats.2017.59 10.1038/ncomms3481 10.1038/nmat1957 10.1002/cssc.201600090 10.1002/cctc.202300454 10.1002/anie.202014556 10.1021/nn503946t 10.1039/C5CC03353E 10.1002/adma.201300515 10.1038/s41467-018-05055-1 10.1038/s41563-018-0133-2 10.1007/s40820-023-01102-9 10.1039/D3NJ02807K 10.1016/j.joule.2021.05.005 10.1021/jacs.9b09038 10.1021/jacs.7b12306 10.1016/j.nantod.2010.08.006 10.1038/s41467-022-31468-0 10.1021/acsaem.0c02989 10.1038/s41467-023-38536-z 10.1038/s41598-018-26182-1 10.1002/adfm.201903295 10.1021/acs.accounts.3c00067 10.1016/j.colsurfa.2022.130358 10.1021/acscatal.8b00689 10.1002/aenm.201901945 10.1016/j.xcrp.2021.100602 10.1002/adma.202209810 10.1021/jacs.3c02604 10.1103/PhysRevB.91.155414 10.1002/anie.200703185 10.1002/advs.202200307 10.1126/science.1168049 10.1039/D3SC04126C 10.1021/acs.chemmater.8b03984 10.1021/jacs.7b13612 10.1039/D1TA07066E 10.1021/acsenergylett.3c00185 10.1039/C9TA09471G 10.1016/j.actamat.2011.08.033 10.1021/ac60247a013 10.1002/adfm.202316544 10.1021/jacs.2c08361 10.1016/j.ijhydene.2017.01.117 10.1080/00219592.2023.2197946 10.1002/anie.201612617 10.1021/acsnano.9b01367 10.1038/nmat2156 10.1038/s41929-019-0246-2 10.1002/anie.201604731 10.1021/jacs.9b07659 10.1038/s41570-024-00589-z 10.1038/s41929-021-00703-0 10.1021/ja0600476 10.1002/sstr.202200045 10.1016/j.cej.2022.138786 10.1093/jmicro/dfi042 10.1021/cm5047676 10.1016/j.cej.2020.124240 10.1021/jacs.5b03590 10.1021/nl500553a 10.1002/ente.202200202 10.1021/acsnano.9b07781 10.1111/j.1551-2916.2008.02601.x 10.1002/anie.202003917 10.1021/acs.chemrev.3c00332 10.1038/nmat4555 10.1016/j.ijhydene.2022.10.157 10.1016/j.nanoen.2020.105128 10.1016/j.electacta.2021.138262 10.1107/S0021889881009618 10.1002/smll.202400875 10.1039/C9TA06861A 10.1021/acs.nanolett.0c04051 10.1007/s11356-023-31406-7 10.1166/jnn.2012.6473 10.1038/s41586-022-05540-0 10.1016/j.apcatb.2016.02.045 10.1021/ja406091p 10.1039/D2NR06170H 10.1039/D1TA07488A 10.1021/acscatal.0c04054 10.1002/anie.200504386 10.1063/1.5054294 10.1021/jacs.2c11692 10.1002/adma.201603662 10.1002/anie.202312644 10.1038/s41467-022-31971-4 10.1002/adma.201706312 10.1002/aenm.201803771 10.1021/acs.inorgchem.3c01270 10.1021/acsami.3c08885 10.1038/nchem.623 10.1002/smll.202207743 10.1021/jacs.0c12696 10.1021/nn4052315 10.1126/science.1172083 10.1021/acscatal.0c03938 10.1016/j.jechem.2021.12.026 10.1002/adma.202004142 10.1002/anie.202016199 10.1021/acs.chemrev.2c00770 10.1021/ja5030172 10.1002/aenm.202102261 10.1021/acs.nanolett.5b01154 10.1126/science.1170377 10.1021/nl300067q 10.1021/acsaem.8b01345 10.1039/D2TA07647K 10.1002/smll.202206838 10.1021/ja303950v 10.1038/s41929-020-0457-6 10.1002/advs.201802005 10.1021/acs.chemmater.0c02588 10.1002/smtd.202101328 10.1016/j.ijhydene.2022.12.059 10.1021/acsnano.9b02890 10.1021/acs.chemrev.3c00382 10.1039/C6CS00328A 10.1021/acsnano.3c04281 10.1021/nn506387w 10.1016/j.ultramic.2012.07.006 10.1002/adfm.202104620 10.1039/D1EE02603H 10.1038/s44160-023-00289-4 10.1021/acsnano.8b06118 10.1039/C9CP02493J 10.1002/anie.201608601 10.1016/j.jallcom.2022.167251 10.1021/acscatal.0c04473 10.1021/acscatal.7b00120 10.1021/cr1004452 10.1038/natrevmats.2017.89 10.1002/advs.202003357 10.1002/adma.202006147 10.1021/acsami.9b16492 10.1016/0039-6028(85)90610-7 10.1021/acs.accounts.3c00119 |
ContentType | Journal Article |
Copyright | 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SR 8BQ 8FD JG9 DOA |
DOI | 10.1002/celc.202400154 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Backfiles CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_559d5166d4124a7cb588bc466a4acd8d 10_1002_celc_202400154 CELC202400154 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key Research and Development plan of China funderid: 2017YFB0307503 – fundername: National Natural Science Foundation of China funderid: 22178316 – fundername: Natural Science Foundation of Zhejiang Province funderid: LQ15B030004 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BBNVY BENPR BGLVJ BHPHI BMXJE BRXPI CCPQU DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7P MEWTI MY~ O9- P2W PDBOC R.K ROL TUS WBKPD WIN WOHZO WXSBR WYJ ZZTAW AAYXX AIURR BFHJK CITATION EJD SUPJJ 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c3084-9f4601a52c87e432b9861ef2de89bf9764c8f3afa3f5033feb681b178b0bc0543 |
IEDL.DBID | 24P |
ISSN | 2196-0216 |
IngestDate | Tue Oct 22 15:16:29 EDT 2024 Thu Oct 10 22:34:23 EDT 2024 Thu Sep 12 20:38:58 EDT 2024 Sat Aug 24 00:56:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3084-9f4601a52c87e432b9861ef2de89bf9764c8f3afa3f5033feb681b178b0bc0543 |
ORCID | 0000-0002-8613-7053 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400154 |
PQID | 3086803102 |
PQPubID | 2034587 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_559d5166d4124a7cb588bc466a4acd8d proquest_journals_3086803102 crossref_primary_10_1002_celc_202400154 wiley_primary_10_1002_celc_202400154_CELC202400154 |
PublicationCentury | 2000 |
PublicationDate | August 1, 2024 2024-08-00 20240801 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2019; 11 2019; 10 2019; 13 2013; 127 2020; 14 2024; 31 2020; 12 2020; 11 2020; 10 2012; 12 2001; 46 2011; 111 2022; 611 2015; 137 2019; 21 2023; 451 2019; 29 2010; 2 2010; 5 2021; 46 2018; 221 2019; 31 2013; 88 2020; 142 2024; 11 2020; 389 2020; 32 2016; 15 2011; 133 2017; 139 2017; 50 2016; 6 2016; 7 2022; 3 2020; 30 2022; 6 2019; 48 2022; 9 2017; 56 1967; 39 2022; 2 2020; 278 2021; 60 2016; 28 2008; 130 2016; 9 2016; 22 2017; 42 2023; 35 2013; 25 2023; 39 2020; 120 1986; 33 2017; 46 2008; 7 2020; 59 2021; 121 2020; 8 2020; 6 2020; 3 2023; 23 2013; 13 2023; 26 2021; 598 2013; 12 2023; 656 2016; 354 2016; 353 2016; 352 2010; 70 2014; 8 2012; 336 2006; 128 2009; 323 2009; 324 2021; 9 2021; 8 2023; 10 2021; 7 2015; 6 2021; 5 2021; 4 2023; 14 2023; 11 2021; 3 2021; 2 2023; 17 2023; 15 2023; 640 2023; 19 2020; 78 2017; 29 2020; 102 2021; 1 2015; 9 2015; 7 2008; 91 2022; 435 2004; 93 2023 2017; 17 2017; 13 2010; 132 2009; 9 2016; 138 2003; 423 2022; 304 2007; 46 2013; 4 2022; 23 2023; 622 1998; 81 2011; 59 2024 2013; 6 2014; 136 2023; 62 2018; 9 2018; 8 2018; 3 2012; 134 2024; 8 2018; 1 2007; 6 2014; 14 2018; 30 2022; 30 2022; 32 2015; 91 2023; 614 2022; 33 2017; 202 1989; 39 2019; 7 2019; 9 2019; 4 2019; 6 2023; 56 2019; 2 2015; 51 2021; 380 2024; 124 2021; 143 2018; 17 2023; 47 2007; 317 2007; 315 2023; 45 2006; 45 2023; 48 2022; 12 1985; 156 1981; 14 2022; 13 2021; 371 2022; 14 2022; 10 1998; 74 2018; 12 2023; 958 2022; 16 2017; 7 2017; 8 2012; 285 2021; 21 2017; 2 2017; 3 2023; 4 2023; 5 2023; 6 2023; 8 2023; 145 2022; 68 2019; 366 2011; 11 2019; 125 2023; 944 2023; 2 2015; 348 2021; 31 2021; 33 2015; 44 2022; 929 2019; 359 2015; 15 2015; 14 2018; 140 2023; 123 2015; 328 2019; 141 2005; 44 2016; 55 2021; 14 2022; 144 2021; 13 2012; 3 2015; 27 2021; 12 2021; 11 2022; 61 2021; 17 2013; 135 2005; 54 2012; 6 e_1_2_9_231_2 e_1_2_9_71_2 e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_33_2 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_277_1 e_1_2_9_216_2 e_1_2_9_292_1 e_1_2_9_107_1 e_1_2_9_122_2 e_1_2_9_145_1 e_1_2_9_168_2 e_1_2_9_337_1 e_1_2_9_183_2 e_1_2_9_314_1 e_1_2_9_18_2 e_1_2_9_160_2 e_1_2_9_352_1 e_1_2_9_242_2 e_1_2_9_265_1 e_1_2_9_45_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_288_1 e_1_2_9_22_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_280_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_325_1 e_1_2_9_157_1 e_1_2_9_348_1 e_1_2_9_195_2 e_1_2_9_68_2 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_340_1 e_1_2_9_72_2 e_1_2_9_255_1 e_1_2_9_232_2 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_2 e_1_2_9_278_1 e_1_2_9_338_2 e_1_2_9_270_1 e_1_2_9_293_1 e_1_2_9_353_1 e_1_2_9_129_1 e_1_2_9_121_2 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_167_2 e_1_2_9_217_2 e_1_2_9_315_1 e_1_2_9_182_2 e_1_2_9_19_2 e_1_2_9_330_1 e_1_2_9_61_2 e_1_2_9_220_2 e_1_2_9_243_2 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_266_1 e_1_2_9_23_2 e_1_2_9_289_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_281_1 Wang M. (e_1_2_9_319_1) 2023 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_179_1 e_1_2_9_349_1 e_1_2_9_156_2 e_1_2_9_326_2 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_194_2 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_341_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_77_2 e_1_2_9_31_2 e_1_2_9_54_1 e_1_2_9_279_1 e_1_2_9_294_1 e_1_2_9_339_2 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_271_1 Wang X. (e_1_2_9_307_1) 2022; 611 e_1_2_9_331_1 e_1_2_9_354_1 e_1_2_9_101_1 e_1_2_9_147_1 e_1_2_9_124_2 e_1_2_9_162_2 e_1_2_9_316_1 e_1_2_9_218_1 e_1_2_9_16_2 e_1_2_9_185_1 Xu Y. (e_1_2_9_299_1) 2024 e_1_2_9_39_2 Zhu J. (e_1_2_9_136_1) 2023; 6 e_1_2_9_244_2 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_2 e_1_2_9_66_2 e_1_2_9_206_1 e_1_2_9_267_1 e_1_2_9_43_2 e_1_2_9_327_2 e_1_2_9_81_1 e_1_2_9_282_1 e_1_2_9_159_2 e_1_2_9_113_1 e_1_2_9_342_1 e_1_2_9_8_2 e_1_2_9_151_2 e_1_2_9_197_2 e_1_2_9_304_2 e_1_2_9_174_1 e_1_2_9_229_2 e_1_2_9_28_2 e_1_2_9_234_1 e_1_2_9_211_2 e_1_2_9_78_1 e_1_2_9_55_1 Plankensteiner N. (e_1_2_9_350_1) 2022; 30 e_1_2_9_32_2 Li T. (e_1_2_9_131_1) 2023 e_1_2_9_257_2 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_332_1 e_1_2_9_100_2 e_1_2_9_355_1 e_1_2_9_123_2 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_161_2 e_1_2_9_184_2 e_1_2_9_17_2 e_1_2_9_245_1 e_1_2_9_222_1 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_67_2 e_1_2_9_268_1 e_1_2_9_305_2 e_1_2_9_7_2 e_1_2_9_260_1 e_1_2_9_283_1 e_1_2_9_328_1 e_1_2_9_82_1 e_1_2_9_320_1 e_1_2_9_343_1 e_1_2_9_158_2 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_207_2 e_1_2_9_150_2 e_1_2_9_196_2 e_1_2_9_173_1 e_1_2_9_29_2 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_98_2 e_1_2_9_235_1 e_1_2_9_212_2 e_1_2_9_258_2 e_1_2_9_318_1 e_1_2_9_90_1 e_1_2_9_273_1 e_1_2_9_296_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_333_1 e_1_2_9_356_1 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_187_1 e_1_2_9_141_2 e_1_2_9_164_1 e_1_2_9_310_1 e_1_2_9_87_1 e_1_2_9_223_1 e_1_2_9_269_1 e_1_2_9_41_2 e_1_2_9_200_2 e_1_2_9_306_2 e_1_2_9_64_2 e_1_2_9_246_2 e_1_2_9_284_1 e_1_2_9_329_1 e_1_2_9_2_1 e_1_2_9_261_1 e_1_2_9_138_1 e_1_2_9_321_1 e_1_2_9_344_1 e_1_2_9_199_2 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_2 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_208_2 e_1_2_9_191_2 e_1_2_9_30_2 e_1_2_9_99_2 e_1_2_9_213_2 e_1_2_9_259_2 e_1_2_9_76_2 e_1_2_9_236_1 e_1_2_9_53_2 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_334_1 Feng R. (e_1_2_9_9_1) 2023 e_1_2_9_357_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_140_1 e_1_2_9_186_1 e_1_2_9_38_2 e_1_2_9_163_2 Li J.-F. (e_1_2_9_263_1) 2024 e_1_2_9_311_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_247_2 e_1_2_9_80_1 e_1_2_9_285_1 e_1_2_9_262_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_322_1 e_1_2_9_345_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_2 e_1_2_9_209_2 e_1_2_9_152_2 e_1_2_9_190_2 e_1_2_9_360_2 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_214_1 e_1_2_9_298_1 e_1_2_9_12_2 e_1_2_9_96_2 e_1_2_9_237_1 e_1_2_9_275_1 e_1_2_9_252_1 e_1_2_9_290_1 e_1_2_9_128_1 e_1_2_9_189_2 e_1_2_9_335_1 e_1_2_9_358_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_120_1 e_1_2_9_143_1 e_1_2_9_181_2 e_1_2_9_312_1 e_1_2_9_62_2 e_1_2_9_202_1 e_1_2_9_248_2 e_1_2_9_308_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_286_1 e_1_2_9_4_1 e_1_2_9_240_1 e_1_2_9_323_1 e_1_2_9_155_2 e_1_2_9_117_1 e_1_2_9_346_1 e_1_2_9_178_1 e_1_2_9_24_2 e_1_2_9_47_2 e_1_2_9_132_1 e_1_2_9_193_2 e_1_2_9_361_2 e_1_2_9_300_1 e_1_2_9_170_1 e_1_2_9_51_2 e_1_2_9_97_2 e_1_2_9_74_1 e_1_2_9_238_1 e_1_2_9_276_1 e_1_2_9_215_2 e_1_2_9_253_1 e_1_2_9_291_1 e_1_2_9_230_2 Zheng C. (e_1_2_9_226_1) 2023 e_1_2_9_127_1 e_1_2_9_336_1 e_1_2_9_104_1 e_1_2_9_188_2 e_1_2_9_359_1 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_165_1 e_1_2_9_36_2 e_1_2_9_142_2 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_351_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_264_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 e_1_2_9_324_1 e_1_2_9_347_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_154_1 e_1_2_9_301_1 e_1_2_9_192_2 e_1_2_9_362_2 |
References_xml | – volume: 336 start-page: 61 year: 2012 publication-title: Science – volume: 598 start-page: 76 year: 2021 publication-title: Nature – volume: 324 start-page: 48 year: 2009 publication-title: Science – volume: 23 start-page: 10004 year: 2023 publication-title: Nano Lett. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 304 year: 2019 publication-title: Nat. Catal. – year: 2023 publication-title: Adv. Mater. – volume: 136 start-page: 10878 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 304 year: 2022 publication-title: Appl. Catal. B – volume: 17 start-page: 827 year: 2018 publication-title: Nat. Mater. – volume: 142 start-page: 7765 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3115 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 81 start-page: 2819 year: 1998 publication-title: Phys. Rev. Lett. – volume: 31 start-page: 4528 year: 2024 publication-title: Environ. Sci. Pollut. Res. Int. – volume: 17 start-page: 2204 year: 2017 publication-title: Nano Lett. – volume: 48 start-page: 2617 year: 2023 publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 1011 year: 2018 publication-title: Nat. Commun. – volume: 46 start-page: 329 year: 2001 publication-title: Prog. Mater. Sci. – volume: 39 start-page: 332 year: 1967 publication-title: Anal. Chem. – volume: 56 start-page: 1539 year: 2023 publication-title: Acc. Chem. Res. – volume: 141 start-page: 19879 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 139 start-page: 5285 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 371 start-page: 498 year: 2021 publication-title: Science – volume: 13 start-page: 7241 year: 2019 publication-title: ACS Nano – volume: 278 year: 2020 publication-title: Appl. Catal. B – volume: 10 start-page: 10614 year: 2022 publication-title: J. Mater. Chem. A – volume: 285 start-page: 273 year: 2012 publication-title: J. Catal. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 622 year: 2023 publication-title: Appl. Surf. Sci. – volume: 10 year: 2022 publication-title: Energy Technol. – volume: 348 start-page: 530 year: 2015 publication-title: Science – volume: 12 start-page: 12296 year: 2018 publication-title: ACS Nano – volume: 4 start-page: 12490 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 14 start-page: 357 year: 1981 publication-title: J. Appl. Crystallogr. – volume: 9 start-page: 1493 year: 2009 publication-title: Nano Lett. – volume: 12 year: 2022 publication-title: Appl. Surf. Sci. Adv. – volume: 324 start-page: 1309 year: 2009 publication-title: Science – volume: 23 start-page: 3467 year: 2023 publication-title: Nano Lett. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 140 start-page: 6249 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2024 publication-title: ChemElectroChem – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 136 start-page: 7734 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 10953 year: 2023 publication-title: Chem. Sci. – volume: 39 start-page: 423 year: 2023 publication-title: Langmuir – volume: 4 year: 2023 publication-title: Small Structures – volume: 46 start-page: 31202 year: 2021 publication-title: Int. J. Hydrogen Energy – volume: 127 start-page: 100 year: 2013 publication-title: Ultramicroscopy – volume: 111 start-page: 3736 year: 2011 publication-title: Chem. Rev. – volume: 359 start-page: 894 year: 2019 publication-title: Chem. Eng. J. – volume: 14 start-page: 4127 year: 2023 publication-title: Nat. Commun. – volume: 14 start-page: 3203 year: 2014 publication-title: Nano Lett. – volume: 141 start-page: 17337 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 156 start-page: 487 year: 1985 publication-title: Surf. Sci. – volume: 60 start-page: 4474 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 17 start-page: 17058 year: 2023 publication-title: ACS Nano – volume: 9 start-page: 1153 year: 2016 publication-title: ChemSusChem – volume: 14 start-page: 791 year: 2020 publication-title: ACS Nano – volume: 8 start-page: 8284 year: 2018 publication-title: Sci. Rep. – volume: 55 start-page: 5501 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 7736 year: 2011 publication-title: Acta Mater. – volume: 435 year: 2022 publication-title: J. Hazard. Mater. – volume: 10 year: 2023 publication-title: Adv. Mater. Interfaces – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 8 start-page: 1900 year: 2023 publication-title: ACS Energy Lett. – volume: 13 year: 2017 publication-title: Small – volume: 929 year: 2022 publication-title: J. Alloys Compd. – year: 2023 publication-title: Small – volume: 15 start-page: 364 year: 2023 publication-title: Chem. Sci. – volume: 10 year: 2022 publication-title: Front. Chem. – volume: 91 start-page: 3015 year: 2008 publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 692 year: 2007 publication-title: Nat. Mater. – volume: 12 start-page: 8554 year: 2012 publication-title: J. Nanosci. Nanotechnol. – volume: 124 start-page: 3694 year: 2024 publication-title: Chem. Rev. – volume: 33 start-page: 3657 year: 1986 publication-title: Phys. Rev. B – volume: 56 year: 2023 publication-title: J. Chem. Eng. Jpn. – volume: 15 start-page: 143 year: 2023 publication-title: Nano-Micro Lett. – volume: 14 start-page: 6494 year: 2021 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1704 year: 2021 publication-title: Joule – volume: 134 start-page: 11880 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 9437 year: 2022 publication-title: ACS Catal. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 5320 year: 2021 publication-title: J. Mater. Chem. A – volume: 27 start-page: 2502 year: 2015 publication-title: Chem. Mater. – volume: 221 start-page: 77 year: 2018 publication-title: Appl. Catal. B – volume: 3 start-page: 1198 year: 2018 publication-title: ACS Energy Lett. – volume: 15 start-page: 2384 year: 2023 publication-title: Nanoscale – volume: 10 start-page: 24701 year: 2022 publication-title: J. Mater. Chem. A – volume: 8 start-page: 599 year: 2014 publication-title: ACS Nano – volume: 12 start-page: 1687 year: 2021 publication-title: Nat. Commun. – volume: 23 year: 2022 publication-title: Mater. Today Energy – volume: 19 year: 2023 publication-title: Small – volume: 11 start-page: 2522 year: 2020 publication-title: Nat. Commun. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 9 start-page: 22901 year: 2021 publication-title: J. Mater. Chem. A – volume: 142 start-page: 19209 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 8436 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 4200 year: 2022 publication-title: Nat. Commun. – year: 2023 publication-title: Adv. Sustain. Syst. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 3192 year: 2013 publication-title: Adv. Mater. – volume: 11 start-page: 3094 year: 2021 publication-title: ACS Catal. – volume: 50 start-page: 787 year: 2017 publication-title: Acc. Chem. Res. – volume: 56 start-page: 60 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 12248 year: 2015 publication-title: Nanoscale – volume: 145 start-page: 5710 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 15332 year: 2015 publication-title: Chem. Commun. – volume: 1 start-page: 6657 year: 2018 publication-title: ACS Appl. Energ. Mater. – volume: 74 start-page: 131 year: 1998 publication-title: Ultramicroscopy – volume: 48 start-page: 3265 year: 2019 publication-title: Chem. Soc. Rev. – volume: 88 start-page: 604 year: 2013 publication-title: Electrochim. Acta – volume: 315 start-page: 220 year: 2007 publication-title: Science – volume: 33 year: 2022 publication-title: Nanotechnology – volume: 8 start-page: 3344 year: 2020 publication-title: J. Mater. Chem. A – volume: 10 year: 2023 publication-title: ChemElectroChem – volume: 4 start-page: 980 year: 2019 publication-title: ACS Energy Lett. – volume: 8 start-page: 6665 year: 2018 publication-title: ACS Catal. – volume: 6 start-page: 10213 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 48 start-page: 10493 year: 2023 publication-title: Int. J. Hydrogen Energy – volume: 125 year: 2019 publication-title: J. Appl. Phys. – volume: 7 start-page: 11850 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 20151 year: 2019 publication-title: J. Mater. Chem. A – volume: 15 start-page: 4378 year: 2023 publication-title: Nanoscale – volume: 123 start-page: 3790 year: 2023 publication-title: Chem. Rev. – volume: 9 start-page: 387 year: 2015 publication-title: ACS Nano – volume: 21 start-page: 6477 year: 2019 publication-title: Phys. Chem. Chem. Phys. – year: 2024 publication-title: Small – volume: 130 start-page: 2940 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 3 start-page: 17089 year: 2018 publication-title: Nat. Rev. Mater. – volume: 130 start-page: 6949 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 944 year: 2023 publication-title: J. Alloys Compd. – volume: 78 year: 2020 publication-title: Nano Energy – volume: 7 year: 2015 publication-title: NPG Asia Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 6 start-page: 3797 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 39 start-page: 12554 year: 1989 publication-title: Phys. Rev. B – volume: 29 start-page: 2355 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 694 year: 2023 publication-title: Mater. Adv. – volume: 2 start-page: 17059 year: 2017 publication-title: Nat. Rev. Mater. – volume: 13 start-page: 20225 year: 2021 publication-title: Nanoscale – volume: 352 start-page: 73 year: 2016 publication-title: Science – volume: 47 start-page: 15450 year: 2023 publication-title: New J. Chem. – volume: 6 start-page: 5378 year: 2016 publication-title: ACS Catal. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 11 start-page: 919 year: 2011 publication-title: Nano Lett. – volume: 144 start-page: 19106 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2022 publication-title: Small Structures – volume: 2 start-page: 749 year: 2023 publication-title: Nat. Synth. – volume: 9 start-page: 23444 year: 2021 publication-title: J. Mater. Chem. A – volume: 14 start-page: 2538 year: 2023 publication-title: Nat. Commun. – volume: 3 start-page: 622 year: 2021 publication-title: ACS Materials Lett. – volume: 13 start-page: 3784 year: 2022 publication-title: Nat. Commun. – volume: 25 start-page: 6313 year: 2013 publication-title: Adv. Mater. – volume: 10 start-page: 4290 year: 2020 publication-title: ACS Catal. – volume: 7 start-page: 3072 year: 2017 publication-title: ACS Catal. – volume: 141 start-page: 16202 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5529 year: 2020 publication-title: ACS Catal. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 2934 year: 2023 publication-title: Nat. Commun. – volume: 611 start-page: 1 year: 2022 publication-title: Nature – volume: 15 start-page: 41560 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2257 year: 2020 publication-title: Chem – volume: 16 start-page: 3251 year: 2022 publication-title: ACS Nano – volume: 12 start-page: 45582 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2022 publication-title: Mater. Today – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 32 start-page: 9560 year: 2020 publication-title: Chem. Mater. – volume: 45 start-page: 2897 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 333 year: 2008 publication-title: Nat. Mater. – volume: 10 start-page: 12575 year: 2020 publication-title: ACS Catal. – volume: 17 start-page: 15085 year: 2023 publication-title: ACS Nano – volume: 353 start-page: 1011 year: 2016 publication-title: Science – volume: 4 start-page: 1045 year: 2021 publication-title: ACS Appl. Energ. Mater. – volume: 123 start-page: 8347 year: 2023 publication-title: Chem. Rev. – volume: 15 start-page: 564 year: 2016 publication-title: Nat. Mater. – volume: 15 start-page: 9263 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 2773 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 42298 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 4492 year: 2023 publication-title: Nat. Commun. – volume: 21 start-page: 18753 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 640 year: 2023 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 2522 year: 2022 publication-title: Sci. Rep. – volume: 4 start-page: 2481 year: 2013 publication-title: Nat. Commun. – volume: 13 start-page: 12088 year: 2021 publication-title: Nanoscale – volume: 60 start-page: 4448 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 215 year: 2015 publication-title: Nat. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 137 start-page: 7397 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 120 year: 2008 publication-title: Nat. Mater. – volume: 15 start-page: 4089 year: 2015 publication-title: Nano Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 137 start-page: 12162 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 120 year: 2016 publication-title: Nano Energy – volume: 21 start-page: 1074 year: 2021 publication-title: Nano Lett. – volume: 44 start-page: 2168 year: 2015 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 900 year: 2023 publication-title: Acc. Chem. Res. – volume: 13 start-page: 8725 year: 2019 publication-title: ACS Nano – volume: 15 year: 2023 publication-title: ChemCatChem – volume: 1 start-page: 108 year: 2021 publication-title: JACS Au – volume: 423 start-page: 270 year: 2003 publication-title: Nature – volume: 133 start-page: 14396 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 68 start-page: 721 year: 2022 publication-title: J. Energy Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 121 start-page: 649 year: 2021 publication-title: Chem. Rev. – volume: 6 start-page: 9373 year: 2012 publication-title: ACS Nano – volume: 2 start-page: 454 year: 2010 publication-title: Nat. Chem. – volume: 45 start-page: 6 year: 2023 publication-title: Chin. J. Catal. – volume: 4 start-page: 1012 year: 2021 publication-title: Nature Catalysis – volume: 13 start-page: 1869 year: 2013 publication-title: Nano Lett. – volume: 12 start-page: 2027 year: 2012 publication-title: Nano Lett. – volume: 42 start-page: 10142 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 60 start-page: 8243 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1379 year: 2019 publication-title: ACS Energy Lett. – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 10 start-page: 3899 year: 2019 publication-title: Nat. Commun. – volume: 656 year: 2023 publication-title: Colloids Surf., A – volume: 62 start-page: 11581 year: 2023 publication-title: Inorg. Chem. – volume: 8 start-page: 7239 year: 2014 publication-title: ACS Nano – volume: 145 start-page: 12717 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 10517 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 8117 year: 2016 publication-title: Catal. Sci. Technol. – volume: 2 start-page: 1054 year: 2022 publication-title: JACS Au – volume: 26 year: 2023 publication-title: iScience – volume: 6 year: 2022 publication-title: Small Methods – volume: 15 start-page: 1172 year: 2016 publication-title: Nat. Mater. – year: 2024 – volume: 124 start-page: 2955 year: 2024 publication-title: Chem. Rev. – volume: 9 start-page: 2635 year: 2015 publication-title: ACS Nano – volume: 354 start-page: 1031 year: 2016 publication-title: Science – volume: 3 start-page: 934 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 7 start-page: 3540 year: 2017 publication-title: ACS Catal. – volume: 138 start-page: 12263 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 22996 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 15 start-page: 83 year: 2023 publication-title: Nano-Micro Lett. – volume: 3 start-page: 516 year: 2020 publication-title: Nature Catalysis – volume: 35 start-page: 10724 year: 2023 publication-title: Chem. Mater. – volume: 21 start-page: 1003 year: 2021 publication-title: Nano Lett. – volume: 135 start-page: 16658 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 5994 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 132 start-page: 14546 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 449 year: 2010 publication-title: Nano Today – volume: 28 start-page: 9949 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 2722 year: 2018 publication-title: Nat. Commun. – volume: 62 start-page: 5032 year: 2023 publication-title: Inorg. Chem. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 315 start-page: 493 year: 2007 publication-title: Science – volume: 324 start-page: 1302 year: 2009 publication-title: Science – volume: 13 start-page: 45538 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 128 start-page: 8813 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 18334 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1444 year: 2013 publication-title: Nat. Commun. – volume: 11 start-page: 1554 year: 2021 publication-title: ACS Catal. – volume: 13 start-page: 4871 year: 2022 publication-title: Nat. Commun. – volume: 54 start-page: 181 year: 2005 publication-title: J. Electron Microsc. – volume: 8 start-page: 277 year: 2024 publication-title: Nat. Chem. Rev. – volume: 10 start-page: 15207 year: 2020 publication-title: ACS Catal. – volume: 56 start-page: 3594 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2023 publication-title: Front. Chem. – volume: 3 start-page: 815 year: 2017 publication-title: ChemNanoMat – volume: 31 start-page: 842 year: 2019 publication-title: Chem. Mater. – year: 2024 publication-title: Adv. Funct. Mater. – volume: 380 year: 2021 publication-title: Electrochim. Acta – volume: 143 start-page: 5386 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 year: 2023 publication-title: Energy Environ. Sci. – volume: 354 start-page: 1410 year: 2016 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 614 start-page: 262 year: 2023 publication-title: Nature – volume: 7 start-page: 415 year: 2021 publication-title: ACS Cent. Sci. – volume: 6 start-page: 816 year: 2023 publication-title: Nat. Sustain. – volume: 44 start-page: 2132 year: 2005 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 729 year: 2013 publication-title: Nat. Mater. – volume: 120 start-page: 2123 year: 2020 publication-title: Chem. Rev. – volume: 70 start-page: 303 year: 2010 publication-title: Mater. Sci. Eng. R – year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 123 start-page: 12507 year: 2023 publication-title: Chem. Rev. – volume: 5 start-page: 748 year: 2023 publication-title: Trends Chem. – volume: 6 start-page: 1993 year: 2013 publication-title: ChemSusChem – volume: 328 start-page: 36 year: 2015 publication-title: J. Catal. – volume: 14 start-page: 5363 year: 2023 publication-title: Nat. Commun. – volume: 958 year: 2023 publication-title: J. Alloys Compd. – volume: 202 start-page: 706 year: 2017 publication-title: Appl. Catal. B – volume: 135 start-page: 13879 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 2 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 5360 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 6818 year: 2022 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_287_1 doi: 10.1021/acsenergylett.9b00191 – ident: e_1_2_9_77_2 doi: 10.1021/ja801566d – ident: e_1_2_9_99_2 doi: 10.1021/acsami.1c13171 – ident: e_1_2_9_160_2 doi: 10.1103/PhysRevB.102.085421 – ident: e_1_2_9_129_1 doi: 10.1021/jacs.0c08962 – ident: e_1_2_9_349_1 doi: 10.1016/j.apcatb.2021.120914 – ident: e_1_2_9_278_1 doi: 10.1002/adfm.202112362 – ident: e_1_2_9_265_1 doi: 10.1002/anie.202003654 – ident: e_1_2_9_279_1 doi: 10.1021/jacs.7b00165 – ident: e_1_2_9_274_1 doi: 10.1126/science.aah6133 – ident: e_1_2_9_41_2 doi: 10.1103/PhysRevLett.93.156801 – ident: e_1_2_9_211_2 doi: 10.1021/acs.jpclett.7b02525 – ident: e_1_2_9_25_2 doi: 10.1021/acs.chemmater.3c02956 – ident: e_1_2_9_86_1 doi: 10.1021/acs.langmuir.2c02673 – ident: e_1_2_9_146_1 doi: 10.1002/anie.202301269 – ident: e_1_2_9_177_1 doi: 10.1038/s41893-023-01101-z – ident: e_1_2_9_351_1 doi: 10.1002/smll.202302238 – ident: e_1_2_9_312_1 doi: 10.1016/j.ijhydene.2021.07.006 – ident: e_1_2_9_296_1 doi: 10.1039/D0TA12152E – ident: e_1_2_9_103_1 doi: 10.1021/acsami.2c19879 – ident: e_1_2_9_223_1 doi: 10.1002/cnma.201700167 – ident: e_1_2_9_305_2 doi: 10.1038/s41467-022-32581-w – ident: e_1_2_9_161_2 doi: 10.1038/nmat4715 – ident: e_1_2_9_105_1 doi: 10.1016/j.cej.2018.11.099 – ident: e_1_2_9_139_1 doi: 10.1038/s41467-021-21956-0 – ident: e_1_2_9_212_2 doi: 10.1021/jacs.5b03034 – ident: e_1_2_9_134_1 doi: 10.1088/1361-6463/aa6b4a – ident: e_1_2_9_333_1 doi: 10.1016/j.jcat.2011.09.039 – ident: e_1_2_9_130_1 doi: 10.1126/science.aaf7680 – ident: e_1_2_9_206_1 – ident: e_1_2_9_246_2 doi: 10.1016/S0079-6425(00)00009-8 – ident: e_1_2_9_4_1 doi: 10.1021/jacsau.0c00022 – ident: e_1_2_9_116_1 doi: 10.1021/acsenergylett.9b00845 – ident: e_1_2_9_207_2 doi: 10.1038/nmat3698 – ident: e_1_2_9_230_2 doi: 10.1021/acs.jpclett.7b01083 – ident: e_1_2_9_354_1 doi: 10.1016/S1872-2067(22)64186-X – ident: e_1_2_9_295_1 doi: 10.1002/adfm.202006484 – ident: e_1_2_9_332_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_9_157_1 – ident: e_1_2_9_127_1 doi: 10.1002/smll.201603423 – ident: e_1_2_9_84_1 doi: 10.1039/D1NR02232F – ident: e_1_2_9_203_1 doi: 10.1002/smll.202309675 – ident: e_1_2_9_14_1 doi: 10.3389/fchem.2023.1138932 – ident: e_1_2_9_83_1 doi: 10.1039/D3SC02862C – ident: e_1_2_9_43_2 doi: 10.1103/PhysRevLett.81.2819 – ident: e_1_2_9_82_1 doi: 10.1021/ja505716v – ident: e_1_2_9_101_1 doi: 10.1002/adma.201302820 – ident: e_1_2_9_155_2 doi: 10.1038/nmat4115 – ident: e_1_2_9_298_1 doi: 10.1002/celc.202300659 – ident: e_1_2_9_68_2 doi: 10.1002/celc.202200651 – ident: e_1_2_9_217_2 doi: 10.1021/nn506721f – ident: e_1_2_9_348_1 doi: 10.1088/1361-6528/ac75f8 – ident: e_1_2_9_277_1 doi: 10.1126/science.1141483 – ident: e_1_2_9_19_2 doi: 10.1021/acs.inorgchem.3c00293 – ident: e_1_2_9_152_2 doi: 10.1038/am.2015.4 – ident: e_1_2_9_347_1 doi: 10.1016/j.jallcom.2023.170430 – ident: e_1_2_9_40_1 – ident: e_1_2_9_165_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_9_250_1 doi: 10.1002/anie.202110636 – ident: e_1_2_9_72_2 doi: 10.1016/j.trechm.2023.08.004 – ident: e_1_2_9_321_1 doi: 10.1002/smll.202302238 – ident: e_1_2_9_194_2 doi: 10.1021/acs.nanolett.6b04731 – ident: e_1_2_9_258_2 doi: 10.1016/j.isci.2023.107072 – ident: e_1_2_9_51_2 doi: 10.1021/ja711093j – ident: e_1_2_9_8_2 doi: 10.1039/C4CS00484A – ident: e_1_2_9_74_1 doi: 10.1126/science.aaz7555 – ident: e_1_2_9_260_1 doi: 10.1126/science.1172104 – ident: e_1_2_9_361_2 doi: 10.1002/anie.202203564 – ident: e_1_2_9_37_2 doi: 10.1039/C8CS00846A – ident: e_1_2_9_48_2 doi: 10.1021/ja105401p – ident: e_1_2_9_110_1 doi: 10.1021/acsanm.3c00969 – ident: e_1_2_9_168_2 doi: 10.1126/science.aad8892 – ident: e_1_2_9_257_2 doi: 10.1016/j.mser.2010.06.014 – ident: e_1_2_9_87_1 doi: 10.1021/acsanm.1c03004 – ident: e_1_2_9_118_1 doi: 10.1002/adfm.202208760 – ident: e_1_2_9_284_1 doi: 10.1021/acsenergylett.8b00454 – ident: e_1_2_9_313_1 doi: 10.1002/sstr.202200390 – ident: e_1_2_9_29_2 doi: 10.1016/j.nanoen.2016.02.018 – ident: e_1_2_9_147_1 doi: 10.1002/adma.201903616 – ident: e_1_2_9_179_1 doi: 10.1126/science.aaf7680 – ident: e_1_2_9_288_1 doi: 10.1021/acsnano.1c11145 – ident: e_1_2_9_198_1 – ident: e_1_2_9_294_1 doi: 10.1038/s41467-020-16237-1 – ident: e_1_2_9_182_2 doi: 10.1038/nature01638 – ident: e_1_2_9_172_1 doi: 10.1038/s41598-022-06595-9 – ident: e_1_2_9_61_2 doi: 10.1021/acs.chemrev.9b00443 – ident: e_1_2_9_133_1 doi: 10.1038/s41467-023-38237-7 – ident: e_1_2_9_27_2 doi: 10.1016/j.apcatb.2017.08.085 – ident: e_1_2_9_64_2 doi: 10.1002/adma.201701331 – ident: e_1_2_9_185_1 doi: 10.1002/anie.202014017 – ident: e_1_2_9_126_1 doi: 10.1021/nl3022434 – ident: e_1_2_9_339_2 doi: 10.1016/j.jcat.2014.12.033 – ident: e_1_2_9_1_1 doi: 10.1021/jacsau.2c00138 – ident: e_1_2_9_322_1 doi: 10.1007/s40820-023-01060-2 – ident: e_1_2_9_242_2 doi: 10.1016/j.apsusc.2023.158286 – ident: e_1_2_9_271_1 doi: 10.1126/science.1135941 – ident: e_1_2_9_171_1 doi: 10.1021/acscatal.0c03406 – ident: e_1_2_9_142_2 doi: 10.1021/acs.nanolett.3c03178 – ident: e_1_2_9_255_1 doi: 10.1021/acs.chemrev.2c00880 – ident: e_1_2_9_240_1 doi: 10.1103/PhysRevB.39.12554 – ident: e_1_2_9_38_2 doi: 10.1039/C5NR02529J – ident: e_1_2_9_302_1 doi: 10.1002/adma.201903616 – ident: e_1_2_9_60_1 – ident: e_1_2_9_109_1 doi: 10.1021/jacs.6b07213 – ident: e_1_2_9_214_1 – ident: e_1_2_9_272_1 doi: 10.1126/science.1134569 – ident: e_1_2_9_121_2 doi: 10.1038/nmat2083 – ident: e_1_2_9_150_2 doi: 10.1103/PhysRevB.33.3657 – ident: e_1_2_9_135_1 doi: 10.1002/adma.202207555 – ident: e_1_2_9_57_1 – ident: e_1_2_9_234_1 doi: 10.1038/s41467-019-11765-x – ident: e_1_2_9_89_1 doi: 10.1021/acs.chemmater.7b00046 – ident: e_1_2_9_120_1 – ident: e_1_2_9_2_1 doi: 10.1021/acscentsci.0c01532 – ident: e_1_2_9_17_2 doi: 10.1016/j.apcatb.2020.119281 – ident: e_1_2_9_69_1 doi: 10.3389/fchem.2022.865214 – ident: e_1_2_9_80_1 doi: 10.1016/j.jallcom.2023.169245 – ident: e_1_2_9_167_2 doi: 10.1021/acscatal.6b00997 – ident: e_1_2_9_193_2 doi: 10.1021/jz300192b – ident: e_1_2_9_251_1 doi: 10.1021/acsnano.3c04516 – ident: e_1_2_9_344_1 doi: 10.1038/s41467-023-41097-w – ident: e_1_2_9_195_2 doi: 10.1002/adfm.201910107 – ident: e_1_2_9_93_1 doi: 10.1002/anie.201601016 – ident: e_1_2_9_286_1 doi: 10.1002/adma.201807166 – ident: e_1_2_9_12_2 doi: 10.1039/D2MA01018F – ident: e_1_2_9_237_1 doi: 10.1038/ncomms11850 – ident: e_1_2_9_153_1 doi: 10.1021/ja408768e – ident: e_1_2_9_31_2 doi: 10.1021/acs.nanolett.3c00535 – ident: e_1_2_9_67_2 doi: 10.1038/ncomms2472 – ident: e_1_2_9_70_1 – ident: e_1_2_9_225_1 doi: 10.1021/nl102369k – ident: e_1_2_9_236_1 doi: 10.1016/j.apsadv.2022.100332 – ident: e_1_2_9_334_1 doi: 10.1039/C6CY01677D – ident: e_1_2_9_324_1 doi: 10.1016/j.chempr.2020.06.004 – ident: e_1_2_9_163_2 doi: 10.1002/adma.201907879 – ident: e_1_2_9_216_2 doi: 10.1021/ja2047655 – ident: e_1_2_9_13_2 doi: 10.1016/j.mtener.2021.100920 – ident: e_1_2_9_158_2 doi: 10.1021/acsmaterialslett.1c00124 – ident: e_1_2_9_170_1 doi: 10.1021/acscatal.7b00410 – ident: e_1_2_9_200_2 doi: 10.1021/acs.accounts.6b00596 – ident: e_1_2_9_342_1 doi: 10.1039/D1NR07019C – ident: e_1_2_9_357_1 doi: 10.1002/admi.202201934 – ident: e_1_2_9_220_2 doi: 10.1002/cssc.201300447 – ident: e_1_2_9_115_1 doi: 10.1002/adma.202008508 – ident: e_1_2_9_235_1 doi: 10.1016/j.electacta.2012.10.124 – ident: e_1_2_9_132_1 doi: 10.1038/s41586-021-03870-z – volume: 611 start-page: 1 year: 2022 ident: e_1_2_9_307_1 publication-title: Nature contributor: fullname: Wang X. – ident: e_1_2_9_22_2 doi: 10.1021/jacs.9b12005 – ident: e_1_2_9_181_2 doi: 10.1016/S0304-3991(98)00035-7 – ident: e_1_2_9_196_2 doi: 10.1002/anie.200462335 – ident: e_1_2_9_315_1 doi: 10.1038/s41586-021-03870-z – ident: e_1_2_9_209_2 doi: 10.1126/science.aaa1394 – ident: e_1_2_9_98_2 doi: 10.1039/D2TA01045C – ident: e_1_2_9_90_1 doi: 10.1002/smll.202103064 – ident: e_1_2_9_162_2 doi: 10.1021/acs.nanolett.0c04395 – ident: e_1_2_9_192_2 doi: 10.1021/jacs.9b10709 – ident: e_1_2_9_221_2 doi: 10.1021/nn502259g – ident: e_1_2_9_261_1 doi: 10.1038/s41467-018-03372-z – volume: 6 year: 2023 ident: e_1_2_9_136_1 publication-title: Energy Environ. Sci. contributor: fullname: Zhu J. – ident: e_1_2_9_320_1 doi: 10.1016/j.jhazmat.2022.128998 – ident: e_1_2_9_30_2 doi: 10.1002/adfm.202007423 – ident: e_1_2_9_183_2 doi: 10.1021/acscatal.0c00224 – ident: e_1_2_9_293_1 doi: 10.1021/acscatal.2c01944 – ident: e_1_2_9_178_1 doi: 10.1038/s41467-023-40246-5 – ident: e_1_2_9_303_1 – ident: e_1_2_9_253_1 doi: 10.1039/D2NR05810C – volume: 30 year: 2022 ident: e_1_2_9_350_1 publication-title: Mater. Today contributor: fullname: Plankensteiner N. – ident: e_1_2_9_137_1 doi: 10.1039/C8CP06756B – ident: e_1_2_9_213_2 doi: 10.1126/science.aaf7680 – ident: e_1_2_9_145_1 doi: 10.1021/nl8034724 – ident: e_1_2_9_346_1 doi: 10.1016/j.apsusc.2023.156945 – ident: e_1_2_9_259_2 doi: 10.1126/science.1217654 – ident: e_1_2_9_335_1 doi: 10.1021/acsami.0c13303 – ident: e_1_2_9_317_1 doi: 10.1002/adma.202006292 – ident: e_1_2_9_341_1 doi: 10.1021/acsami.1c22601 – ident: e_1_2_9_273_1 doi: 10.1126/science.aaf7680 – ident: e_1_2_9_311_1 doi: 10.1002/adfm.202106401 – ident: e_1_2_9_85_1 doi: 10.1021/acs.chemrev.0c00454 – ident: e_1_2_9_309_1 doi: 10.1002/adma.202209307 – ident: e_1_2_9_154_1 – ident: e_1_2_9_264_1 doi: 10.1021/acs.chemrev.3c00081 – ident: e_1_2_9_20_1 – ident: e_1_2_9_306_2 doi: 10.1038/s41467-023-39822-6 – ident: e_1_2_9_106_1 doi: 10.1002/celc.202201007 – ident: e_1_2_9_124_2 doi: 10.1021/acs.jpclett.5b01746 – ident: e_1_2_9_224_1 doi: 10.1021/nn303298s – ident: e_1_2_9_329_1 doi: 10.1021/acscatal.0c00040 – ident: e_1_2_9_36_2 doi: 10.1038/natrevmats.2017.59 – ident: e_1_2_9_331_1 doi: 10.1038/ncomms3481 – ident: e_1_2_9_53_2 doi: 10.1038/nmat1957 – ident: e_1_2_9_66_2 doi: 10.1002/cssc.201600090 – ident: e_1_2_9_210_1 – ident: e_1_2_9_270_1 doi: 10.1002/cctc.202300454 – ident: e_1_2_9_169_1 doi: 10.1002/anie.202014556 – ident: e_1_2_9_156_2 doi: 10.1021/nn503946t – ident: e_1_2_9_140_1 – ident: e_1_2_9_330_1 doi: 10.1039/C5CC03353E – ident: e_1_2_9_63_1 – ident: e_1_2_9_269_1 doi: 10.1002/adma.201300515 – ident: e_1_2_9_248_2 doi: 10.1038/s41467-018-05055-1 – ident: e_1_2_9_227_1 doi: 10.1038/s41563-018-0133-2 – ident: e_1_2_9_32_2 doi: 10.1007/s40820-023-01102-9 – ident: e_1_2_9_46_1 – ident: e_1_2_9_95_2 doi: 10.1039/D3NJ02807K – ident: e_1_2_9_297_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_9_21_2 doi: 10.1021/jacs.9b09038 – ident: e_1_2_9_241_1 – ident: e_1_2_9_91_1 doi: 10.1021/jacs.7b12306 – ident: e_1_2_9_151_2 doi: 10.1016/j.nantod.2010.08.006 – ident: e_1_2_9_314_1 doi: 10.1002/adma.202008508 – ident: e_1_2_9_300_1 doi: 10.1038/s41467-022-31468-0 – ident: e_1_2_9_58_2 doi: 10.1021/acsaem.0c02989 – ident: e_1_2_9_202_1 doi: 10.1038/s41467-023-38536-z – ident: e_1_2_9_326_2 doi: 10.1021/nn303298s – ident: e_1_2_9_249_1 doi: 10.1038/s41598-018-26182-1 – ident: e_1_2_9_232_2 doi: 10.1002/adfm.201903295 – ident: e_1_2_9_100_2 doi: 10.1021/acs.accounts.3c00067 – ident: e_1_2_9_337_1 – ident: e_1_2_9_113_1 doi: 10.1016/j.colsurfa.2022.130358 – ident: e_1_2_9_316_1 doi: 10.1021/acscatal.8b00689 – ident: e_1_2_9_5_1 doi: 10.1002/aenm.201901945 – ident: e_1_2_9_352_1 doi: 10.1016/j.xcrp.2021.100602 – ident: e_1_2_9_76_2 doi: 10.1002/adma.202209810 – ident: e_1_2_9_79_1 doi: 10.1021/jacs.3c02604 – ident: e_1_2_9_244_2 doi: 10.1103/PhysRevB.91.155414 – ident: e_1_2_9_47_2 doi: 10.1002/anie.200703185 – ident: e_1_2_9_276_1 doi: 10.1002/advs.202200307 – ident: e_1_2_9_268_1 doi: 10.1126/science.1168049 – ident: e_1_2_9_33_2 doi: 10.1039/D3SC04126C – ident: e_1_2_9_189_2 doi: 10.1021/acs.chemmater.8b03984 – ident: e_1_2_9_190_2 doi: 10.1021/jacs.7b13612 – ident: e_1_2_9_323_1 doi: 10.1039/D1TA07066E – ident: e_1_2_9_81_1 doi: 10.1002/smll.201603423 – year: 2023 ident: e_1_2_9_131_1 publication-title: Small contributor: fullname: Li T. – ident: e_1_2_9_219_1 – ident: e_1_2_9_353_1 doi: 10.1021/acsenergylett.3c00185 – ident: e_1_2_9_117_1 doi: 10.1039/C9TA09471G – ident: e_1_2_9_125_1 doi: 10.1016/j.actamat.2011.08.033 – ident: e_1_2_9_285_1 doi: 10.1021/ac60247a013 – ident: e_1_2_9_360_2 doi: 10.1002/adfm.202316544 – ident: e_1_2_9_343_1 doi: 10.1021/jacs.2c08361 – ident: e_1_2_9_166_1 – ident: e_1_2_9_310_1 doi: 10.1016/j.ijhydene.2017.01.117 – ident: e_1_2_9_239_1 doi: 10.1080/00219592.2023.2197946 – ident: e_1_2_9_204_1 doi: 10.1002/cnma.201700167 – ident: e_1_2_9_289_1 doi: 10.1002/anie.201612617 – ident: e_1_2_9_123_2 doi: 10.1021/acsnano.9b01367 – ident: e_1_2_9_222_1 doi: 10.1038/nmat2156 – ident: e_1_2_9_138_1 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_9_71_2 doi: 10.1002/anie.201604731 – ident: e_1_2_9_148_1 doi: 10.1021/jacs.9b07659 – ident: e_1_2_9_340_1 doi: 10.1038/s41570-024-00589-z – ident: e_1_2_9_308_1 doi: 10.1038/s41929-021-00703-0 – ident: e_1_2_9_42_2 doi: 10.1021/ja0600476 – ident: e_1_2_9_65_2 doi: 10.1002/sstr.202200045 – ident: e_1_2_9_173_1 doi: 10.1016/j.cej.2022.138786 – ident: e_1_2_9_94_1 – ident: e_1_2_9_184_2 doi: 10.1093/jmicro/dfi042 – ident: e_1_2_9_233_1 doi: 10.1021/cm5047676 – year: 2023 ident: e_1_2_9_319_1 publication-title: Small contributor: fullname: Wang M. – ident: e_1_2_9_75_1 – ident: e_1_2_9_275_1 doi: 10.1016/j.cej.2020.124240 – ident: e_1_2_9_15_1 – ident: e_1_2_9_45_1 doi: 10.1021/jacs.5b03590 – ident: e_1_2_9_199_2 doi: 10.1021/nl500553a – year: 2023 ident: e_1_2_9_226_1 publication-title: Adv. Sustain. Syst. contributor: fullname: Zheng C. – ident: e_1_2_9_78_1 doi: 10.1002/ente.202200202 – ident: e_1_2_9_34_1 – ident: e_1_2_9_97_2 doi: 10.1021/acsnano.9b07781 – ident: e_1_2_9_231_2 doi: 10.1111/j.1551-2916.2008.02601.x – ident: e_1_2_9_266_1 doi: 10.1002/anie.202003917 – ident: e_1_2_9_262_1 doi: 10.1021/acs.chemrev.3c00332 – ident: e_1_2_9_16_2 doi: 10.1038/nmat4555 – ident: e_1_2_9_245_1 – ident: e_1_2_9_92_1 doi: 10.1016/j.ijhydene.2022.10.157 – ident: e_1_2_9_24_2 doi: 10.1016/j.nanoen.2020.105128 – ident: e_1_2_9_281_1 doi: 10.1016/j.electacta.2021.138262 – ident: e_1_2_9_229_2 doi: 10.1107/S0021889881009618 – ident: e_1_2_9_362_2 doi: 10.1002/smll.202400875 – ident: e_1_2_9_238_1 doi: 10.1039/C9TA06861A – ident: e_1_2_9_291_1 doi: 10.1021/acs.nanolett.0c04051 – ident: e_1_2_9_112_1 doi: 10.1007/s11356-023-31406-7 – ident: e_1_2_9_143_1 doi: 10.1166/jnn.2012.6473 – ident: e_1_2_9_254_1 doi: 10.1038/s41586-022-05540-0 – ident: e_1_2_9_18_2 doi: 10.1016/j.apcatb.2016.02.045 – ident: e_1_2_9_88_1 doi: 10.1021/ja406091p – ident: e_1_2_9_114_1 doi: 10.1039/D2NR06170H – ident: e_1_2_9_119_1 doi: 10.1039/D1TA07488A – ident: e_1_2_9_328_1 doi: 10.1021/acscatal.0c04054 – ident: e_1_2_9_44_2 doi: 10.1002/anie.200504386 – ident: e_1_2_9_208_2 doi: 10.1063/1.5054294 – ident: e_1_2_9_282_1 doi: 10.1021/jacs.2c11692 – ident: e_1_2_9_218_1 doi: 10.1002/cnma.201700167 – ident: e_1_2_9_201_2 doi: 10.1002/adma.201603662 – ident: e_1_2_9_52_2 doi: 10.1021/ja801566d – ident: e_1_2_9_164_1 doi: 10.1002/anie.202312644 – ident: e_1_2_9_283_1 doi: 10.1038/s41467-022-31971-4 – ident: e_1_2_9_144_1 doi: 10.1002/adma.201706312 – ident: e_1_2_9_215_2 doi: 10.1002/aenm.201803771 – ident: e_1_2_9_174_1 doi: 10.1021/acs.inorgchem.3c01270 – ident: e_1_2_9_111_1 doi: 10.1021/acsami.3c08885 – ident: e_1_2_9_228_1 – ident: e_1_2_9_327_2 doi: 10.1038/nchem.623 – ident: e_1_2_9_336_1 doi: 10.1002/smll.202207743 – ident: e_1_2_9_290_1 doi: 10.1021/jacs.0c12696 – year: 2024 ident: e_1_2_9_299_1 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Xu Y. – ident: e_1_2_9_359_1 – ident: e_1_2_9_191_2 doi: 10.1021/acsenergylett.8b00454 – ident: e_1_2_9_186_1 doi: 10.1021/nn4052315 – ident: e_1_2_9_3_1 doi: 10.1126/science.1172083 – ident: e_1_2_9_23_2 doi: 10.1021/acscatal.0c03938 – ident: e_1_2_9_176_1 doi: 10.1016/j.jechem.2021.12.026 – ident: e_1_2_9_73_1 doi: 10.1002/adma.202004142 – ident: e_1_2_9_301_1 doi: 10.1002/anie.202016199 – ident: e_1_2_9_356_1 doi: 10.1021/acs.chemrev.2c00770 – ident: e_1_2_9_7_2 doi: 10.1021/ja5030172 – ident: e_1_2_9_62_2 doi: 10.1002/aenm.202102261 – ident: e_1_2_9_180_1 – ident: e_1_2_9_252_1 doi: 10.1021/acs.nanolett.5b01154 – ident: e_1_2_9_50_2 doi: 10.1126/science.1170377 – ident: e_1_2_9_122_2 doi: 10.1021/nl300067q – ident: e_1_2_9_358_1 doi: 10.1021/acsaem.8b01345 – ident: e_1_2_9_11_1 – ident: e_1_2_9_96_2 doi: 10.1039/D2TA07647K – ident: e_1_2_9_39_2 doi: 10.1002/smll.202206838 – ident: e_1_2_9_128_1 doi: 10.1021/ja303950v – ident: e_1_2_9_304_2 doi: 10.1038/s41929-020-0457-6 – ident: e_1_2_9_28_2 doi: 10.1002/advs.201802005 – ident: e_1_2_9_247_2 doi: 10.1021/acs.chemmater.0c02588 – ident: e_1_2_9_318_1 doi: 10.1002/smtd.202101328 – volume-title: Encyclopedia of Solid-Liquid Interfaces (First Edition) year: 2024 ident: e_1_2_9_263_1 contributor: fullname: Li J.-F. – ident: e_1_2_9_6_1 – ident: e_1_2_9_345_1 doi: 10.1016/j.ijhydene.2022.12.059 – ident: e_1_2_9_102_1 doi: 10.1021/acsnano.9b02890 – ident: e_1_2_9_149_1 – ident: e_1_2_9_355_1 doi: 10.1021/acs.chemrev.3c00382 – ident: e_1_2_9_292_1 doi: 10.1039/C6CS00328A – ident: e_1_2_9_108_1 doi: 10.1021/acsnano.3c04281 – ident: e_1_2_9_197_2 doi: 10.1021/nn506387w – ident: e_1_2_9_205_1 doi: 10.1016/j.ultramic.2012.07.006 – ident: e_1_2_9_325_1 – ident: e_1_2_9_59_2 doi: 10.1002/adfm.202104620 – ident: e_1_2_9_141_2 doi: 10.1039/D1EE02603H – ident: e_1_2_9_175_1 doi: 10.1038/s44160-023-00289-4 – ident: e_1_2_9_256_1 – ident: e_1_2_9_243_2 doi: 10.1021/acsnano.8b06118 – year: 2023 ident: e_1_2_9_9_1 publication-title: Adv. Mater. contributor: fullname: Feng R. – ident: e_1_2_9_107_1 doi: 10.1039/C9CP02493J – ident: e_1_2_9_56_1 doi: 10.1002/anie.201608601 – ident: e_1_2_9_104_1 doi: 10.1016/j.jallcom.2022.167251 – ident: e_1_2_9_267_1 doi: 10.1021/acscatal.0c04473 – ident: e_1_2_9_280_1 doi: 10.1021/acscatal.7b00120 – ident: e_1_2_9_49_2 doi: 10.1021/cr1004452 – ident: e_1_2_9_338_2 doi: 10.1021/jacs.7b13612 – ident: e_1_2_9_54_1 doi: 10.1038/natrevmats.2017.89 – ident: e_1_2_9_26_1 – ident: e_1_2_9_35_2 doi: 10.1002/advs.202003357 – ident: e_1_2_9_159_2 doi: 10.1002/adma.202006147 – ident: e_1_2_9_187_1 – ident: e_1_2_9_55_1 doi: 10.1021/acsami.9b16492 – ident: e_1_2_9_188_2 doi: 10.1016/0039-6028(85)90610-7 – ident: e_1_2_9_10_1 doi: 10.1021/acs.accounts.3c00119 |
SSID | ssj0001105386 |
Score | 2.361264 |
Snippet | In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention.... Abstract In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Active control Bonding strength Catalysis Catalysts electrocatalysis Electrocatalysts Electrochemical analysis Energy conversion epitaxial growths Heavy metals Intermediates Metal surfaces noble metal nanohybrids Noble metals practical use strain effects Substrates Surface layers |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLvSCKG3F8iUfKvUUkdiO1-kNol0hBFzKStwse2yrSGUXkeXQnvgJ_Mb-ks7Eu8ty4sIxlhNNZhL72Z55j7FvSkpQvqkLVwUolHOhaKQJBWJTiCCaMikqTr680mcTdX5T36xJfVFOWKYHzo47RsQb6krrQDLJbgi-NsaD0topB8GEfvQtm7XFVL-7grBBGr1kaSzFMcTfxFhIKZNVrV7NQj1Z_yuEuY5T-4lmvM22FgiRn2TLPrEPcbrDNtulMNtn9vckn9t3_HbKf_YaD_-enkmDA2LgVyQQwy8jgmqOQ-fs1x-qyeo4glM-ypo32LulXRsiI_nBxw-zO379Us-I91I18G131_H5jGdCI2qfdPELm4xH1-1ZsZBQKECWRhVNUrjicrUAM4xKCt8YXcUkQjSNTwhFFJgkXXIy0Xlmil4jjq2GxpceEM3Jr2xjOpvGXcbRoQBNGXSKGF2vnSydBlcnE4wCEQbs-9Kl9j4zZdjMiSwsOd-unD9gp-TxVS9iuO4bMO52EXf7VtwH7GAZL7v47TqL76wNkZ2KARN9DN8wxbaji3Z1tfcehu2zj_TAnCR4wDbmD4_xEIHL3B_13-h__Rbr5g priority: 102 providerName: Directory of Open Access Journals |
Title | Advances in Strain‐Induced Noble Metal Nanohybrids for Electro‐Catalysis: From Theoretical Mechanisms to Practical Use |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400154 https://www.proquest.com/docview/3086803102 https://doaj.org/article/559d5166d4124a7cb588bc466a4acd8d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLVaWNANKm1RB-jIi0pdRSS243G6g2hGCJURahmJneVniwQTNBkW7aqfwDfyJdzrzINZVeouiew8rnPt42vfcwj5LDh3wlZlZgrvMmGMzyqufAbY1AXHqjwKTE6-GMuziTi_Lq9fZPF3_BCrgBt6Ruqv0cGNbY_XpKEu3CIFIe6BBBjwmmwjbQyy5zNxuY6yAHzgSe4RPBN32xZyydyYs-PNW2yMTInAfwN1vsSuafAZvSW7C9RIT7pm3iOvwvQd2amXYm3vyZ-Tbi2_pTdT-iPpPjz9fURdDhc8HaNoDL0IALQpdKfNr9-Yp9VSAKx02OngQOkaIzlIUPKVjmbNHb1a5zhCXcwQvmnvWjpvaEdyhNcnbfhAJqPhVX2WLWQVMsdzJbIqCpiFmZI5NQiCM1spWYTIfFCVjQBPhFORm2h4xDXOGKwEbFsMlM2tA4TH98nWtJmGj4SCcZ2rci9jgBa30vDcSGfKqLwSjvke-bI0qb7v2DN0x5PMNBpfr4zfI6do8VUpZL1OF5rZT71wIg2zH18WUnqUzDYDZ0ulrBNSGmGcV_C4o2V76YUrthq-WSokQGU9wlIb_uNVdD38Vq_ODv6n0iF5g8fdRsEjsjWfPYRPAF7mtp_-zz7ZPh2OL7_3UwjgGSfi6us |
link.rule.ids | 315,783,787,867,2109,11574,27936,27937,33756,46064,46488,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKeygXVAqI0BZ8QOK06q7tdby9tatEgSYREonEzfIvrUSzKBsO9NRH4Bl5ks7sZhNyQuK41np_Zjz25_HMN4S8F5w7YYs8MZl3iTDGJwVXPgFs6oJjRRoFJidPpnI0F5--5l00IebCtPwQG4cbWkYzX6OBo0P6fMsa6sJ35CDEIEjAAU_IgZAwGpHcWXzeulkAP_Cm3iOYJobbZrKjbkzZ-e4jdpamhsF_B3b-DV6b1Wd4RJ6tYSO9bPX8nOyFxTE5LLtqbS_I_WV7mF_T2wX90hR--PPwGwtzuODpFKvG0EkApE1hPq1ufmGiVk0BsdJBWwgH7i7RlYMMJRd0uKzu6Gyb5Ah9MUX4tr6r6aqiLcsRts_r8JLMh4NZOUrWdRUSx1MlkiIK2IaZnDnVD4IzWyiZhch8UIWNgE-EU5GbaHjEQ84YrARwm_WVTa0DiMdfkf1FtQivCQXhOlekXsYAKrfS8NRIZ_KovBKO-R750IlU_2jpM3RLlMw0Cl9vhN8jVyjxzV1Ie900VMtvem1FGrY_Ps-k9Fgz2_SdzZWyTkhphHFewetOO33ptS3WGv5ZKmRAZT3CGh3-41N0ORiXm6s3_9PpHTkczSZjPf44vT4hT7G9jRo8Jfur5c9wBkhmZd82Y_URCYfr0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMCl4qkuFPABiVPUxHa8DrcSdlWgXVWiK_Vm2WMbKrWbarMc4MRP6G_klzCT7KN7QuIYy85jJmN_fsz3MfZWSQnKV2XmigCZci5klTQhQ2wKEUSVJ0XJyScTfTRVn8_L81tZ_D0_xHrBjSKj668pwK9DOtiQhkK8JApCOgOJMOAuu6cQixN7vlCnm1UWhA-yk3vEyKTTtoVeMTfm4mD7FlsjU0fgv4U6b2PXbvAZP2K7S9TID3s3P2Z34uwJe1CvxNqesl-H_V5-yy9m_Gun-_Dn9w3pckAMfEKiMfwkItDm2J02339SnlbLEbDyUa-Dg7VrWskhgpL3fDxvrvjZJscR21KG8EV71fJFw3uSIyqftvEZm45HZ_VRtpRVyEDmRmVVQksVrhRghlFJ4Suji5hEiKbyCeGJApOkS04m2uNM0WvEtsXQ-NwDIjz5nO3MmlncYxyNC1DlQaeIHvfaydxpcGUywSgQYcDerUxqr3v2DNvzJAtLxrdr4w_YB7L4uhaxXncFzfybXQaRxdlPKAutA0lmuyH40hgPSmunHASDj9tf-csuQ7G1-M3aEAGqGDDR-fAfr2Lr0XG9vnrxP43esPunH8f2-NPky0v2kIr7M4P7bGcx_xFfIY5Z-Nfdr_oXiDbq8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Strain%E2%80%90Induced+Noble+Metal+Nanohybrids+for+Electro%E2%80%90Catalysis%3A+From+Theoretical+Mechanisms+to+Practical+Use&rft.jtitle=ChemElectroChem&rft.au=Chen%2C+Zhao%E2%80%90Yang&rft.au=Li%2C+Ling%E2%80%90Tong&rft.au=Zhao%2C+Feng%E2%80%90Ming&rft.au=Zhu%2C+Ying%E2%80%90Hong&rft.date=2024-08-01&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=11&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202400154&rft.externalDBID=10.1002%252Fcelc.202400154&rft.externalDocID=CELC202400154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |