Advances in Strain‐Induced Noble Metal Nanohybrids for Electro‐Catalysis: From Theoretical Mechanisms to Practical Use

In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabricat...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 11; no. 15
Main Authors Chen, Zhao‐Yang, Li, Ling‐Tong, Zhao, Feng‐Ming, Zhu, Ying‐Hong, Chu, You‐Qun
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.08.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided. In this review, we provide a summary of recent advances in approaches to controlling noble metal nanohybrids, characterization techniques, and studies of electrocatalysis applications. Additionally, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. The perspectives on the future research of noble metal hybrid electrocatalysts were also provided.
AbstractList Abstract In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided.
In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided. In this review, we provide a summary of recent advances in approaches to controlling noble metal nanohybrids, characterization techniques, and studies of electrocatalysis applications. Additionally, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. The perspectives on the future research of noble metal hybrid electrocatalysts were also provided.
In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention. However, the enhancement of electrochemical performance using noble metal electrocatalysts, along with cost reduction and electrode fabrication, remain significant challenges. Noble metal hybrid nanostructures, possessing multiple surface functionalities, lead to outstanding electrocatalytic performances and low‐cost potential. Strain effects can bolster the bonding strength between the noble metal layers and the substrate or core layers, while simultaneously affecting electrocatalytic performance through tuning the binding strength between catalytically active sites and reactants, including intermediates. This review encapsulates the research efforts directed towards improving the performance of noble metal electrocatalysts and provides an overview of the latest advancements in controlling the surface state of noble metals by incorporating a secondary component. We discuss systematic approaches to adjusting surface strain effects on noble metals, characterization techniques, and application case studies, while extracting key design indicators for readers to consider from a macroscopic perspective. Further, we outline the challenges encountered and current solutions when advancing noble metal catalysts from theoretical mechanisms to practical use. Finally, the perspectives on the future research of noble metal surface layer control techniques were also provided.
Author Li, Ling‐Tong
Chu, You‐Qun
Chen, Zhao‐Yang
Zhao, Feng‐Ming
Zhu, Ying‐Hong
Author_xml – sequence: 1
  givenname: Zhao‐Yang
  orcidid: 0000-0002-8613-7053
  surname: Chen
  fullname: Chen, Zhao‐Yang
  organization: Zhejiang University of Technology
– sequence: 2
  givenname: Ling‐Tong
  surname: Li
  fullname: Li, Ling‐Tong
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Feng‐Ming
  surname: Zhao
  fullname: Zhao, Feng‐Ming
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Ying‐Hong
  surname: Zhu
  fullname: Zhu, Ying‐Hong
  organization: Zhejiang University of Technology
– sequence: 5
  givenname: You‐Qun
  surname: Chu
  fullname: Chu, You‐Qun
  email: chenzhy@zjut.edu.cn, chuyq@zjut.edu.cn
  organization: Zhejiang University of Technology
BookMark eNqFkc1uEzEUhS3USpS2W9aWWCf4bxwPu2qUlkhpQaJdW_65Jo4m42JPQOmqj9Bn5ElwGVTYsbpX1985PtJ5g46GNABCbymZU0LYewe9mzPCBCG0Ea_QCaOtnBFG5dE_-2t0XsqWVIaShit5gh4u_HczOCg4DvjLmE0cfj4-rQa_d-DxTbI94GsYTY9vzJA2B5ujLzikjJc9uDGnSnemvh9KLB_wZU47fLuBlGGMrqquwW3MEMuu4DHhz9m46X5X4AwdB9MXOP8zT9Hd5fK2-zhbf7padRfrmeNEiVkbhCTUNMypBQjObKskhcA8qNaGdiGFU4GbYHhoCOcBrFTU0oWyxDrSCH6KVpOvT2ar73PcmXzQyUT9-5DyV21yTdWDbprWN1RKLygTZuFso5R1QkojjPPKV693k9d9Tt_2UEa9Tfs81Pi6hpWKcEpYpeYT5XIqJUN4-ZUS_VyXfq5Lv9RVBe0k-BF7OPyH1t1y3f3V_gLwEZyf
Cites_doi 10.1021/acsenergylett.9b00191
10.1021/ja801566d
10.1021/acsami.1c13171
10.1103/PhysRevB.102.085421
10.1021/jacs.0c08962
10.1016/j.apcatb.2021.120914
10.1002/adfm.202112362
10.1002/anie.202003654
10.1021/jacs.7b00165
10.1126/science.aah6133
10.1103/PhysRevLett.93.156801
10.1021/acs.jpclett.7b02525
10.1021/acs.chemmater.3c02956
10.1021/acs.langmuir.2c02673
10.1002/anie.202301269
10.1038/s41893-023-01101-z
10.1002/smll.202302238
10.1016/j.ijhydene.2021.07.006
10.1039/D0TA12152E
10.1021/acsami.2c19879
10.1002/cnma.201700167
10.1038/s41467-022-32581-w
10.1038/nmat4715
10.1016/j.cej.2018.11.099
10.1038/s41467-021-21956-0
10.1021/jacs.5b03034
10.1088/1361-6463/aa6b4a
10.1016/j.jcat.2011.09.039
10.1126/science.aaf7680
10.1016/S0079-6425(00)00009-8
10.1021/jacsau.0c00022
10.1021/acsenergylett.9b00845
10.1038/nmat3698
10.1021/acs.jpclett.7b01083
10.1016/S1872-2067(22)64186-X
10.1002/adfm.202006484
10.1126/science.aaf5050
10.1002/smll.201603423
10.1039/D1NR02232F
10.1002/smll.202309675
10.3389/fchem.2023.1138932
10.1039/D3SC02862C
10.1103/PhysRevLett.81.2819
10.1021/ja505716v
10.1002/adma.201302820
10.1038/nmat4115
10.1002/celc.202300659
10.1002/celc.202200651
10.1021/nn506721f
10.1088/1361-6528/ac75f8
10.1126/science.1141483
10.1021/acs.inorgchem.3c00293
10.1038/am.2015.4
10.1016/j.jallcom.2023.170430
10.1126/science.aaw7493
10.1002/anie.202110636
10.1016/j.trechm.2023.08.004
10.1021/acs.nanolett.6b04731
10.1016/j.isci.2023.107072
10.1021/ja711093j
10.1039/C4CS00484A
10.1126/science.aaz7555
10.1126/science.1172104
10.1002/anie.202203564
10.1039/C8CS00846A
10.1021/ja105401p
10.1021/acsanm.3c00969
10.1126/science.aad8892
10.1016/j.mser.2010.06.014
10.1021/acsanm.1c03004
10.1002/adfm.202208760
10.1021/acsenergylett.8b00454
10.1002/sstr.202200390
10.1016/j.nanoen.2016.02.018
10.1002/adma.201903616
10.1021/acsnano.1c11145
10.1038/s41467-020-16237-1
10.1038/nature01638
10.1038/s41598-022-06595-9
10.1021/acs.chemrev.9b00443
10.1038/s41467-023-38237-7
10.1016/j.apcatb.2017.08.085
10.1002/adma.201701331
10.1002/anie.202014017
10.1021/nl3022434
10.1016/j.jcat.2014.12.033
10.1021/jacsau.2c00138
10.1007/s40820-023-01060-2
10.1016/j.apsusc.2023.158286
10.1126/science.1135941
10.1021/acscatal.0c03406
10.1021/acs.nanolett.3c03178
10.1021/acs.chemrev.2c00880
10.1103/PhysRevB.39.12554
10.1039/C5NR02529J
10.1021/jacs.6b07213
10.1126/science.1134569
10.1038/nmat2083
10.1103/PhysRevB.33.3657
10.1002/adma.202207555
10.1038/s41467-019-11765-x
10.1021/acs.chemmater.7b00046
10.1021/acscentsci.0c01532
10.1016/j.apcatb.2020.119281
10.3389/fchem.2022.865214
10.1016/j.jallcom.2023.169245
10.1021/acscatal.6b00997
10.1021/jz300192b
10.1021/acsnano.3c04516
10.1038/s41467-023-41097-w
10.1002/adfm.201910107
10.1002/anie.201601016
10.1002/adma.201807166
10.1039/D2MA01018F
10.1038/ncomms11850
10.1021/ja408768e
10.1021/acs.nanolett.3c00535
10.1038/ncomms2472
10.1021/nl102369k
10.1016/j.apsadv.2022.100332
10.1039/C6CY01677D
10.1016/j.chempr.2020.06.004
10.1002/adma.201907879
10.1021/ja2047655
10.1016/j.mtener.2021.100920
10.1021/acsmaterialslett.1c00124
10.1021/acscatal.7b00410
10.1021/acs.accounts.6b00596
10.1039/D1NR07019C
10.1002/admi.202201934
10.1002/cssc.201300447
10.1002/adma.202008508
10.1016/j.electacta.2012.10.124
10.1038/s41586-021-03870-z
10.1021/jacs.9b12005
10.1016/S0304-3991(98)00035-7
10.1002/anie.200462335
10.1126/science.aaa1394
10.1039/D2TA01045C
10.1002/smll.202103064
10.1021/acs.nanolett.0c04395
10.1021/jacs.9b10709
10.1021/nn502259g
10.1038/s41467-018-03372-z
10.1016/j.jhazmat.2022.128998
10.1002/adfm.202007423
10.1021/acscatal.0c00224
10.1021/acscatal.2c01944
10.1038/s41467-023-40246-5
10.1039/D2NR05810C
10.1039/C8CP06756B
10.1021/nl8034724
10.1016/j.apsusc.2023.156945
10.1126/science.1217654
10.1021/acsami.0c13303
10.1002/adma.202006292
10.1021/acsami.1c22601
10.1002/adfm.202106401
10.1021/acs.chemrev.0c00454
10.1002/adma.202209307
10.1021/acs.chemrev.3c00081
10.1038/s41467-023-39822-6
10.1002/celc.202201007
10.1021/acs.jpclett.5b01746
10.1021/nn303298s
10.1021/acscatal.0c00040
10.1038/natrevmats.2017.59
10.1038/ncomms3481
10.1038/nmat1957
10.1002/cssc.201600090
10.1002/cctc.202300454
10.1002/anie.202014556
10.1021/nn503946t
10.1039/C5CC03353E
10.1002/adma.201300515
10.1038/s41467-018-05055-1
10.1038/s41563-018-0133-2
10.1007/s40820-023-01102-9
10.1039/D3NJ02807K
10.1016/j.joule.2021.05.005
10.1021/jacs.9b09038
10.1021/jacs.7b12306
10.1016/j.nantod.2010.08.006
10.1038/s41467-022-31468-0
10.1021/acsaem.0c02989
10.1038/s41467-023-38536-z
10.1038/s41598-018-26182-1
10.1002/adfm.201903295
10.1021/acs.accounts.3c00067
10.1016/j.colsurfa.2022.130358
10.1021/acscatal.8b00689
10.1002/aenm.201901945
10.1016/j.xcrp.2021.100602
10.1002/adma.202209810
10.1021/jacs.3c02604
10.1103/PhysRevB.91.155414
10.1002/anie.200703185
10.1002/advs.202200307
10.1126/science.1168049
10.1039/D3SC04126C
10.1021/acs.chemmater.8b03984
10.1021/jacs.7b13612
10.1039/D1TA07066E
10.1021/acsenergylett.3c00185
10.1039/C9TA09471G
10.1016/j.actamat.2011.08.033
10.1021/ac60247a013
10.1002/adfm.202316544
10.1021/jacs.2c08361
10.1016/j.ijhydene.2017.01.117
10.1080/00219592.2023.2197946
10.1002/anie.201612617
10.1021/acsnano.9b01367
10.1038/nmat2156
10.1038/s41929-019-0246-2
10.1002/anie.201604731
10.1021/jacs.9b07659
10.1038/s41570-024-00589-z
10.1038/s41929-021-00703-0
10.1021/ja0600476
10.1002/sstr.202200045
10.1016/j.cej.2022.138786
10.1093/jmicro/dfi042
10.1021/cm5047676
10.1016/j.cej.2020.124240
10.1021/jacs.5b03590
10.1021/nl500553a
10.1002/ente.202200202
10.1021/acsnano.9b07781
10.1111/j.1551-2916.2008.02601.x
10.1002/anie.202003917
10.1021/acs.chemrev.3c00332
10.1038/nmat4555
10.1016/j.ijhydene.2022.10.157
10.1016/j.nanoen.2020.105128
10.1016/j.electacta.2021.138262
10.1107/S0021889881009618
10.1002/smll.202400875
10.1039/C9TA06861A
10.1021/acs.nanolett.0c04051
10.1007/s11356-023-31406-7
10.1166/jnn.2012.6473
10.1038/s41586-022-05540-0
10.1016/j.apcatb.2016.02.045
10.1021/ja406091p
10.1039/D2NR06170H
10.1039/D1TA07488A
10.1021/acscatal.0c04054
10.1002/anie.200504386
10.1063/1.5054294
10.1021/jacs.2c11692
10.1002/adma.201603662
10.1002/anie.202312644
10.1038/s41467-022-31971-4
10.1002/adma.201706312
10.1002/aenm.201803771
10.1021/acs.inorgchem.3c01270
10.1021/acsami.3c08885
10.1038/nchem.623
10.1002/smll.202207743
10.1021/jacs.0c12696
10.1021/nn4052315
10.1126/science.1172083
10.1021/acscatal.0c03938
10.1016/j.jechem.2021.12.026
10.1002/adma.202004142
10.1002/anie.202016199
10.1021/acs.chemrev.2c00770
10.1021/ja5030172
10.1002/aenm.202102261
10.1021/acs.nanolett.5b01154
10.1126/science.1170377
10.1021/nl300067q
10.1021/acsaem.8b01345
10.1039/D2TA07647K
10.1002/smll.202206838
10.1021/ja303950v
10.1038/s41929-020-0457-6
10.1002/advs.201802005
10.1021/acs.chemmater.0c02588
10.1002/smtd.202101328
10.1016/j.ijhydene.2022.12.059
10.1021/acsnano.9b02890
10.1021/acs.chemrev.3c00382
10.1039/C6CS00328A
10.1021/acsnano.3c04281
10.1021/nn506387w
10.1016/j.ultramic.2012.07.006
10.1002/adfm.202104620
10.1039/D1EE02603H
10.1038/s44160-023-00289-4
10.1021/acsnano.8b06118
10.1039/C9CP02493J
10.1002/anie.201608601
10.1016/j.jallcom.2022.167251
10.1021/acscatal.0c04473
10.1021/acscatal.7b00120
10.1021/cr1004452
10.1038/natrevmats.2017.89
10.1002/advs.202003357
10.1002/adma.202006147
10.1021/acsami.9b16492
10.1016/0039-6028(85)90610-7
10.1021/acs.accounts.3c00119
ContentType Journal Article
Copyright 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemElectroChem published by Wiley-VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOA
DOI 10.1002/celc.202400154
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Backfiles
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID oai_doaj_org_article_559d5166d4124a7cb588bc466a4acd8d
10_1002_celc_202400154
CELC202400154
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development plan of China
  funderid: 2017YFB0307503
– fundername: National Natural Science Foundation of China
  funderid: 22178316
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LQ15B030004
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BBNVY
BENPR
BGLVJ
BHPHI
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7P
MEWTI
MY~
O9-
P2W
PDBOC
R.K
ROL
TUS
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
AIURR
BFHJK
CITATION
EJD
SUPJJ
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3084-9f4601a52c87e432b9861ef2de89bf9764c8f3afa3f5033feb681b178b0bc0543
IEDL.DBID 24P
ISSN 2196-0216
IngestDate Tue Oct 22 15:16:29 EDT 2024
Thu Oct 10 22:34:23 EDT 2024
Thu Sep 12 20:38:58 EDT 2024
Sat Aug 24 00:56:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3084-9f4601a52c87e432b9861ef2de89bf9764c8f3afa3f5033feb681b178b0bc0543
ORCID 0000-0002-8613-7053
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400154
PQID 3086803102
PQPubID 2034587
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_559d5166d4124a7cb588bc466a4acd8d
proquest_journals_3086803102
crossref_primary_10_1002_celc_202400154
wiley_primary_10_1002_celc_202400154_CELC202400154
PublicationCentury 2000
PublicationDate August 1, 2024
2024-08-00
20240801
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2019; 11
2019; 10
2019; 13
2013; 127
2020; 14
2024; 31
2020; 12
2020; 11
2020; 10
2012; 12
2001; 46
2011; 111
2022; 611
2015; 137
2019; 21
2023; 451
2019; 29
2010; 2
2010; 5
2021; 46
2018; 221
2019; 31
2013; 88
2020; 142
2024; 11
2020; 389
2020; 32
2016; 15
2011; 133
2017; 139
2017; 50
2016; 6
2016; 7
2022; 3
2020; 30
2022; 6
2019; 48
2022; 9
2017; 56
1967; 39
2022; 2
2020; 278
2021; 60
2016; 28
2008; 130
2016; 9
2016; 22
2017; 42
2023; 35
2013; 25
2023; 39
2020; 120
1986; 33
2017; 46
2008; 7
2020; 59
2021; 121
2020; 8
2020; 6
2020; 3
2023; 23
2013; 13
2023; 26
2021; 598
2013; 12
2023; 656
2016; 354
2016; 353
2016; 352
2010; 70
2014; 8
2012; 336
2006; 128
2009; 323
2009; 324
2021; 9
2021; 8
2023; 10
2021; 7
2015; 6
2021; 5
2021; 4
2023; 14
2023; 11
2021; 3
2021; 2
2023; 17
2023; 15
2023; 640
2023; 19
2020; 78
2017; 29
2020; 102
2021; 1
2015; 9
2015; 7
2008; 91
2022; 435
2004; 93
2023
2017; 17
2017; 13
2010; 132
2009; 9
2016; 138
2003; 423
2022; 304
2007; 46
2013; 4
2022; 23
2023; 622
1998; 81
2011; 59
2024
2013; 6
2014; 136
2023; 62
2018; 9
2018; 8
2018; 3
2012; 134
2024; 8
2018; 1
2007; 6
2014; 14
2018; 30
2022; 30
2022; 32
2015; 91
2023; 614
2022; 33
2017; 202
1989; 39
2019; 7
2019; 9
2019; 4
2019; 6
2023; 56
2019; 2
2015; 51
2021; 380
2024; 124
2021; 143
2018; 17
2023; 47
2007; 317
2007; 315
2023; 45
2006; 45
2023; 48
2022; 12
1985; 156
1981; 14
2022; 13
2021; 371
2022; 14
2022; 10
1998; 74
2018; 12
2023; 958
2022; 16
2017; 7
2017; 8
2012; 285
2021; 21
2017; 2
2017; 3
2023; 4
2023; 5
2023; 6
2023; 8
2023; 145
2022; 68
2019; 366
2011; 11
2019; 125
2023; 944
2023; 2
2015; 348
2021; 31
2021; 33
2015; 44
2022; 929
2019; 359
2015; 15
2015; 14
2018; 140
2023; 123
2015; 328
2019; 141
2005; 44
2016; 55
2021; 14
2022; 144
2021; 13
2012; 3
2015; 27
2021; 12
2021; 11
2022; 61
2021; 17
2013; 135
2005; 54
2012; 6
e_1_2_9_231_2
e_1_2_9_71_2
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_33_2
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_277_1
e_1_2_9_216_2
e_1_2_9_292_1
e_1_2_9_107_1
e_1_2_9_122_2
e_1_2_9_145_1
e_1_2_9_168_2
e_1_2_9_337_1
e_1_2_9_183_2
e_1_2_9_314_1
e_1_2_9_18_2
e_1_2_9_160_2
e_1_2_9_352_1
e_1_2_9_242_2
e_1_2_9_265_1
e_1_2_9_45_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_288_1
e_1_2_9_22_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_280_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_325_1
e_1_2_9_157_1
e_1_2_9_348_1
e_1_2_9_195_2
e_1_2_9_68_2
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_340_1
e_1_2_9_72_2
e_1_2_9_255_1
e_1_2_9_232_2
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_2
e_1_2_9_278_1
e_1_2_9_338_2
e_1_2_9_270_1
e_1_2_9_293_1
e_1_2_9_353_1
e_1_2_9_129_1
e_1_2_9_121_2
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_167_2
e_1_2_9_217_2
e_1_2_9_315_1
e_1_2_9_182_2
e_1_2_9_19_2
e_1_2_9_330_1
e_1_2_9_61_2
e_1_2_9_220_2
e_1_2_9_243_2
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_266_1
e_1_2_9_23_2
e_1_2_9_289_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_281_1
Wang M. (e_1_2_9_319_1) 2023
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_179_1
e_1_2_9_349_1
e_1_2_9_156_2
e_1_2_9_326_2
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_194_2
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_341_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_77_2
e_1_2_9_31_2
e_1_2_9_54_1
e_1_2_9_279_1
e_1_2_9_294_1
e_1_2_9_339_2
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_271_1
Wang X. (e_1_2_9_307_1) 2022; 611
e_1_2_9_331_1
e_1_2_9_354_1
e_1_2_9_101_1
e_1_2_9_147_1
e_1_2_9_124_2
e_1_2_9_162_2
e_1_2_9_316_1
e_1_2_9_218_1
e_1_2_9_16_2
e_1_2_9_185_1
Xu Y. (e_1_2_9_299_1) 2024
e_1_2_9_39_2
Zhu J. (e_1_2_9_136_1) 2023; 6
e_1_2_9_244_2
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_2
e_1_2_9_66_2
e_1_2_9_206_1
e_1_2_9_267_1
e_1_2_9_43_2
e_1_2_9_327_2
e_1_2_9_81_1
e_1_2_9_282_1
e_1_2_9_159_2
e_1_2_9_113_1
e_1_2_9_342_1
e_1_2_9_8_2
e_1_2_9_151_2
e_1_2_9_197_2
e_1_2_9_304_2
e_1_2_9_174_1
e_1_2_9_229_2
e_1_2_9_28_2
e_1_2_9_234_1
e_1_2_9_211_2
e_1_2_9_78_1
e_1_2_9_55_1
Plankensteiner N. (e_1_2_9_350_1) 2022; 30
e_1_2_9_32_2
Li T. (e_1_2_9_131_1) 2023
e_1_2_9_257_2
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_332_1
e_1_2_9_100_2
e_1_2_9_355_1
e_1_2_9_123_2
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_161_2
e_1_2_9_184_2
e_1_2_9_17_2
e_1_2_9_245_1
e_1_2_9_222_1
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_268_1
e_1_2_9_305_2
e_1_2_9_7_2
e_1_2_9_260_1
e_1_2_9_283_1
e_1_2_9_328_1
e_1_2_9_82_1
e_1_2_9_320_1
e_1_2_9_343_1
e_1_2_9_158_2
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_207_2
e_1_2_9_150_2
e_1_2_9_196_2
e_1_2_9_173_1
e_1_2_9_29_2
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_98_2
e_1_2_9_235_1
e_1_2_9_212_2
e_1_2_9_258_2
e_1_2_9_318_1
e_1_2_9_90_1
e_1_2_9_273_1
e_1_2_9_296_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_333_1
e_1_2_9_356_1
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_187_1
e_1_2_9_141_2
e_1_2_9_164_1
e_1_2_9_310_1
e_1_2_9_87_1
e_1_2_9_223_1
e_1_2_9_269_1
e_1_2_9_41_2
e_1_2_9_200_2
e_1_2_9_306_2
e_1_2_9_64_2
e_1_2_9_246_2
e_1_2_9_284_1
e_1_2_9_329_1
e_1_2_9_2_1
e_1_2_9_261_1
e_1_2_9_138_1
e_1_2_9_321_1
e_1_2_9_344_1
e_1_2_9_199_2
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_2
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_208_2
e_1_2_9_191_2
e_1_2_9_30_2
e_1_2_9_99_2
e_1_2_9_213_2
e_1_2_9_259_2
e_1_2_9_76_2
e_1_2_9_236_1
e_1_2_9_53_2
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_334_1
Feng R. (e_1_2_9_9_1) 2023
e_1_2_9_357_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_140_1
e_1_2_9_186_1
e_1_2_9_38_2
e_1_2_9_163_2
Li J.-F. (e_1_2_9_263_1) 2024
e_1_2_9_311_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_247_2
e_1_2_9_80_1
e_1_2_9_285_1
e_1_2_9_262_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_322_1
e_1_2_9_345_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_2
e_1_2_9_209_2
e_1_2_9_152_2
e_1_2_9_190_2
e_1_2_9_360_2
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_214_1
e_1_2_9_298_1
e_1_2_9_12_2
e_1_2_9_96_2
e_1_2_9_237_1
e_1_2_9_275_1
e_1_2_9_252_1
e_1_2_9_290_1
e_1_2_9_128_1
e_1_2_9_189_2
e_1_2_9_335_1
e_1_2_9_358_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_120_1
e_1_2_9_143_1
e_1_2_9_181_2
e_1_2_9_312_1
e_1_2_9_62_2
e_1_2_9_202_1
e_1_2_9_248_2
e_1_2_9_308_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_286_1
e_1_2_9_4_1
e_1_2_9_240_1
e_1_2_9_323_1
e_1_2_9_155_2
e_1_2_9_117_1
e_1_2_9_346_1
e_1_2_9_178_1
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_132_1
e_1_2_9_193_2
e_1_2_9_361_2
e_1_2_9_300_1
e_1_2_9_170_1
e_1_2_9_51_2
e_1_2_9_97_2
e_1_2_9_74_1
e_1_2_9_238_1
e_1_2_9_276_1
e_1_2_9_215_2
e_1_2_9_253_1
e_1_2_9_291_1
e_1_2_9_230_2
Zheng C. (e_1_2_9_226_1) 2023
e_1_2_9_127_1
e_1_2_9_336_1
e_1_2_9_104_1
e_1_2_9_188_2
e_1_2_9_359_1
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_165_1
e_1_2_9_36_2
e_1_2_9_142_2
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_351_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_264_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
e_1_2_9_324_1
e_1_2_9_347_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_154_1
e_1_2_9_301_1
e_1_2_9_192_2
e_1_2_9_362_2
References_xml – volume: 336
  start-page: 61
  year: 2012
  publication-title: Science
– volume: 598
  start-page: 76
  year: 2021
  publication-title: Nature
– volume: 324
  start-page: 48
  year: 2009
  publication-title: Science
– volume: 23
  start-page: 10004
  year: 2023
  publication-title: Nano Lett.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 304
  year: 2019
  publication-title: Nat. Catal.
– year: 2023
  publication-title: Adv. Mater.
– volume: 136
  start-page: 10878
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 304
  year: 2022
  publication-title: Appl. Catal. B
– volume: 17
  start-page: 827
  year: 2018
  publication-title: Nat. Mater.
– volume: 142
  start-page: 7765
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3115
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 81
  start-page: 2819
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 4528
  year: 2024
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 17
  start-page: 2204
  year: 2017
  publication-title: Nano Lett.
– volume: 48
  start-page: 2617
  year: 2023
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 1011
  year: 2018
  publication-title: Nat. Commun.
– volume: 46
  start-page: 329
  year: 2001
  publication-title: Prog. Mater. Sci.
– volume: 39
  start-page: 332
  year: 1967
  publication-title: Anal. Chem.
– volume: 56
  start-page: 1539
  year: 2023
  publication-title: Acc. Chem. Res.
– volume: 141
  start-page: 19879
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 5285
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 371
  start-page: 498
  year: 2021
  publication-title: Science
– volume: 13
  start-page: 7241
  year: 2019
  publication-title: ACS Nano
– volume: 278
  year: 2020
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 10614
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 285
  start-page: 273
  year: 2012
  publication-title: J. Catal.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 622
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 10
  year: 2022
  publication-title: Energy Technol.
– volume: 348
  start-page: 530
  year: 2015
  publication-title: Science
– volume: 12
  start-page: 12296
  year: 2018
  publication-title: ACS Nano
– volume: 4
  start-page: 12490
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 14
  start-page: 357
  year: 1981
  publication-title: J. Appl. Crystallogr.
– volume: 9
  start-page: 1493
  year: 2009
  publication-title: Nano Lett.
– volume: 12
  year: 2022
  publication-title: Appl. Surf. Sci. Adv.
– volume: 324
  start-page: 1309
  year: 2009
  publication-title: Science
– volume: 23
  start-page: 3467
  year: 2023
  publication-title: Nano Lett.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 6249
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2024
  publication-title: ChemElectroChem
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 136
  start-page: 7734
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 10953
  year: 2023
  publication-title: Chem. Sci.
– volume: 39
  start-page: 423
  year: 2023
  publication-title: Langmuir
– volume: 4
  year: 2023
  publication-title: Small Structures
– volume: 46
  start-page: 31202
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 127
  start-page: 100
  year: 2013
  publication-title: Ultramicroscopy
– volume: 111
  start-page: 3736
  year: 2011
  publication-title: Chem. Rev.
– volume: 359
  start-page: 894
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 4127
  year: 2023
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3203
  year: 2014
  publication-title: Nano Lett.
– volume: 141
  start-page: 17337
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 156
  start-page: 487
  year: 1985
  publication-title: Surf. Sci.
– volume: 60
  start-page: 4474
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 17
  start-page: 17058
  year: 2023
  publication-title: ACS Nano
– volume: 9
  start-page: 1153
  year: 2016
  publication-title: ChemSusChem
– volume: 14
  start-page: 791
  year: 2020
  publication-title: ACS Nano
– volume: 8
  start-page: 8284
  year: 2018
  publication-title: Sci. Rep.
– volume: 55
  start-page: 5501
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 7736
  year: 2011
  publication-title: Acta Mater.
– volume: 435
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Mater. Interfaces
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 8
  start-page: 1900
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 929
  year: 2022
  publication-title: J. Alloys Compd.
– year: 2023
  publication-title: Small
– volume: 15
  start-page: 364
  year: 2023
  publication-title: Chem. Sci.
– volume: 10
  year: 2022
  publication-title: Front. Chem.
– volume: 91
  start-page: 3015
  year: 2008
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 692
  year: 2007
  publication-title: Nat. Mater.
– volume: 12
  start-page: 8554
  year: 2012
  publication-title: J. Nanosci. Nanotechnol.
– volume: 124
  start-page: 3694
  year: 2024
  publication-title: Chem. Rev.
– volume: 33
  start-page: 3657
  year: 1986
  publication-title: Phys. Rev. B
– volume: 56
  year: 2023
  publication-title: J. Chem. Eng. Jpn.
– volume: 15
  start-page: 143
  year: 2023
  publication-title: Nano-Micro Lett.
– volume: 14
  start-page: 6494
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1704
  year: 2021
  publication-title: Joule
– volume: 134
  start-page: 11880
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 9437
  year: 2022
  publication-title: ACS Catal.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 5320
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 2502
  year: 2015
  publication-title: Chem. Mater.
– volume: 221
  start-page: 77
  year: 2018
  publication-title: Appl. Catal. B
– volume: 3
  start-page: 1198
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 2384
  year: 2023
  publication-title: Nanoscale
– volume: 10
  start-page: 24701
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 599
  year: 2014
  publication-title: ACS Nano
– volume: 12
  start-page: 1687
  year: 2021
  publication-title: Nat. Commun.
– volume: 23
  year: 2022
  publication-title: Mater. Today Energy
– volume: 19
  year: 2023
  publication-title: Small
– volume: 11
  start-page: 2522
  year: 2020
  publication-title: Nat. Commun.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 9
  start-page: 22901
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 142
  start-page: 19209
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 8436
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 4200
  year: 2022
  publication-title: Nat. Commun.
– year: 2023
  publication-title: Adv. Sustain. Syst.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 3192
  year: 2013
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3094
  year: 2021
  publication-title: ACS Catal.
– volume: 50
  start-page: 787
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 56
  start-page: 60
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 12248
  year: 2015
  publication-title: Nanoscale
– volume: 145
  start-page: 5710
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 15332
  year: 2015
  publication-title: Chem. Commun.
– volume: 1
  start-page: 6657
  year: 2018
  publication-title: ACS Appl. Energ. Mater.
– volume: 74
  start-page: 131
  year: 1998
  publication-title: Ultramicroscopy
– volume: 48
  start-page: 3265
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 88
  start-page: 604
  year: 2013
  publication-title: Electrochim. Acta
– volume: 315
  start-page: 220
  year: 2007
  publication-title: Science
– volume: 33
  year: 2022
  publication-title: Nanotechnology
– volume: 8
  start-page: 3344
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2023
  publication-title: ChemElectroChem
– volume: 4
  start-page: 980
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 6665
  year: 2018
  publication-title: ACS Catal.
– volume: 6
  start-page: 10213
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 48
  start-page: 10493
  year: 2023
  publication-title: Int. J. Hydrogen Energy
– volume: 125
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 11850
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 20151
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 4378
  year: 2023
  publication-title: Nanoscale
– volume: 123
  start-page: 3790
  year: 2023
  publication-title: Chem. Rev.
– volume: 9
  start-page: 387
  year: 2015
  publication-title: ACS Nano
– volume: 21
  start-page: 6477
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– year: 2024
  publication-title: Small
– volume: 130
  start-page: 2940
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 3
  start-page: 17089
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 130
  start-page: 6949
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 944
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 7
  year: 2015
  publication-title: NPG Asia Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 3797
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 39
  start-page: 12554
  year: 1989
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 2355
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 694
  year: 2023
  publication-title: Mater. Adv.
– volume: 2
  start-page: 17059
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 13
  start-page: 20225
  year: 2021
  publication-title: Nanoscale
– volume: 352
  start-page: 73
  year: 2016
  publication-title: Science
– volume: 47
  start-page: 15450
  year: 2023
  publication-title: New J. Chem.
– volume: 6
  start-page: 5378
  year: 2016
  publication-title: ACS Catal.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 11
  start-page: 919
  year: 2011
  publication-title: Nano Lett.
– volume: 144
  start-page: 19106
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2022
  publication-title: Small Structures
– volume: 2
  start-page: 749
  year: 2023
  publication-title: Nat. Synth.
– volume: 9
  start-page: 23444
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 2538
  year: 2023
  publication-title: Nat. Commun.
– volume: 3
  start-page: 622
  year: 2021
  publication-title: ACS Materials Lett.
– volume: 13
  start-page: 3784
  year: 2022
  publication-title: Nat. Commun.
– volume: 25
  start-page: 6313
  year: 2013
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4290
  year: 2020
  publication-title: ACS Catal.
– volume: 7
  start-page: 3072
  year: 2017
  publication-title: ACS Catal.
– volume: 141
  start-page: 16202
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5529
  year: 2020
  publication-title: ACS Catal.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 2934
  year: 2023
  publication-title: Nat. Commun.
– volume: 611
  start-page: 1
  year: 2022
  publication-title: Nature
– volume: 15
  start-page: 41560
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2257
  year: 2020
  publication-title: Chem
– volume: 16
  start-page: 3251
  year: 2022
  publication-title: ACS Nano
– volume: 12
  start-page: 45582
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2022
  publication-title: Mater. Today
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 32
  start-page: 9560
  year: 2020
  publication-title: Chem. Mater.
– volume: 45
  start-page: 2897
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 333
  year: 2008
  publication-title: Nat. Mater.
– volume: 10
  start-page: 12575
  year: 2020
  publication-title: ACS Catal.
– volume: 17
  start-page: 15085
  year: 2023
  publication-title: ACS Nano
– volume: 353
  start-page: 1011
  year: 2016
  publication-title: Science
– volume: 4
  start-page: 1045
  year: 2021
  publication-title: ACS Appl. Energ. Mater.
– volume: 123
  start-page: 8347
  year: 2023
  publication-title: Chem. Rev.
– volume: 15
  start-page: 564
  year: 2016
  publication-title: Nat. Mater.
– volume: 15
  start-page: 9263
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 2773
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 42298
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 4492
  year: 2023
  publication-title: Nat. Commun.
– volume: 21
  start-page: 18753
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 640
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 2522
  year: 2022
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2481
  year: 2013
  publication-title: Nat. Commun.
– volume: 13
  start-page: 12088
  year: 2021
  publication-title: Nanoscale
– volume: 60
  start-page: 4448
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 215
  year: 2015
  publication-title: Nat. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 137
  start-page: 7397
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 120
  year: 2008
  publication-title: Nat. Mater.
– volume: 15
  start-page: 4089
  year: 2015
  publication-title: Nano Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 137
  start-page: 12162
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 120
  year: 2016
  publication-title: Nano Energy
– volume: 21
  start-page: 1074
  year: 2021
  publication-title: Nano Lett.
– volume: 44
  start-page: 2168
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 900
  year: 2023
  publication-title: Acc. Chem. Res.
– volume: 13
  start-page: 8725
  year: 2019
  publication-title: ACS Nano
– volume: 15
  year: 2023
  publication-title: ChemCatChem
– volume: 1
  start-page: 108
  year: 2021
  publication-title: JACS Au
– volume: 423
  start-page: 270
  year: 2003
  publication-title: Nature
– volume: 133
  start-page: 14396
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 721
  year: 2022
  publication-title: J. Energy Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 121
  start-page: 649
  year: 2021
  publication-title: Chem. Rev.
– volume: 6
  start-page: 9373
  year: 2012
  publication-title: ACS Nano
– volume: 2
  start-page: 454
  year: 2010
  publication-title: Nat. Chem.
– volume: 45
  start-page: 6
  year: 2023
  publication-title: Chin. J. Catal.
– volume: 4
  start-page: 1012
  year: 2021
  publication-title: Nature Catalysis
– volume: 13
  start-page: 1869
  year: 2013
  publication-title: Nano Lett.
– volume: 12
  start-page: 2027
  year: 2012
  publication-title: Nano Lett.
– volume: 42
  start-page: 10142
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 60
  start-page: 8243
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1379
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 3899
  year: 2019
  publication-title: Nat. Commun.
– volume: 656
  year: 2023
  publication-title: Colloids Surf., A
– volume: 62
  start-page: 11581
  year: 2023
  publication-title: Inorg. Chem.
– volume: 8
  start-page: 7239
  year: 2014
  publication-title: ACS Nano
– volume: 145
  start-page: 12717
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 10517
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 8117
  year: 2016
  publication-title: Catal. Sci. Technol.
– volume: 2
  start-page: 1054
  year: 2022
  publication-title: JACS Au
– volume: 26
  year: 2023
  publication-title: iScience
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 15
  start-page: 1172
  year: 2016
  publication-title: Nat. Mater.
– year: 2024
– volume: 124
  start-page: 2955
  year: 2024
  publication-title: Chem. Rev.
– volume: 9
  start-page: 2635
  year: 2015
  publication-title: ACS Nano
– volume: 354
  start-page: 1031
  year: 2016
  publication-title: Science
– volume: 3
  start-page: 934
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 3540
  year: 2017
  publication-title: ACS Catal.
– volume: 138
  start-page: 12263
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 22996
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 15
  start-page: 83
  year: 2023
  publication-title: Nano-Micro Lett.
– volume: 3
  start-page: 516
  year: 2020
  publication-title: Nature Catalysis
– volume: 35
  start-page: 10724
  year: 2023
  publication-title: Chem. Mater.
– volume: 21
  start-page: 1003
  year: 2021
  publication-title: Nano Lett.
– volume: 135
  start-page: 16658
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 5994
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 132
  start-page: 14546
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 449
  year: 2010
  publication-title: Nano Today
– volume: 28
  start-page: 9949
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2722
  year: 2018
  publication-title: Nat. Commun.
– volume: 62
  start-page: 5032
  year: 2023
  publication-title: Inorg. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 315
  start-page: 493
  year: 2007
  publication-title: Science
– volume: 324
  start-page: 1302
  year: 2009
  publication-title: Science
– volume: 13
  start-page: 45538
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 128
  start-page: 8813
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 18334
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1444
  year: 2013
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1554
  year: 2021
  publication-title: ACS Catal.
– volume: 13
  start-page: 4871
  year: 2022
  publication-title: Nat. Commun.
– volume: 54
  start-page: 181
  year: 2005
  publication-title: J. Electron Microsc.
– volume: 8
  start-page: 277
  year: 2024
  publication-title: Nat. Chem. Rev.
– volume: 10
  start-page: 15207
  year: 2020
  publication-title: ACS Catal.
– volume: 56
  start-page: 3594
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2023
  publication-title: Front. Chem.
– volume: 3
  start-page: 815
  year: 2017
  publication-title: ChemNanoMat
– volume: 31
  start-page: 842
  year: 2019
  publication-title: Chem. Mater.
– year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 380
  year: 2021
  publication-title: Electrochim. Acta
– volume: 143
  start-page: 5386
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 354
  start-page: 1410
  year: 2016
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 614
  start-page: 262
  year: 2023
  publication-title: Nature
– volume: 7
  start-page: 415
  year: 2021
  publication-title: ACS Cent. Sci.
– volume: 6
  start-page: 816
  year: 2023
  publication-title: Nat. Sustain.
– volume: 44
  start-page: 2132
  year: 2005
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 729
  year: 2013
  publication-title: Nat. Mater.
– volume: 120
  start-page: 2123
  year: 2020
  publication-title: Chem. Rev.
– volume: 70
  start-page: 303
  year: 2010
  publication-title: Mater. Sci. Eng. R
– year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 123
  start-page: 12507
  year: 2023
  publication-title: Chem. Rev.
– volume: 5
  start-page: 748
  year: 2023
  publication-title: Trends Chem.
– volume: 6
  start-page: 1993
  year: 2013
  publication-title: ChemSusChem
– volume: 328
  start-page: 36
  year: 2015
  publication-title: J. Catal.
– volume: 14
  start-page: 5363
  year: 2023
  publication-title: Nat. Commun.
– volume: 958
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 202
  start-page: 706
  year: 2017
  publication-title: Appl. Catal. B
– volume: 135
  start-page: 13879
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 2
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 5360
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 6818
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_9_287_1
  doi: 10.1021/acsenergylett.9b00191
– ident: e_1_2_9_77_2
  doi: 10.1021/ja801566d
– ident: e_1_2_9_99_2
  doi: 10.1021/acsami.1c13171
– ident: e_1_2_9_160_2
  doi: 10.1103/PhysRevB.102.085421
– ident: e_1_2_9_129_1
  doi: 10.1021/jacs.0c08962
– ident: e_1_2_9_349_1
  doi: 10.1016/j.apcatb.2021.120914
– ident: e_1_2_9_278_1
  doi: 10.1002/adfm.202112362
– ident: e_1_2_9_265_1
  doi: 10.1002/anie.202003654
– ident: e_1_2_9_279_1
  doi: 10.1021/jacs.7b00165
– ident: e_1_2_9_274_1
  doi: 10.1126/science.aah6133
– ident: e_1_2_9_41_2
  doi: 10.1103/PhysRevLett.93.156801
– ident: e_1_2_9_211_2
  doi: 10.1021/acs.jpclett.7b02525
– ident: e_1_2_9_25_2
  doi: 10.1021/acs.chemmater.3c02956
– ident: e_1_2_9_86_1
  doi: 10.1021/acs.langmuir.2c02673
– ident: e_1_2_9_146_1
  doi: 10.1002/anie.202301269
– ident: e_1_2_9_177_1
  doi: 10.1038/s41893-023-01101-z
– ident: e_1_2_9_351_1
  doi: 10.1002/smll.202302238
– ident: e_1_2_9_312_1
  doi: 10.1016/j.ijhydene.2021.07.006
– ident: e_1_2_9_296_1
  doi: 10.1039/D0TA12152E
– ident: e_1_2_9_103_1
  doi: 10.1021/acsami.2c19879
– ident: e_1_2_9_223_1
  doi: 10.1002/cnma.201700167
– ident: e_1_2_9_305_2
  doi: 10.1038/s41467-022-32581-w
– ident: e_1_2_9_161_2
  doi: 10.1038/nmat4715
– ident: e_1_2_9_105_1
  doi: 10.1016/j.cej.2018.11.099
– ident: e_1_2_9_139_1
  doi: 10.1038/s41467-021-21956-0
– ident: e_1_2_9_212_2
  doi: 10.1021/jacs.5b03034
– ident: e_1_2_9_134_1
  doi: 10.1088/1361-6463/aa6b4a
– ident: e_1_2_9_333_1
  doi: 10.1016/j.jcat.2011.09.039
– ident: e_1_2_9_130_1
  doi: 10.1126/science.aaf7680
– ident: e_1_2_9_206_1
– ident: e_1_2_9_246_2
  doi: 10.1016/S0079-6425(00)00009-8
– ident: e_1_2_9_4_1
  doi: 10.1021/jacsau.0c00022
– ident: e_1_2_9_116_1
  doi: 10.1021/acsenergylett.9b00845
– ident: e_1_2_9_207_2
  doi: 10.1038/nmat3698
– ident: e_1_2_9_230_2
  doi: 10.1021/acs.jpclett.7b01083
– ident: e_1_2_9_354_1
  doi: 10.1016/S1872-2067(22)64186-X
– ident: e_1_2_9_295_1
  doi: 10.1002/adfm.202006484
– ident: e_1_2_9_332_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_9_157_1
– ident: e_1_2_9_127_1
  doi: 10.1002/smll.201603423
– ident: e_1_2_9_84_1
  doi: 10.1039/D1NR02232F
– ident: e_1_2_9_203_1
  doi: 10.1002/smll.202309675
– ident: e_1_2_9_14_1
  doi: 10.3389/fchem.2023.1138932
– ident: e_1_2_9_83_1
  doi: 10.1039/D3SC02862C
– ident: e_1_2_9_43_2
  doi: 10.1103/PhysRevLett.81.2819
– ident: e_1_2_9_82_1
  doi: 10.1021/ja505716v
– ident: e_1_2_9_101_1
  doi: 10.1002/adma.201302820
– ident: e_1_2_9_155_2
  doi: 10.1038/nmat4115
– ident: e_1_2_9_298_1
  doi: 10.1002/celc.202300659
– ident: e_1_2_9_68_2
  doi: 10.1002/celc.202200651
– ident: e_1_2_9_217_2
  doi: 10.1021/nn506721f
– ident: e_1_2_9_348_1
  doi: 10.1088/1361-6528/ac75f8
– ident: e_1_2_9_277_1
  doi: 10.1126/science.1141483
– ident: e_1_2_9_19_2
  doi: 10.1021/acs.inorgchem.3c00293
– ident: e_1_2_9_152_2
  doi: 10.1038/am.2015.4
– ident: e_1_2_9_347_1
  doi: 10.1016/j.jallcom.2023.170430
– ident: e_1_2_9_40_1
– ident: e_1_2_9_165_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_9_250_1
  doi: 10.1002/anie.202110636
– ident: e_1_2_9_72_2
  doi: 10.1016/j.trechm.2023.08.004
– ident: e_1_2_9_321_1
  doi: 10.1002/smll.202302238
– ident: e_1_2_9_194_2
  doi: 10.1021/acs.nanolett.6b04731
– ident: e_1_2_9_258_2
  doi: 10.1016/j.isci.2023.107072
– ident: e_1_2_9_51_2
  doi: 10.1021/ja711093j
– ident: e_1_2_9_8_2
  doi: 10.1039/C4CS00484A
– ident: e_1_2_9_74_1
  doi: 10.1126/science.aaz7555
– ident: e_1_2_9_260_1
  doi: 10.1126/science.1172104
– ident: e_1_2_9_361_2
  doi: 10.1002/anie.202203564
– ident: e_1_2_9_37_2
  doi: 10.1039/C8CS00846A
– ident: e_1_2_9_48_2
  doi: 10.1021/ja105401p
– ident: e_1_2_9_110_1
  doi: 10.1021/acsanm.3c00969
– ident: e_1_2_9_168_2
  doi: 10.1126/science.aad8892
– ident: e_1_2_9_257_2
  doi: 10.1016/j.mser.2010.06.014
– ident: e_1_2_9_87_1
  doi: 10.1021/acsanm.1c03004
– ident: e_1_2_9_118_1
  doi: 10.1002/adfm.202208760
– ident: e_1_2_9_284_1
  doi: 10.1021/acsenergylett.8b00454
– ident: e_1_2_9_313_1
  doi: 10.1002/sstr.202200390
– ident: e_1_2_9_29_2
  doi: 10.1016/j.nanoen.2016.02.018
– ident: e_1_2_9_147_1
  doi: 10.1002/adma.201903616
– ident: e_1_2_9_179_1
  doi: 10.1126/science.aaf7680
– ident: e_1_2_9_288_1
  doi: 10.1021/acsnano.1c11145
– ident: e_1_2_9_198_1
– ident: e_1_2_9_294_1
  doi: 10.1038/s41467-020-16237-1
– ident: e_1_2_9_182_2
  doi: 10.1038/nature01638
– ident: e_1_2_9_172_1
  doi: 10.1038/s41598-022-06595-9
– ident: e_1_2_9_61_2
  doi: 10.1021/acs.chemrev.9b00443
– ident: e_1_2_9_133_1
  doi: 10.1038/s41467-023-38237-7
– ident: e_1_2_9_27_2
  doi: 10.1016/j.apcatb.2017.08.085
– ident: e_1_2_9_64_2
  doi: 10.1002/adma.201701331
– ident: e_1_2_9_185_1
  doi: 10.1002/anie.202014017
– ident: e_1_2_9_126_1
  doi: 10.1021/nl3022434
– ident: e_1_2_9_339_2
  doi: 10.1016/j.jcat.2014.12.033
– ident: e_1_2_9_1_1
  doi: 10.1021/jacsau.2c00138
– ident: e_1_2_9_322_1
  doi: 10.1007/s40820-023-01060-2
– ident: e_1_2_9_242_2
  doi: 10.1016/j.apsusc.2023.158286
– ident: e_1_2_9_271_1
  doi: 10.1126/science.1135941
– ident: e_1_2_9_171_1
  doi: 10.1021/acscatal.0c03406
– ident: e_1_2_9_142_2
  doi: 10.1021/acs.nanolett.3c03178
– ident: e_1_2_9_255_1
  doi: 10.1021/acs.chemrev.2c00880
– ident: e_1_2_9_240_1
  doi: 10.1103/PhysRevB.39.12554
– ident: e_1_2_9_38_2
  doi: 10.1039/C5NR02529J
– ident: e_1_2_9_302_1
  doi: 10.1002/adma.201903616
– ident: e_1_2_9_60_1
– ident: e_1_2_9_109_1
  doi: 10.1021/jacs.6b07213
– ident: e_1_2_9_214_1
– ident: e_1_2_9_272_1
  doi: 10.1126/science.1134569
– ident: e_1_2_9_121_2
  doi: 10.1038/nmat2083
– ident: e_1_2_9_150_2
  doi: 10.1103/PhysRevB.33.3657
– ident: e_1_2_9_135_1
  doi: 10.1002/adma.202207555
– ident: e_1_2_9_57_1
– ident: e_1_2_9_234_1
  doi: 10.1038/s41467-019-11765-x
– ident: e_1_2_9_89_1
  doi: 10.1021/acs.chemmater.7b00046
– ident: e_1_2_9_120_1
– ident: e_1_2_9_2_1
  doi: 10.1021/acscentsci.0c01532
– ident: e_1_2_9_17_2
  doi: 10.1016/j.apcatb.2020.119281
– ident: e_1_2_9_69_1
  doi: 10.3389/fchem.2022.865214
– ident: e_1_2_9_80_1
  doi: 10.1016/j.jallcom.2023.169245
– ident: e_1_2_9_167_2
  doi: 10.1021/acscatal.6b00997
– ident: e_1_2_9_193_2
  doi: 10.1021/jz300192b
– ident: e_1_2_9_251_1
  doi: 10.1021/acsnano.3c04516
– ident: e_1_2_9_344_1
  doi: 10.1038/s41467-023-41097-w
– ident: e_1_2_9_195_2
  doi: 10.1002/adfm.201910107
– ident: e_1_2_9_93_1
  doi: 10.1002/anie.201601016
– ident: e_1_2_9_286_1
  doi: 10.1002/adma.201807166
– ident: e_1_2_9_12_2
  doi: 10.1039/D2MA01018F
– ident: e_1_2_9_237_1
  doi: 10.1038/ncomms11850
– ident: e_1_2_9_153_1
  doi: 10.1021/ja408768e
– ident: e_1_2_9_31_2
  doi: 10.1021/acs.nanolett.3c00535
– ident: e_1_2_9_67_2
  doi: 10.1038/ncomms2472
– ident: e_1_2_9_70_1
– ident: e_1_2_9_225_1
  doi: 10.1021/nl102369k
– ident: e_1_2_9_236_1
  doi: 10.1016/j.apsadv.2022.100332
– ident: e_1_2_9_334_1
  doi: 10.1039/C6CY01677D
– ident: e_1_2_9_324_1
  doi: 10.1016/j.chempr.2020.06.004
– ident: e_1_2_9_163_2
  doi: 10.1002/adma.201907879
– ident: e_1_2_9_216_2
  doi: 10.1021/ja2047655
– ident: e_1_2_9_13_2
  doi: 10.1016/j.mtener.2021.100920
– ident: e_1_2_9_158_2
  doi: 10.1021/acsmaterialslett.1c00124
– ident: e_1_2_9_170_1
  doi: 10.1021/acscatal.7b00410
– ident: e_1_2_9_200_2
  doi: 10.1021/acs.accounts.6b00596
– ident: e_1_2_9_342_1
  doi: 10.1039/D1NR07019C
– ident: e_1_2_9_357_1
  doi: 10.1002/admi.202201934
– ident: e_1_2_9_220_2
  doi: 10.1002/cssc.201300447
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.202008508
– ident: e_1_2_9_235_1
  doi: 10.1016/j.electacta.2012.10.124
– ident: e_1_2_9_132_1
  doi: 10.1038/s41586-021-03870-z
– volume: 611
  start-page: 1
  year: 2022
  ident: e_1_2_9_307_1
  publication-title: Nature
  contributor:
    fullname: Wang X.
– ident: e_1_2_9_22_2
  doi: 10.1021/jacs.9b12005
– ident: e_1_2_9_181_2
  doi: 10.1016/S0304-3991(98)00035-7
– ident: e_1_2_9_196_2
  doi: 10.1002/anie.200462335
– ident: e_1_2_9_315_1
  doi: 10.1038/s41586-021-03870-z
– ident: e_1_2_9_209_2
  doi: 10.1126/science.aaa1394
– ident: e_1_2_9_98_2
  doi: 10.1039/D2TA01045C
– ident: e_1_2_9_90_1
  doi: 10.1002/smll.202103064
– ident: e_1_2_9_162_2
  doi: 10.1021/acs.nanolett.0c04395
– ident: e_1_2_9_192_2
  doi: 10.1021/jacs.9b10709
– ident: e_1_2_9_221_2
  doi: 10.1021/nn502259g
– ident: e_1_2_9_261_1
  doi: 10.1038/s41467-018-03372-z
– volume: 6
  year: 2023
  ident: e_1_2_9_136_1
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Zhu J.
– ident: e_1_2_9_320_1
  doi: 10.1016/j.jhazmat.2022.128998
– ident: e_1_2_9_30_2
  doi: 10.1002/adfm.202007423
– ident: e_1_2_9_183_2
  doi: 10.1021/acscatal.0c00224
– ident: e_1_2_9_293_1
  doi: 10.1021/acscatal.2c01944
– ident: e_1_2_9_178_1
  doi: 10.1038/s41467-023-40246-5
– ident: e_1_2_9_303_1
– ident: e_1_2_9_253_1
  doi: 10.1039/D2NR05810C
– volume: 30
  year: 2022
  ident: e_1_2_9_350_1
  publication-title: Mater. Today
  contributor:
    fullname: Plankensteiner N.
– ident: e_1_2_9_137_1
  doi: 10.1039/C8CP06756B
– ident: e_1_2_9_213_2
  doi: 10.1126/science.aaf7680
– ident: e_1_2_9_145_1
  doi: 10.1021/nl8034724
– ident: e_1_2_9_346_1
  doi: 10.1016/j.apsusc.2023.156945
– ident: e_1_2_9_259_2
  doi: 10.1126/science.1217654
– ident: e_1_2_9_335_1
  doi: 10.1021/acsami.0c13303
– ident: e_1_2_9_317_1
  doi: 10.1002/adma.202006292
– ident: e_1_2_9_341_1
  doi: 10.1021/acsami.1c22601
– ident: e_1_2_9_273_1
  doi: 10.1126/science.aaf7680
– ident: e_1_2_9_311_1
  doi: 10.1002/adfm.202106401
– ident: e_1_2_9_85_1
  doi: 10.1021/acs.chemrev.0c00454
– ident: e_1_2_9_309_1
  doi: 10.1002/adma.202209307
– ident: e_1_2_9_154_1
– ident: e_1_2_9_264_1
  doi: 10.1021/acs.chemrev.3c00081
– ident: e_1_2_9_20_1
– ident: e_1_2_9_306_2
  doi: 10.1038/s41467-023-39822-6
– ident: e_1_2_9_106_1
  doi: 10.1002/celc.202201007
– ident: e_1_2_9_124_2
  doi: 10.1021/acs.jpclett.5b01746
– ident: e_1_2_9_224_1
  doi: 10.1021/nn303298s
– ident: e_1_2_9_329_1
  doi: 10.1021/acscatal.0c00040
– ident: e_1_2_9_36_2
  doi: 10.1038/natrevmats.2017.59
– ident: e_1_2_9_331_1
  doi: 10.1038/ncomms3481
– ident: e_1_2_9_53_2
  doi: 10.1038/nmat1957
– ident: e_1_2_9_66_2
  doi: 10.1002/cssc.201600090
– ident: e_1_2_9_210_1
– ident: e_1_2_9_270_1
  doi: 10.1002/cctc.202300454
– ident: e_1_2_9_169_1
  doi: 10.1002/anie.202014556
– ident: e_1_2_9_156_2
  doi: 10.1021/nn503946t
– ident: e_1_2_9_140_1
– ident: e_1_2_9_330_1
  doi: 10.1039/C5CC03353E
– ident: e_1_2_9_63_1
– ident: e_1_2_9_269_1
  doi: 10.1002/adma.201300515
– ident: e_1_2_9_248_2
  doi: 10.1038/s41467-018-05055-1
– ident: e_1_2_9_227_1
  doi: 10.1038/s41563-018-0133-2
– ident: e_1_2_9_32_2
  doi: 10.1007/s40820-023-01102-9
– ident: e_1_2_9_46_1
– ident: e_1_2_9_95_2
  doi: 10.1039/D3NJ02807K
– ident: e_1_2_9_297_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_9_21_2
  doi: 10.1021/jacs.9b09038
– ident: e_1_2_9_241_1
– ident: e_1_2_9_91_1
  doi: 10.1021/jacs.7b12306
– ident: e_1_2_9_151_2
  doi: 10.1016/j.nantod.2010.08.006
– ident: e_1_2_9_314_1
  doi: 10.1002/adma.202008508
– ident: e_1_2_9_300_1
  doi: 10.1038/s41467-022-31468-0
– ident: e_1_2_9_58_2
  doi: 10.1021/acsaem.0c02989
– ident: e_1_2_9_202_1
  doi: 10.1038/s41467-023-38536-z
– ident: e_1_2_9_326_2
  doi: 10.1021/nn303298s
– ident: e_1_2_9_249_1
  doi: 10.1038/s41598-018-26182-1
– ident: e_1_2_9_232_2
  doi: 10.1002/adfm.201903295
– ident: e_1_2_9_100_2
  doi: 10.1021/acs.accounts.3c00067
– ident: e_1_2_9_337_1
– ident: e_1_2_9_113_1
  doi: 10.1016/j.colsurfa.2022.130358
– ident: e_1_2_9_316_1
  doi: 10.1021/acscatal.8b00689
– ident: e_1_2_9_5_1
  doi: 10.1002/aenm.201901945
– ident: e_1_2_9_352_1
  doi: 10.1016/j.xcrp.2021.100602
– ident: e_1_2_9_76_2
  doi: 10.1002/adma.202209810
– ident: e_1_2_9_79_1
  doi: 10.1021/jacs.3c02604
– ident: e_1_2_9_244_2
  doi: 10.1103/PhysRevB.91.155414
– ident: e_1_2_9_47_2
  doi: 10.1002/anie.200703185
– ident: e_1_2_9_276_1
  doi: 10.1002/advs.202200307
– ident: e_1_2_9_268_1
  doi: 10.1126/science.1168049
– ident: e_1_2_9_33_2
  doi: 10.1039/D3SC04126C
– ident: e_1_2_9_189_2
  doi: 10.1021/acs.chemmater.8b03984
– ident: e_1_2_9_190_2
  doi: 10.1021/jacs.7b13612
– ident: e_1_2_9_323_1
  doi: 10.1039/D1TA07066E
– ident: e_1_2_9_81_1
  doi: 10.1002/smll.201603423
– year: 2023
  ident: e_1_2_9_131_1
  publication-title: Small
  contributor:
    fullname: Li T.
– ident: e_1_2_9_219_1
– ident: e_1_2_9_353_1
  doi: 10.1021/acsenergylett.3c00185
– ident: e_1_2_9_117_1
  doi: 10.1039/C9TA09471G
– ident: e_1_2_9_125_1
  doi: 10.1016/j.actamat.2011.08.033
– ident: e_1_2_9_285_1
  doi: 10.1021/ac60247a013
– ident: e_1_2_9_360_2
  doi: 10.1002/adfm.202316544
– ident: e_1_2_9_343_1
  doi: 10.1021/jacs.2c08361
– ident: e_1_2_9_166_1
– ident: e_1_2_9_310_1
  doi: 10.1016/j.ijhydene.2017.01.117
– ident: e_1_2_9_239_1
  doi: 10.1080/00219592.2023.2197946
– ident: e_1_2_9_204_1
  doi: 10.1002/cnma.201700167
– ident: e_1_2_9_289_1
  doi: 10.1002/anie.201612617
– ident: e_1_2_9_123_2
  doi: 10.1021/acsnano.9b01367
– ident: e_1_2_9_222_1
  doi: 10.1038/nmat2156
– ident: e_1_2_9_138_1
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_9_71_2
  doi: 10.1002/anie.201604731
– ident: e_1_2_9_148_1
  doi: 10.1021/jacs.9b07659
– ident: e_1_2_9_340_1
  doi: 10.1038/s41570-024-00589-z
– ident: e_1_2_9_308_1
  doi: 10.1038/s41929-021-00703-0
– ident: e_1_2_9_42_2
  doi: 10.1021/ja0600476
– ident: e_1_2_9_65_2
  doi: 10.1002/sstr.202200045
– ident: e_1_2_9_173_1
  doi: 10.1016/j.cej.2022.138786
– ident: e_1_2_9_94_1
– ident: e_1_2_9_184_2
  doi: 10.1093/jmicro/dfi042
– ident: e_1_2_9_233_1
  doi: 10.1021/cm5047676
– year: 2023
  ident: e_1_2_9_319_1
  publication-title: Small
  contributor:
    fullname: Wang M.
– ident: e_1_2_9_75_1
– ident: e_1_2_9_275_1
  doi: 10.1016/j.cej.2020.124240
– ident: e_1_2_9_15_1
– ident: e_1_2_9_45_1
  doi: 10.1021/jacs.5b03590
– ident: e_1_2_9_199_2
  doi: 10.1021/nl500553a
– year: 2023
  ident: e_1_2_9_226_1
  publication-title: Adv. Sustain. Syst.
  contributor:
    fullname: Zheng C.
– ident: e_1_2_9_78_1
  doi: 10.1002/ente.202200202
– ident: e_1_2_9_34_1
– ident: e_1_2_9_97_2
  doi: 10.1021/acsnano.9b07781
– ident: e_1_2_9_231_2
  doi: 10.1111/j.1551-2916.2008.02601.x
– ident: e_1_2_9_266_1
  doi: 10.1002/anie.202003917
– ident: e_1_2_9_262_1
  doi: 10.1021/acs.chemrev.3c00332
– ident: e_1_2_9_16_2
  doi: 10.1038/nmat4555
– ident: e_1_2_9_245_1
– ident: e_1_2_9_92_1
  doi: 10.1016/j.ijhydene.2022.10.157
– ident: e_1_2_9_24_2
  doi: 10.1016/j.nanoen.2020.105128
– ident: e_1_2_9_281_1
  doi: 10.1016/j.electacta.2021.138262
– ident: e_1_2_9_229_2
  doi: 10.1107/S0021889881009618
– ident: e_1_2_9_362_2
  doi: 10.1002/smll.202400875
– ident: e_1_2_9_238_1
  doi: 10.1039/C9TA06861A
– ident: e_1_2_9_291_1
  doi: 10.1021/acs.nanolett.0c04051
– ident: e_1_2_9_112_1
  doi: 10.1007/s11356-023-31406-7
– ident: e_1_2_9_143_1
  doi: 10.1166/jnn.2012.6473
– ident: e_1_2_9_254_1
  doi: 10.1038/s41586-022-05540-0
– ident: e_1_2_9_18_2
  doi: 10.1016/j.apcatb.2016.02.045
– ident: e_1_2_9_88_1
  doi: 10.1021/ja406091p
– ident: e_1_2_9_114_1
  doi: 10.1039/D2NR06170H
– ident: e_1_2_9_119_1
  doi: 10.1039/D1TA07488A
– ident: e_1_2_9_328_1
  doi: 10.1021/acscatal.0c04054
– ident: e_1_2_9_44_2
  doi: 10.1002/anie.200504386
– ident: e_1_2_9_208_2
  doi: 10.1063/1.5054294
– ident: e_1_2_9_282_1
  doi: 10.1021/jacs.2c11692
– ident: e_1_2_9_218_1
  doi: 10.1002/cnma.201700167
– ident: e_1_2_9_201_2
  doi: 10.1002/adma.201603662
– ident: e_1_2_9_52_2
  doi: 10.1021/ja801566d
– ident: e_1_2_9_164_1
  doi: 10.1002/anie.202312644
– ident: e_1_2_9_283_1
  doi: 10.1038/s41467-022-31971-4
– ident: e_1_2_9_144_1
  doi: 10.1002/adma.201706312
– ident: e_1_2_9_215_2
  doi: 10.1002/aenm.201803771
– ident: e_1_2_9_174_1
  doi: 10.1021/acs.inorgchem.3c01270
– ident: e_1_2_9_111_1
  doi: 10.1021/acsami.3c08885
– ident: e_1_2_9_228_1
– ident: e_1_2_9_327_2
  doi: 10.1038/nchem.623
– ident: e_1_2_9_336_1
  doi: 10.1002/smll.202207743
– ident: e_1_2_9_290_1
  doi: 10.1021/jacs.0c12696
– year: 2024
  ident: e_1_2_9_299_1
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Xu Y.
– ident: e_1_2_9_359_1
– ident: e_1_2_9_191_2
  doi: 10.1021/acsenergylett.8b00454
– ident: e_1_2_9_186_1
  doi: 10.1021/nn4052315
– ident: e_1_2_9_3_1
  doi: 10.1126/science.1172083
– ident: e_1_2_9_23_2
  doi: 10.1021/acscatal.0c03938
– ident: e_1_2_9_176_1
  doi: 10.1016/j.jechem.2021.12.026
– ident: e_1_2_9_73_1
  doi: 10.1002/adma.202004142
– ident: e_1_2_9_301_1
  doi: 10.1002/anie.202016199
– ident: e_1_2_9_356_1
  doi: 10.1021/acs.chemrev.2c00770
– ident: e_1_2_9_7_2
  doi: 10.1021/ja5030172
– ident: e_1_2_9_62_2
  doi: 10.1002/aenm.202102261
– ident: e_1_2_9_180_1
– ident: e_1_2_9_252_1
  doi: 10.1021/acs.nanolett.5b01154
– ident: e_1_2_9_50_2
  doi: 10.1126/science.1170377
– ident: e_1_2_9_122_2
  doi: 10.1021/nl300067q
– ident: e_1_2_9_358_1
  doi: 10.1021/acsaem.8b01345
– ident: e_1_2_9_11_1
– ident: e_1_2_9_96_2
  doi: 10.1039/D2TA07647K
– ident: e_1_2_9_39_2
  doi: 10.1002/smll.202206838
– ident: e_1_2_9_128_1
  doi: 10.1021/ja303950v
– ident: e_1_2_9_304_2
  doi: 10.1038/s41929-020-0457-6
– ident: e_1_2_9_28_2
  doi: 10.1002/advs.201802005
– ident: e_1_2_9_247_2
  doi: 10.1021/acs.chemmater.0c02588
– ident: e_1_2_9_318_1
  doi: 10.1002/smtd.202101328
– volume-title: Encyclopedia of Solid-Liquid Interfaces (First Edition)
  year: 2024
  ident: e_1_2_9_263_1
  contributor:
    fullname: Li J.-F.
– ident: e_1_2_9_6_1
– ident: e_1_2_9_345_1
  doi: 10.1016/j.ijhydene.2022.12.059
– ident: e_1_2_9_102_1
  doi: 10.1021/acsnano.9b02890
– ident: e_1_2_9_149_1
– ident: e_1_2_9_355_1
  doi: 10.1021/acs.chemrev.3c00382
– ident: e_1_2_9_292_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_9_108_1
  doi: 10.1021/acsnano.3c04281
– ident: e_1_2_9_197_2
  doi: 10.1021/nn506387w
– ident: e_1_2_9_205_1
  doi: 10.1016/j.ultramic.2012.07.006
– ident: e_1_2_9_325_1
– ident: e_1_2_9_59_2
  doi: 10.1002/adfm.202104620
– ident: e_1_2_9_141_2
  doi: 10.1039/D1EE02603H
– ident: e_1_2_9_175_1
  doi: 10.1038/s44160-023-00289-4
– ident: e_1_2_9_256_1
– ident: e_1_2_9_243_2
  doi: 10.1021/acsnano.8b06118
– year: 2023
  ident: e_1_2_9_9_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Feng R.
– ident: e_1_2_9_107_1
  doi: 10.1039/C9CP02493J
– ident: e_1_2_9_56_1
  doi: 10.1002/anie.201608601
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jallcom.2022.167251
– ident: e_1_2_9_267_1
  doi: 10.1021/acscatal.0c04473
– ident: e_1_2_9_280_1
  doi: 10.1021/acscatal.7b00120
– ident: e_1_2_9_49_2
  doi: 10.1021/cr1004452
– ident: e_1_2_9_338_2
  doi: 10.1021/jacs.7b13612
– ident: e_1_2_9_54_1
  doi: 10.1038/natrevmats.2017.89
– ident: e_1_2_9_26_1
– ident: e_1_2_9_35_2
  doi: 10.1002/advs.202003357
– ident: e_1_2_9_159_2
  doi: 10.1002/adma.202006147
– ident: e_1_2_9_187_1
– ident: e_1_2_9_55_1
  doi: 10.1021/acsami.9b16492
– ident: e_1_2_9_188_2
  doi: 10.1016/0039-6028(85)90610-7
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.accounts.3c00119
SSID ssj0001105386
Score 2.361264
Snippet In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing attention....
Abstract In response to the climate goal of achieving carbon neutrality by 2050, efficient electrochemical energy conversion devices are garnering increasing...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Active control
Bonding strength
Catalysis
Catalysts
electrocatalysis
Electrocatalysts
Electrochemical analysis
Energy conversion
epitaxial growths
Heavy metals
Intermediates
Metal surfaces
noble metal nanohybrids
Noble metals
practical use
strain effects
Substrates
Surface layers
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLvSCKG3F8iUfKvUUkdiO1-kNol0hBFzKStwse2yrSGUXkeXQnvgJ_Mb-ks7Eu8ty4sIxlhNNZhL72Z55j7FvSkpQvqkLVwUolHOhaKQJBWJTiCCaMikqTr680mcTdX5T36xJfVFOWKYHzo47RsQb6krrQDLJbgi-NsaD0topB8GEfvQtm7XFVL-7grBBGr1kaSzFMcTfxFhIKZNVrV7NQj1Z_yuEuY5T-4lmvM22FgiRn2TLPrEPcbrDNtulMNtn9vckn9t3_HbKf_YaD_-enkmDA2LgVyQQwy8jgmqOQ-fs1x-qyeo4glM-ypo32LulXRsiI_nBxw-zO379Us-I91I18G131_H5jGdCI2qfdPELm4xH1-1ZsZBQKECWRhVNUrjicrUAM4xKCt8YXcUkQjSNTwhFFJgkXXIy0Xlmil4jjq2GxpceEM3Jr2xjOpvGXcbRoQBNGXSKGF2vnSydBlcnE4wCEQbs-9Kl9j4zZdjMiSwsOd-unD9gp-TxVS9iuO4bMO52EXf7VtwH7GAZL7v47TqL76wNkZ2KARN9DN8wxbaji3Z1tfcehu2zj_TAnCR4wDbmD4_xEIHL3B_13-h__Rbr5g
  priority: 102
  providerName: Directory of Open Access Journals
Title Advances in Strain‐Induced Noble Metal Nanohybrids for Electro‐Catalysis: From Theoretical Mechanisms to Practical Use
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202400154
https://www.proquest.com/docview/3086803102
https://doaj.org/article/559d5166d4124a7cb588bc466a4acd8d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLVaWNANKm1RB-jIi0pdRSS243G6g2hGCJURahmJneVniwQTNBkW7aqfwDfyJdzrzINZVeouiew8rnPt42vfcwj5LDh3wlZlZgrvMmGMzyqufAbY1AXHqjwKTE6-GMuziTi_Lq9fZPF3_BCrgBt6Ruqv0cGNbY_XpKEu3CIFIe6BBBjwmmwjbQyy5zNxuY6yAHzgSe4RPBN32xZyydyYs-PNW2yMTInAfwN1vsSuafAZvSW7C9RIT7pm3iOvwvQd2amXYm3vyZ-Tbi2_pTdT-iPpPjz9fURdDhc8HaNoDL0IALQpdKfNr9-Yp9VSAKx02OngQOkaIzlIUPKVjmbNHb1a5zhCXcwQvmnvWjpvaEdyhNcnbfhAJqPhVX2WLWQVMsdzJbIqCpiFmZI5NQiCM1spWYTIfFCVjQBPhFORm2h4xDXOGKwEbFsMlM2tA4TH98nWtJmGj4SCcZ2rci9jgBa30vDcSGfKqLwSjvke-bI0qb7v2DN0x5PMNBpfr4zfI6do8VUpZL1OF5rZT71wIg2zH18WUnqUzDYDZ0ulrBNSGmGcV_C4o2V76YUrthq-WSokQGU9wlIb_uNVdD38Vq_ODv6n0iF5g8fdRsEjsjWfPYRPAF7mtp_-zz7ZPh2OL7_3UwjgGSfi6us
link.rule.ids 315,783,787,867,2109,11574,27936,27937,33756,46064,46488,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKeygXVAqI0BZ8QOK06q7tdby9tatEgSYREonEzfIvrUSzKBsO9NRH4Bl5ks7sZhNyQuK41np_Zjz25_HMN4S8F5w7YYs8MZl3iTDGJwVXPgFs6oJjRRoFJidPpnI0F5--5l00IebCtPwQG4cbWkYzX6OBo0P6fMsa6sJ35CDEIEjAAU_IgZAwGpHcWXzeulkAP_Cm3iOYJobbZrKjbkzZ-e4jdpamhsF_B3b-DV6b1Wd4RJ6tYSO9bPX8nOyFxTE5LLtqbS_I_WV7mF_T2wX90hR--PPwGwtzuODpFKvG0EkApE1hPq1ufmGiVk0BsdJBWwgH7i7RlYMMJRd0uKzu6Gyb5Ah9MUX4tr6r6aqiLcsRts_r8JLMh4NZOUrWdRUSx1MlkiIK2IaZnDnVD4IzWyiZhch8UIWNgE-EU5GbaHjEQ84YrARwm_WVTa0DiMdfkf1FtQivCQXhOlekXsYAKrfS8NRIZ_KovBKO-R750IlU_2jpM3RLlMw0Cl9vhN8jVyjxzV1Ie900VMtvem1FGrY_Ps-k9Fgz2_SdzZWyTkhphHFewetOO33ptS3WGv5ZKmRAZT3CGh3-41N0ORiXm6s3_9PpHTkczSZjPf44vT4hT7G9jRo8Jfur5c9wBkhmZd82Y_URCYfr0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMCl4qkuFPABiVPUxHa8DrcSdlWgXVWiK_Vm2WMbKrWbarMc4MRP6G_klzCT7KN7QuIYy85jJmN_fsz3MfZWSQnKV2XmigCZci5klTQhQ2wKEUSVJ0XJyScTfTRVn8_L81tZ_D0_xHrBjSKj668pwK9DOtiQhkK8JApCOgOJMOAuu6cQixN7vlCnm1UWhA-yk3vEyKTTtoVeMTfm4mD7FlsjU0fgv4U6b2PXbvAZP2K7S9TID3s3P2Z34uwJe1CvxNqesl-H_V5-yy9m_Gun-_Dn9w3pckAMfEKiMfwkItDm2J02339SnlbLEbDyUa-Dg7VrWskhgpL3fDxvrvjZJscR21KG8EV71fJFw3uSIyqftvEZm45HZ_VRtpRVyEDmRmVVQksVrhRghlFJ4Suji5hEiKbyCeGJApOkS04m2uNM0WvEtsXQ-NwDIjz5nO3MmlncYxyNC1DlQaeIHvfaydxpcGUywSgQYcDerUxqr3v2DNvzJAtLxrdr4w_YB7L4uhaxXncFzfybXQaRxdlPKAutA0lmuyH40hgPSmunHASDj9tf-csuQ7G1-M3aEAGqGDDR-fAfr2Lr0XG9vnrxP43esPunH8f2-NPky0v2kIr7M4P7bGcx_xFfIY5Z-Nfdr_oXiDbq8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Strain%E2%80%90Induced+Noble+Metal+Nanohybrids+for+Electro%E2%80%90Catalysis%3A+From+Theoretical+Mechanisms+to+Practical+Use&rft.jtitle=ChemElectroChem&rft.au=Chen%2C+Zhao%E2%80%90Yang&rft.au=Li%2C+Ling%E2%80%90Tong&rft.au=Zhao%2C+Feng%E2%80%90Ming&rft.au=Zhu%2C+Ying%E2%80%90Hong&rft.date=2024-08-01&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=11&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcelc.202400154&rft.externalDBID=10.1002%252Fcelc.202400154&rft.externalDocID=CELC202400154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon