Gross Primary Production Estimation in Crops Using Solely Remotely Sensed Data
Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More...
Saved in:
Published in | Agronomy journal Vol. 111; no. 6; pp. 2981 - 2990 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
The American Society of Agronomy, Inc
01.11.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More work is still needed to develop algorithms for GPP estimation applicable to multiple, if not all, vegetation types, phenological phases, and environmental conditions. This study employed neural networks (NN), multiple linear regressions (MLR), and vegetation indices (VI) to develop algorithms for GPP estimation based solely on remotely sensed data in two crops, maize (Zea mays L.) and soybean [Glycine max (L.) Merr.], with contrasting canopy architectures, leaf structures, and photosynthetic pathways. The focus of the study was to devise algorithms not requiring re‐parameterization for different crop species. Data used in the models included in situ hyperspectral reflectance and satellite surface reflectance products. For the tested NN, MLR, and VI algorithms, the bands selected to obtain minimal errors in maize and soybean combined were mainly located in red edge and near infrared (NIR) spectral regions. For both in situ reflectance and satellite surface reflectance, a NN estimated GPP with normalized root mean square errors (NRMSE) below 14 and 18.7%, respectively, and VI using bands in red edge and NIR with NRMSE 15.6 and 20.4%, respectively. The results showed that the models based on the red edge and NIR bands may facilitate accurate assessments of crop GPP at multiple scales, from close range to satellite platforms.
Core Ideas
The models using remotely sensed data allow accurate estimation of gross primary production in two crops.
The optimal bands for gross primary production estimation in two crops were in near infrared and red edge regions.
Vegetation indices with red edge and near infrared reflectance were generic for maize and soybean. |
---|---|
AbstractList | Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More work is still needed to develop algorithms for GPP estimation applicable to multiple, if not all, vegetation types, phenological phases, and environmental conditions. This study employed neural networks (NN), multiple linear regressions (MLR), and vegetation indices (VI) to develop algorithms for GPP estimation based solely on remotely sensed data in two crops, maize (Zea mays L.) and soybean [Glycine max (L.) Merr.], with contrasting canopy architectures, leaf structures, and photosynthetic pathways. The focus of the study was to devise algorithms not requiring re‐parameterization for different crop species. Data used in the models included in situ hyperspectral reflectance and satellite surface reflectance products. For the tested NN, MLR, and VI algorithms, the bands selected to obtain minimal errors in maize and soybean combined were mainly located in red edge and near infrared (NIR) spectral regions. For both in situ reflectance and satellite surface reflectance, a NN estimated GPP with normalized root mean square errors (NRMSE) below 14 and 18.7%, respectively, and VI using bands in red edge and NIR with NRMSE 15.6 and 20.4%, respectively. The results showed that the models based on the red edge and NIR bands may facilitate accurate assessments of crop GPP at multiple scales, from close range to satellite platforms.
Core Ideas
The models using remotely sensed data allow accurate estimation of gross primary production in two crops.
The optimal bands for gross primary production estimation in two crops were in near infrared and red edge regions.
Vegetation indices with red edge and near infrared reflectance were generic for maize and soybean. Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More work is still needed to develop algorithms for GPP estimation applicable to multiple, if not all, vegetation types, phenological phases, and environmental conditions. This study employed neural networks (NN), multiple linear regressions (MLR), and vegetation indices (VI) to develop algorithms for GPP estimation based solely on remotely sensed data in two crops, maize ( Zea mays L.) and soybean [ Glycine max (L.) Merr.], with contrasting canopy architectures, leaf structures, and photosynthetic pathways. The focus of the study was to devise algorithms not requiring re‐parameterization for different crop species. Data used in the models included in situ hyperspectral reflectance and satellite surface reflectance products. For the tested NN, MLR, and VI algorithms, the bands selected to obtain minimal errors in maize and soybean combined were mainly located in red edge and near infrared (NIR) spectral regions. For both in situ reflectance and satellite surface reflectance, a NN estimated GPP with normalized root mean square errors (NRMSE) below 14 and 18.7%, respectively, and VI using bands in red edge and NIR with NRMSE 15.6 and 20.4%, respectively. The results showed that the models based on the red edge and NIR bands may facilitate accurate assessments of crop GPP at multiple scales, from close range to satellite platforms. Core Ideas The models using remotely sensed data allow accurate estimation of gross primary production in two crops. The optimal bands for gross primary production estimation in two crops were in near infrared and red edge regions. Vegetation indices with red edge and near infrared reflectance were generic for maize and soybean. |
Author | Sun, Ying Kira, Oz Gitelson, Anatoly A. Peng, Yi Arkebauer, Timothy Suyker, Andrew Nguy‐Robertson, Anthony |
Author_xml | – sequence: 1 givenname: Yi surname: Peng fullname: Peng, Yi organization: Wuhan Univ – sequence: 2 givenname: Oz surname: Kira fullname: Kira, Oz email: ok78@cornell.edu organization: College of Agriculture and Life Sciences, Cornell Univ – sequence: 3 givenname: Anthony surname: Nguy‐Robertson fullname: Nguy‐Robertson, Anthony organization: School of Natural Resources, Univ. of Nebraska‐Lincoln – sequence: 4 givenname: Andrew surname: Suyker fullname: Suyker, Andrew organization: School of Natural Resources, Univ. of Nebraska‐Lincoln – sequence: 5 givenname: Timothy surname: Arkebauer fullname: Arkebauer, Timothy organization: Univ. of Nebraska‐Lincoln – sequence: 6 givenname: Ying surname: Sun fullname: Sun, Ying organization: College of Agriculture and Life Sciences, Cornell Univ – sequence: 7 givenname: Anatoly A. surname: Gitelson fullname: Gitelson, Anatoly A. email: agitelson2@unl.edu organization: School of Natural Resources, Univ. of Nebraska‐Lincoln |
BookMark | eNqNUM1qwkAYXIqFqu0L9LQvEPt9-5NujqI2rYgWredlTTYSibuSTSm-vYkWeu1phoEZZmZAes47S8gzwoghFy9mX3t3YIDJCOQIOGd3pI-CywhiIXukDwAswiRmD2QQwgEAMRHYJ8u09iHQz7o8mvrcos-_s6b0js5C02pXWjo6qf0p0G0o3Z5ufGWrM13bo286srEu2JxOTWMeyX1hqmCffnFItm-zr8l7tFilH5PxIso4KBaxDAsmLEhVxDYHiJOdUirOBXJrjEBRGGakyVksinYfSKmU4Dt8TXJkVmR8SNgtN-vq17bQp9sCjaC7R_TfIxqk7h5pTdOb6aes7PkfDj1O52ycrlfLeSeDvMZcAFVwa1Q |
CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2022_110175 crossref_primary_10_1002_agj2_21230 crossref_primary_10_1016_j_rsase_2020_100325 crossref_primary_10_1016_j_agrformet_2023_109720 crossref_primary_10_1080_10106049_2020_1801855 crossref_primary_10_1016_j_agrformet_2020_108092 crossref_primary_10_1007_s11119_023_10068_y |
Cites_doi | 10.3390/rs4030561 10.1046/j.1365‐2486.2003.00573.x 10.1016/j.agwat.2010.08.020 10.1080/2150704X.2015.1034888 10.1021/ac960321m 10.3390/rs9040318 10.1016/j.jag.2016.07.016 10.3390/rs10122063 10.1029/2006GL026457 10.3920/978‐90‐8686‐814‐8_22 10.1016/j.rse.2011.08.010 10.1016/j.agrformet.2014.03.004 10.1207/s15327906mbr4003_5 10.1016/j.rse.2011.10.021 10.1007/978-3-642-80913-2_4 10.1201/b11222 10.1078/0176‐1617‐01176 10.1016/j.jag.2006.05.003 10.1016/j.rse.2011.11.026 10.1093/treephys/23.13.865 10.1016/j.cageo.2011.04.011 10.1029/2005GL022688 10.1080/0143116042000274015 10.1078/0176‐1617‐00887 10.1016/j.jag.2012.10.008 10.1109/LGRS.2005.857030 10.1016/j.agrformet.2005.05.007 10.1201/b11222‐21 10.1046/j.1365‐2486.2003.00629.x 10.1016/j.rse.2007.12.003 10.1007/s10712-018-9492-0 10.1364/AO.12.002448 10.1201/9780429431180-1 10.3390/agronomy4010108 10.1016/j.compag.2003.11.002 10.1016/0168-1923(85)90020-6 10.1016/j.jplph.2016.05.019 10.1016/j.agrformet.2005.05.003 10.1029/2005JD006017 10.1016/j.rse.2010.09.012 10.1016/j.rse.2018.08.007 10.1109/JSTARS.2012.2222356 10.1080/01431160512331326567 10.1016/j.rse.2011.06.015 10.2134/jeq2002.1433 10.1016/j.rse.2010.12.001 10.1016/S0893‐6080(05)80023‐1 10.1016/j.agrformet.2015.12.064 10.1104/pp.47.5.656 10.1016/j.rse.2004.06.005 10.1016/j.rse.2012.10.005 10.5194/bg‐11‐4695‐2014 10.1016/j.jag.2013.12.008 10.1016/j.rse.2012.02.017 10.1109/TGRS.2004.836769 10.1016/j.jplph.2008.03.004 10.1016/j.rse.2010.03.010 10.1016/j.agrformet.2015.04.008 10.1016/j.chemolab.2007.10.001 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The author(s). Re‐use requires permission from the publisher. |
Copyright_xml | – notice: Copyright © 2019 The author(s). Re‐use requires permission from the publisher. |
DBID | AAYXX CITATION |
DOI | 10.2134/agronj2019.05.0332 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0645 |
EndPage | 2990 |
ExternalDocumentID | 10_2134_agronj2019_05_0332 AGJ2AGRONJ2019050332 |
Genre | article |
GrantInformation_xml | – fundername: US‐Ne1 – fundername: USDA National Institute of Food and Agriculture – fundername: National Natural Science Foundation of China funderid: 41771381 – fundername: US‐Ne2 – fundername: Lawrence Berkeley National Lab AmeriFlux Data Management – fundername: United States‐ Israel Binational Agricultural Research and Development Fund – fundername: Nebraska Agricultural Experiment Station with funding from the Hatch Act funderid: 1002649 – fundername: US‐Ne3 AmeriFlux – fundername: University of Nebraska‐Lincoln Agricultural Research Division – fundername: Vaadia‐BARD Postdoctoral Fellowship funderid: FI-576-18 |
GroupedDBID | -~X .86 .~0 0R~ 186 1OB 1OC 23M 2WC 33P 3V. 5GY 6J9 6KN 7X2 7XC 88I 8FE 8FG 8FH 8FW 8G5 8R4 8R5 AABCJ AAHBH AAHHS AANLZ ABCQX ABCUV ABEFU ABJCF ABJNI ABRSH ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACQAM ACXQS ADFRT ADKYN ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AETEA AEUYR AFFPM AFKRA AFRAH AHBTC AI. AIDBO AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AZQEC BCR BCU BEC BENPR BES BFHJK BGLVJ BHPHI BLC BPHCQ C1A CCPQU D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW L6V L7B LAS LATKE LEEKS LPU M0K M2O M2P M7S MEWTI MV1 NEJ NHAZY NHB O9- P2P PATMY PEA PQQKQ PROAC PTHSS PYCSY Q2X QF4 QM4 QN7 ROL RPX RWL S0X SAMSI SJFOW SJN SUPJJ TAE TR2 TWZ U2A VH1 VOH WOQ WXSBR Y6R YYP ZCG ~02 ~KM AAYXX CITATION |
ID | FETCH-LOGICAL-c3082-2c1f24e058f6ed0069b8886d413eaa414fa2a5ad264f2130558843b179d12e4c3 |
ISSN | 0002-1962 |
IngestDate | Thu Sep 26 16:46:05 EDT 2024 Sat Aug 24 01:07:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3082-2c1f24e058f6ed0069b8886d413eaa414fa2a5ad264f2130558843b179d12e4c3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_2134_agronj2019_05_0332 wiley_primary_10_2134_agronj2019_05_0332_AGJ2AGRONJ2019050332 |
PublicationCentury | 2000 |
PublicationDate | November–December 2019 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November–December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Agronomy journal |
PublicationYear | 2019 |
Publisher | The American Society of Agronomy, Inc |
Publisher_xml | – name: The American Society of Agronomy, Inc |
References | 2011; 115 2010; 98 2012; 120 2012; 121 2005; 131 1973; 12 2013; 23 2004; 25 2004; 161 2013; 128 1971; 47 1975; 14 2014; 29 2005; 26 2013; 6 2017; 9 1964; 40 2014; 4 2015; 213 2018; 217 2010; 114 2003; 9 2009; 166 2007; 9 2003; 160 2005; 32 2008; 112 1996; 68 2014; 11 1992; 5 2004; 43 2004; 42 2015; 6 2011 2002; 31 2005; 40 2016; 201 2016; 52 2006; 3 2012; 38 2008; 90 1999 2006b; 33 2006a; 111 2019; 40 2004; 92 2016; 218‐219 2018 2014; 192‐193 2015 1985; 34 2018; 10 2012; 4 2012; 117 2003; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Medina E. (e_1_2_7_33_1) 1964; 40 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 92 start-page: 195 issue: 2 year: 2004 end-page: 206 article-title: Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations publication-title: Remote Sens. Environ. – year: 2011 – volume: 40 start-page: 515 issue: 3 year: 2019 end-page: 551 article-title: Spaceborne imaging spectroscopy for sustainable agriculture: Contributions and challenges publication-title: Surv. Geophys. – volume: 52 start-page: 554 year: 2016 end-page: 567 article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 2448 issue: 10 year: 1973 end-page: 2453 article-title: Willstatter‐Stoll theory of leaf reflectance evaluated by ray tracing publication-title: Appl. Opt. – volume: 192‐193 start-page: 140 year: 2014 end-page: 148 article-title: Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm publication-title: Agric. For. Meteorol. – volume: 201 start-page: 101 year: 2016 end-page: 110 article-title: Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops publication-title: J. Plant Physiol. – volume: 213 start-page: 160 year: 2015 end-page: 172 article-title: Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology publication-title: Agric. For. Meteorol. – volume: 23 start-page: 344 year: 2013 end-page: 351 article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red‐edge bands on Sentinel‐2 and ‐3 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 38 start-page: 9 year: 2012 end-page: 22 article-title: Quality assessment of Landsat surface reflectance products using MODIS data publication-title: Comput. Geosci. – volume: 166 start-page: 157 year: 2009 end-page: 167 article-title: Non‐destructive determination of maize leaf and canopy chlorophyll content publication-title: J. Plant Physiol. – volume: 31 start-page: 1433 year: 2002 end-page: 1441 article-title: Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery publication-title: J. Environ. Qual. – volume: 33 start-page: L11402 year: 2006b article-title: Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves publication-title: Geophys. Res. Lett. – volume: 98 start-page: 271 year: 2010 end-page: 282 article-title: Earth observation products for operational irrigation management in the context of the pleiades project publication-title: Agric. Water Manage. – start-page: 183 year: 2015 end-page: 190 – volume: 25 start-page: 5403 year: 2004 end-page: 5413 article-title: The MERIS terrestrial chlorophyll index publication-title: Int. J. Remote Sens. – volume: 115 start-page: 415 year: 2011 end-page: 426 article-title: Optimal modalities for radiative transfer‐neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with chris/proba observations publication-title: Remote Sens. Environ. – volume: 47 start-page: 656 year: 1971 end-page: 662 article-title: Reflectance and transmittance of light by leaves publication-title: Plant Physiol – volume: 115 start-page: 3468 year: 2011 end-page: 3478 article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops publication-title: Remote Sens. Environ. – volume: 40 start-page: 373 year: 2005 end-page: 400 article-title: Probing interactions in fixed and multilevel regression: Inferential and graphical techniques publication-title: Multivariate Behav. Res. – start-page: 329 year: 2011 end-page: 358 – volume: 3 start-page: 68 year: 2006 end-page: 72 article-title: A Landsat surface reflectance data set for North America. 1990–2000 publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 128 start-page: 186 issue: 21 year: 2013 end-page: 196 article-title: Remote estimation of gross primary productivity in crops using MODIS 250 m data publication-title: Remote Sens. Environ. – volume: 4 start-page: 561 issue: 3 year: 2012 end-page: 582 article-title: Optimal exploitation of the sentinel‐2 spectral capabilities for crop leaf area index mapping publication-title: Remote Sens – volume: 114 start-page: 1856 year: 2010 end-page: 1862 article-title: The potential of the MERIS Terrestrial chlorophyll Index for carbon flux estimation publication-title: Remote Sens. Environ. – volume: 6 start-page: 867 issue: 2 year: 2013 end-page: 874 article-title: Gaussian process retrieval of chlorophyll content from imaging spectroscopy data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 34 start-page: 205 year: 1985 end-page: 213 article-title: Partitioning solar radiation into direct and diffuse, visible and near‐infrared components publication-title: Agric. For. Meteorol. – volume: 68 start-page: 3851 year: 1996 end-page: 3858 article-title: Elimination of uninformative variables for multivariate calibration publication-title: Anal. Chem. – volume: 217 start-page: 30 year: 2018 end-page: 37 article-title: Convergence of daily light use efficiency in irrigated and rainfed C3 and C4 crops publication-title: Remote Sens. Environ. – volume: 32 start-page: L08403 year: 2005 article-title: Remote estimation of canopy chlorophyll content in crops publication-title: Geophys. Res. Lett. – volume: 6 start-page: 360 issue: 5 year: 2015 end-page: 369 article-title: Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venµs sensors publication-title: Remote Sens. Lett. – volume: 9 start-page: 479 year: 2003 end-page: 492 article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future publication-title: Glob. Change Biol. – volume: 4 start-page: 108 issue: 1 year: 2014 end-page: 123 article-title: Elements of an integrated phenotyping system for monitoring crop status at canopy level publication-title: Agronomy (Basel) – volume: 131 start-page: 77 year: 2005 end-page: 96 article-title: Annual carbon dioxide exchange in irrigated and rainfed maize‐based agroecosystems publication-title: Agric. For. Meteorol. – start-page: 3 year: 2018 end-page: 24 – volume: 131 start-page: 180 year: 2005 end-page: 190 article-title: Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season publication-title: Agric. For. Meteorol. – volume: 112 start-page: 2592 issue: 5 year: 2008 end-page: 2604 article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland publication-title: Remote Sens. Environ. – volume: 121 start-page: 404 year: 2012 end-page: 414 article-title: Remote estimation of crop gross primary production with Landsat data publication-title: Remote Sens. Environ. – volume: 42 start-page: 2786 year: 2004 end-page: 2795 article-title: Four years of Landsat‐7 on‐orbit geometric calibration and performance publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 165 year: 2007 end-page: 193 article-title: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 111 start-page: D08S11 year: 2006a article-title: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity publication-title: Geophys. Res. Lett. – volume: 29 start-page: 1 year: 2014 end-page: 10 article-title: Remote estimation of grassland gross primary production during extreme meteorological seasons publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 23 start-page: 865 issue: 13 year: 2003 end-page: 877 article-title: Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (quercus douglasii) under prolonged summer drought and high temperature publication-title: Tree Physiol – volume: 43 start-page: 173 year: 2004 end-page: 178 article-title: Collecting spectral data over cropland vegetation using machine‐positioning versus hand‐positioning of the sensor publication-title: Comput. Electron. Agric. – start-page: 189 year: 1999 end-page: 248 article-title: GeoBotany: Vegetation mapping for earth sciences – volume: 11 start-page: 4695 issue: 17 year: 2014 end-page: 4712 article-title: Monitoring of carbon dioxide fluxes in a subalpine grassland ecosystem of the Italian alps using a multispectral sensor publication-title: Biogeosciences – volume: 9 start-page: 383 year: 2003 end-page: 395 article-title: A cross‐biome comparison of daily light use efficiency for gross primary production publication-title: Glob. Change Biol. – volume: 161 start-page: 165 year: 2004 end-page: 173 article-title: Wide dynamic range vegetation index for remote quantification of crop biophysical characteristics publication-title: J. Plant Physiol. – volume: 10 issue: 12 year: 2018 article-title: Model‐based optimization of spectral sampling for the retrieval of crop variables with the PROSAIL model publication-title: Remote Sens – volume: 115 start-page: 978 year: 2011 end-page: 989 article-title: Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content publication-title: Remote Sens. Environ. – volume: 40 start-page: 451 year: 1964 end-page: 494 article-title: Die Beziehungen zwischen Chlorophyllgehalt, assimilierender Flaeche und Trockensubstanzproduktion in einigen Pflanzengemeinschaften. (The relationships between chlorophyll content, assimilating area and dry matter production in some plant communities.) publication-title: Beitr. Biol. Pflanzen. – volume: 218‐219 start-page: 243 year: 2016 end-page: 249 article-title: Informative spectral bands for remote green LAI estimation in C3 and C4 crops publication-title: Agric. For. Meteorol. – volume: 14 start-page: 55 year: 1975 end-page: 118 – volume: 115 start-page: 3091 year: 2011 end-page: 3101 article-title: Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data publication-title: Remote Sens. Environ. – volume: 9 start-page: 318 year: 2017 article-title: Toward generic models for green LAI estimation in maize and soybean: Satellite observations publication-title: Remote Sens – volume: 117 start-page: 440 year: 2012 end-page: 448 article-title: Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content publication-title: Remote Sens. Environ. – volume: 90 start-page: 188 year: 2008 end-page: 194 article-title: A variable selection method based on uninformative variable elimination for multivariate calibration of near‐infrared spectra publication-title: Chemom. Intell. Lab. Syst. – volume: 160 start-page: 271 issue: 3 year: 2003 end-page: 282 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non‐destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. – volume: 120 start-page: 25 issue: 1 year: 2012 end-page: 36 article-title: Sentinel‐2: Esa's optical high‐resolution mission for gmes operational services publication-title: Remote Sens. Environ. – volume: 26 start-page: 1403 issue: 7 year: 2005 end-page: 1421 article-title: Usefulness and limits of MODIS GPP for estimating wheat yield publication-title: Int. J. Remote Sens. – volume: 5 start-page: 241 issue: 2 year: 1992 end-page: 259 article-title: Stacked generalization publication-title: Neural Netw – ident: e_1_2_7_42_1 doi: 10.3390/rs4030561 – ident: e_1_2_7_50_1 doi: 10.1046/j.1365‐2486.2003.00573.x – ident: e_1_2_7_14_1 doi: 10.1016/j.agwat.2010.08.020 – ident: e_1_2_7_51_1 – ident: e_1_2_7_35_1 doi: 10.1080/2150704X.2015.1034888 – ident: e_1_2_7_7_1 doi: 10.1021/ac960321m – ident: e_1_2_7_30_1 doi: 10.3390/rs9040318 – ident: e_1_2_7_55_1 doi: 10.1016/j.jag.2016.07.016 – ident: e_1_2_7_5_1 doi: 10.3390/rs10122063 – ident: e_1_2_7_21_1 doi: 10.1029/2006GL026457 – ident: e_1_2_7_23_1 doi: 10.3920/978‐90‐8686‐814‐8_22 – ident: e_1_2_7_56_1 doi: 10.1016/j.rse.2011.08.010 – volume: 40 start-page: 451 year: 1964 ident: e_1_2_7_33_1 article-title: Die Beziehungen zwischen Chlorophyllgehalt, assimilierender Flaeche und Trockensubstanzproduktion in einigen Pflanzengemeinschaften. (The relationships between chlorophyll content, assimilating area and dry matter production in some plant communities.) publication-title: Beitr. Biol. Pflanzen. contributor: fullname: Medina E. – ident: e_1_2_7_36_1 doi: 10.1016/j.agrformet.2014.03.004 – ident: e_1_2_7_4_1 doi: 10.1207/s15327906mbr4003_5 – ident: e_1_2_7_38_1 doi: 10.1016/j.rse.2011.10.021 – ident: e_1_2_7_58_1 doi: 10.1007/978-3-642-80913-2_4 – ident: e_1_2_7_49_1 doi: 10.1201/b11222 – ident: e_1_2_7_16_1 doi: 10.1078/0176‐1617‐01176 – ident: e_1_2_7_12_1 doi: 10.1016/j.jag.2006.05.003 – ident: e_1_2_7_13_1 doi: 10.1016/j.rse.2011.11.026 – ident: e_1_2_7_61_1 doi: 10.1093/treephys/23.13.865 – ident: e_1_2_7_15_1 doi: 10.1016/j.cageo.2011.04.011 – ident: e_1_2_7_25_1 doi: 10.1029/2005GL022688 – ident: e_1_2_7_11_1 doi: 10.1080/0143116042000274015 – ident: e_1_2_7_20_1 doi: 10.1078/0176‐1617‐00887 – ident: e_1_2_7_9_1 doi: 10.1016/j.jag.2012.10.008 – ident: e_1_2_7_32_1 doi: 10.1109/LGRS.2005.857030 – ident: e_1_2_7_48_1 doi: 10.1016/j.agrformet.2005.05.007 – ident: e_1_2_7_17_1 doi: 10.1201/b11222‐21 – ident: e_1_2_7_3_1 doi: 10.1046/j.1365‐2486.2003.00629.x – ident: e_1_2_7_10_1 doi: 10.1016/j.rse.2007.12.003 – ident: e_1_2_7_27_1 doi: 10.1007/s10712-018-9492-0 – ident: e_1_2_7_2_1 doi: 10.1364/AO.12.002448 – ident: e_1_2_7_18_1 doi: 10.1201/9780429431180-1 – ident: e_1_2_7_44_1 doi: 10.3390/agronomy4010108 – ident: e_1_2_7_45_1 doi: 10.1016/j.compag.2003.11.002 – ident: e_1_2_7_57_1 doi: 10.1016/0168-1923(85)90020-6 – ident: e_1_2_7_24_1 doi: 10.1016/j.jplph.2016.05.019 – ident: e_1_2_7_53_1 doi: 10.1016/j.agrformet.2005.05.003 – ident: e_1_2_7_26_1 doi: 10.1029/2005JD006017 – ident: e_1_2_7_52_1 doi: 10.1016/j.rse.2010.09.012 – ident: e_1_2_7_19_1 doi: 10.1016/j.rse.2018.08.007 – ident: e_1_2_7_54_1 doi: 10.1109/JSTARS.2012.2222356 – ident: e_1_2_7_41_1 doi: 10.1080/01431160512331326567 – ident: e_1_2_7_46_1 doi: 10.1016/j.rse.2011.06.015 – ident: e_1_2_7_62_1 doi: 10.2134/jeq2002.1433 – ident: e_1_2_7_39_1 doi: 10.1016/j.rse.2010.12.001 – ident: e_1_2_7_59_1 doi: 10.1016/S0893‐6080(05)80023‐1 – ident: e_1_2_7_29_1 doi: 10.1016/j.agrformet.2015.12.064 – ident: e_1_2_7_60_1 doi: 10.1104/pp.47.5.656 – ident: e_1_2_7_34_1 doi: 10.1016/j.rse.2004.06.005 – ident: e_1_2_7_40_1 doi: 10.1016/j.rse.2012.10.005 – ident: e_1_2_7_47_1 doi: 10.5194/bg‐11‐4695‐2014 – ident: e_1_2_7_43_1 doi: 10.1016/j.jag.2013.12.008 – ident: e_1_2_7_22_1 doi: 10.1016/j.rse.2012.02.017 – ident: e_1_2_7_31_1 doi: 10.1109/TGRS.2004.836769 – ident: e_1_2_7_8_1 doi: 10.1016/j.jplph.2008.03.004 – ident: e_1_2_7_28_1 doi: 10.1016/j.rse.2010.03.010 – ident: e_1_2_7_37_1 doi: 10.1016/j.agrformet.2015.04.008 – ident: e_1_2_7_6_1 doi: 10.1016/j.chemolab.2007.10.001 |
SSID | ssj0011941 |
Score | 2.3606017 |
Snippet | Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2981 |
Title | Gross Primary Production Estimation in Crops Using Solely Remotely Sensed Data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2019.05.0332 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG5QL3owrnFPD94mo7TTGYaDB1TEkIjEJdHTZJZCNAYMwgGu_nHfa8ssLgl4mUwaUtq-b75-bd97JeQ49BMQ2VLYzOOxLTiTtu9VHDuqeCBOKrKaqOOCm5Z3_SiaT-5TqfSZ81oaDaOTePJrXMl_rAplYFeMkp3DsmmlUADvYF94goXhOZONGzjFWW2TMKKtk7eiPevw4eqYRBXVN-i_f1jaOeC-_ybfUHeDifDlHpaxoDkvdYhaqlNr3YGKdrDy7VAMqrnh-SU7vFc3FVm3k3RfuTsapz4U2nPbhHWZTAXZQdTY-HTk3CrNDgSrmlC8IqvCl6xZVWoiBRlmYy68AtMyloNUgTer-uIWMwfjHPkbv2P6OZy8cAxesSkq66pjdkgLybS_TXKp6yEserCWIKsjKLsB1rFAljiwFdDk0nm91b5LD6NYVbDpKgq7qWOvsJbTny0p6Jv8ekcJloc1smpWGrSmYbNOSrK3QVbAsCbbitwkLQUgagBEMwDRDED0pUcVgKgCENUAolMAUQ0gigDaIo9X9YeLa9tcsGHHmKXI5jHrcCHLrt_xZIJJqyPf970EhI0MQ8FEJ-ShGyYgmjvQ3bKLUc1OBByeMC5F7GyTxV6_J3cIjWNHel4k3cSPBAtFFAMDgHjmFRA_rhS7xJoOS_CuexX8bYpdcqZGboafBrVGk9cad7etJhZjeiOH7831b_tkOYP1AVkcDkbyEKTmMDoyUPgC-M55aQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gross+Primary+Production+Estimation+in+Crops+Using+Solely+Remotely+Sensed+Data&rft.jtitle=Agronomy+journal&rft.au=Peng%2C+Yi&rft.au=Kira%2C+Oz&rft.au=Nguy%E2%80%90Robertson%2C+Anthony&rft.au=Suyker%2C+Andrew&rft.date=2019-11-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=111&rft.issue=6&rft.spage=2981&rft.epage=2990&rft_id=info:doi/10.2134%2Fagronj2019.05.0332&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2019_05_0332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon |