Gross Primary Production Estimation in Crops Using Solely Remotely Sensed Data

Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 111; no. 6; pp. 2981 - 2990
Main Authors Peng, Yi, Kira, Oz, Nguy‐Robertson, Anthony, Suyker, Andrew, Arkebauer, Timothy, Sun, Ying, Gitelson, Anatoly A.
Format Journal Article
LanguageEnglish
Published The American Society of Agronomy, Inc 01.11.2019
Online AccessGet full text

Cover

Loading…
Abstract Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More work is still needed to develop algorithms for GPP estimation applicable to multiple, if not all, vegetation types, phenological phases, and environmental conditions. This study employed neural networks (NN), multiple linear regressions (MLR), and vegetation indices (VI) to develop algorithms for GPP estimation based solely on remotely sensed data in two crops, maize (Zea mays L.) and soybean [Glycine max (L.) Merr.], with contrasting canopy architectures, leaf structures, and photosynthetic pathways. The focus of the study was to devise algorithms not requiring re‐parameterization for different crop species. Data used in the models included in situ hyperspectral reflectance and satellite surface reflectance products. For the tested NN, MLR, and VI algorithms, the bands selected to obtain minimal errors in maize and soybean combined were mainly located in red edge and near infrared (NIR) spectral regions. For both in situ reflectance and satellite surface reflectance, a NN estimated GPP with normalized root mean square errors (NRMSE) below 14 and 18.7%, respectively, and VI using bands in red edge and NIR with NRMSE 15.6 and 20.4%, respectively. The results showed that the models based on the red edge and NIR bands may facilitate accurate assessments of crop GPP at multiple scales, from close range to satellite platforms. Core Ideas The models using remotely sensed data allow accurate estimation of gross primary production in two crops. The optimal bands for gross primary production estimation in two crops were in near infrared and red edge regions. Vegetation indices with red edge and near infrared reflectance were generic for maize and soybean.
AbstractList Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More work is still needed to develop algorithms for GPP estimation applicable to multiple, if not all, vegetation types, phenological phases, and environmental conditions. This study employed neural networks (NN), multiple linear regressions (MLR), and vegetation indices (VI) to develop algorithms for GPP estimation based solely on remotely sensed data in two crops, maize (Zea mays L.) and soybean [Glycine max (L.) Merr.], with contrasting canopy architectures, leaf structures, and photosynthetic pathways. The focus of the study was to devise algorithms not requiring re‐parameterization for different crop species. Data used in the models included in situ hyperspectral reflectance and satellite surface reflectance products. For the tested NN, MLR, and VI algorithms, the bands selected to obtain minimal errors in maize and soybean combined were mainly located in red edge and near infrared (NIR) spectral regions. For both in situ reflectance and satellite surface reflectance, a NN estimated GPP with normalized root mean square errors (NRMSE) below 14 and 18.7%, respectively, and VI using bands in red edge and NIR with NRMSE 15.6 and 20.4%, respectively. The results showed that the models based on the red edge and NIR bands may facilitate accurate assessments of crop GPP at multiple scales, from close range to satellite platforms. Core Ideas The models using remotely sensed data allow accurate estimation of gross primary production in two crops. The optimal bands for gross primary production estimation in two crops were in near infrared and red edge regions. Vegetation indices with red edge and near infrared reflectance were generic for maize and soybean.
Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite sensors at varying spatial and spectral resolution brings a possibility to use remotely sensed data for regional and global GPP estimation. More work is still needed to develop algorithms for GPP estimation applicable to multiple, if not all, vegetation types, phenological phases, and environmental conditions. This study employed neural networks (NN), multiple linear regressions (MLR), and vegetation indices (VI) to develop algorithms for GPP estimation based solely on remotely sensed data in two crops, maize ( Zea mays L.) and soybean [ Glycine max (L.) Merr.], with contrasting canopy architectures, leaf structures, and photosynthetic pathways. The focus of the study was to devise algorithms not requiring re‐parameterization for different crop species. Data used in the models included in situ hyperspectral reflectance and satellite surface reflectance products. For the tested NN, MLR, and VI algorithms, the bands selected to obtain minimal errors in maize and soybean combined were mainly located in red edge and near infrared (NIR) spectral regions. For both in situ reflectance and satellite surface reflectance, a NN estimated GPP with normalized root mean square errors (NRMSE) below 14 and 18.7%, respectively, and VI using bands in red edge and NIR with NRMSE 15.6 and 20.4%, respectively. The results showed that the models based on the red edge and NIR bands may facilitate accurate assessments of crop GPP at multiple scales, from close range to satellite platforms. Core Ideas The models using remotely sensed data allow accurate estimation of gross primary production in two crops. The optimal bands for gross primary production estimation in two crops were in near infrared and red edge regions. Vegetation indices with red edge and near infrared reflectance were generic for maize and soybean.
Author Sun, Ying
Kira, Oz
Gitelson, Anatoly A.
Peng, Yi
Arkebauer, Timothy
Suyker, Andrew
Nguy‐Robertson, Anthony
Author_xml – sequence: 1
  givenname: Yi
  surname: Peng
  fullname: Peng, Yi
  organization: Wuhan Univ
– sequence: 2
  givenname: Oz
  surname: Kira
  fullname: Kira, Oz
  email: ok78@cornell.edu
  organization: College of Agriculture and Life Sciences, Cornell Univ
– sequence: 3
  givenname: Anthony
  surname: Nguy‐Robertson
  fullname: Nguy‐Robertson, Anthony
  organization: School of Natural Resources, Univ. of Nebraska‐Lincoln
– sequence: 4
  givenname: Andrew
  surname: Suyker
  fullname: Suyker, Andrew
  organization: School of Natural Resources, Univ. of Nebraska‐Lincoln
– sequence: 5
  givenname: Timothy
  surname: Arkebauer
  fullname: Arkebauer, Timothy
  organization: Univ. of Nebraska‐Lincoln
– sequence: 6
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: College of Agriculture and Life Sciences, Cornell Univ
– sequence: 7
  givenname: Anatoly A.
  surname: Gitelson
  fullname: Gitelson, Anatoly A.
  email: agitelson2@unl.edu
  organization: School of Natural Resources, Univ. of Nebraska‐Lincoln
BookMark eNqNUM1qwkAYXIqFqu0L9LQvEPt9-5NujqI2rYgWredlTTYSibuSTSm-vYkWeu1phoEZZmZAes47S8gzwoghFy9mX3t3YIDJCOQIOGd3pI-CywhiIXukDwAswiRmD2QQwgEAMRHYJ8u09iHQz7o8mvrcos-_s6b0js5C02pXWjo6qf0p0G0o3Z5ufGWrM13bo286srEu2JxOTWMeyX1hqmCffnFItm-zr8l7tFilH5PxIso4KBaxDAsmLEhVxDYHiJOdUirOBXJrjEBRGGakyVksinYfSKmU4Dt8TXJkVmR8SNgtN-vq17bQp9sCjaC7R_TfIxqk7h5pTdOb6aes7PkfDj1O52ycrlfLeSeDvMZcAFVwa1Q
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2022_110175
crossref_primary_10_1002_agj2_21230
crossref_primary_10_1016_j_rsase_2020_100325
crossref_primary_10_1016_j_agrformet_2023_109720
crossref_primary_10_1080_10106049_2020_1801855
crossref_primary_10_1016_j_agrformet_2020_108092
crossref_primary_10_1007_s11119_023_10068_y
Cites_doi 10.3390/rs4030561
10.1046/j.1365‐2486.2003.00573.x
10.1016/j.agwat.2010.08.020
10.1080/2150704X.2015.1034888
10.1021/ac960321m
10.3390/rs9040318
10.1016/j.jag.2016.07.016
10.3390/rs10122063
10.1029/2006GL026457
10.3920/978‐90‐8686‐814‐8_22
10.1016/j.rse.2011.08.010
10.1016/j.agrformet.2014.03.004
10.1207/s15327906mbr4003_5
10.1016/j.rse.2011.10.021
10.1007/978-3-642-80913-2_4
10.1201/b11222
10.1078/0176‐1617‐01176
10.1016/j.jag.2006.05.003
10.1016/j.rse.2011.11.026
10.1093/treephys/23.13.865
10.1016/j.cageo.2011.04.011
10.1029/2005GL022688
10.1080/0143116042000274015
10.1078/0176‐1617‐00887
10.1016/j.jag.2012.10.008
10.1109/LGRS.2005.857030
10.1016/j.agrformet.2005.05.007
10.1201/b11222‐21
10.1046/j.1365‐2486.2003.00629.x
10.1016/j.rse.2007.12.003
10.1007/s10712-018-9492-0
10.1364/AO.12.002448
10.1201/9780429431180-1
10.3390/agronomy4010108
10.1016/j.compag.2003.11.002
10.1016/0168-1923(85)90020-6
10.1016/j.jplph.2016.05.019
10.1016/j.agrformet.2005.05.003
10.1029/2005JD006017
10.1016/j.rse.2010.09.012
10.1016/j.rse.2018.08.007
10.1109/JSTARS.2012.2222356
10.1080/01431160512331326567
10.1016/j.rse.2011.06.015
10.2134/jeq2002.1433
10.1016/j.rse.2010.12.001
10.1016/S0893‐6080(05)80023‐1
10.1016/j.agrformet.2015.12.064
10.1104/pp.47.5.656
10.1016/j.rse.2004.06.005
10.1016/j.rse.2012.10.005
10.5194/bg‐11‐4695‐2014
10.1016/j.jag.2013.12.008
10.1016/j.rse.2012.02.017
10.1109/TGRS.2004.836769
10.1016/j.jplph.2008.03.004
10.1016/j.rse.2010.03.010
10.1016/j.agrformet.2015.04.008
10.1016/j.chemolab.2007.10.001
ContentType Journal Article
Copyright Copyright © 2019 The author(s). Re‐use requires permission from the publisher.
Copyright_xml – notice: Copyright © 2019 The author(s). Re‐use requires permission from the publisher.
DBID AAYXX
CITATION
DOI 10.2134/agronj2019.05.0332
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0645
EndPage 2990
ExternalDocumentID 10_2134_agronj2019_05_0332
AGJ2AGRONJ2019050332
Genre article
GrantInformation_xml – fundername: US‐Ne1
– fundername: USDA National Institute of Food and Agriculture
– fundername: National Natural Science Foundation of China
  funderid: 41771381
– fundername: US‐Ne2
– fundername: Lawrence Berkeley National Lab AmeriFlux Data Management
– fundername: United States‐ Israel Binational Agricultural Research and Development Fund
– fundername: Nebraska Agricultural Experiment Station with funding from the Hatch Act
  funderid: 1002649
– fundername: US‐Ne3 AmeriFlux
– fundername: University of Nebraska‐Lincoln Agricultural Research Division
– fundername: Vaadia‐BARD Postdoctoral Fellowship
  funderid: FI-576-18
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AANLZ
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUYR
AFFPM
AFKRA
AFRAH
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YYP
ZCG
~02
~KM
AAYXX
CITATION
ID FETCH-LOGICAL-c3082-2c1f24e058f6ed0069b8886d413eaa414fa2a5ad264f2130558843b179d12e4c3
ISSN 0002-1962
IngestDate Thu Sep 26 16:46:05 EDT 2024
Sat Aug 24 01:07:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3082-2c1f24e058f6ed0069b8886d413eaa414fa2a5ad264f2130558843b179d12e4c3
PageCount 10
ParticipantIDs crossref_primary_10_2134_agronj2019_05_0332
wiley_primary_10_2134_agronj2019_05_0332_AGJ2AGRONJ2019050332
PublicationCentury 2000
PublicationDate November–December 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November–December 2019
PublicationDecade 2010
PublicationTitle Agronomy journal
PublicationYear 2019
Publisher The American Society of Agronomy, Inc
Publisher_xml – name: The American Society of Agronomy, Inc
References 2011; 115
2010; 98
2012; 120
2012; 121
2005; 131
1973; 12
2013; 23
2004; 25
2004; 161
2013; 128
1971; 47
1975; 14
2014; 29
2005; 26
2013; 6
2017; 9
1964; 40
2014; 4
2015; 213
2018; 217
2010; 114
2003; 9
2009; 166
2007; 9
2003; 160
2005; 32
2008; 112
1996; 68
2014; 11
1992; 5
2004; 43
2004; 42
2015; 6
2011
2002; 31
2005; 40
2016; 201
2016; 52
2006; 3
2012; 38
2008; 90
1999
2006b; 33
2006a; 111
2019; 40
2004; 92
2016; 218‐219
2018
2014; 192‐193
2015
1985; 34
2018; 10
2012; 4
2012; 117
2003; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Medina E. (e_1_2_7_33_1) 1964; 40
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 92
  start-page: 195
  issue: 2
  year: 2004
  end-page: 206
  article-title: Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations
  publication-title: Remote Sens. Environ.
– year: 2011
– volume: 40
  start-page: 515
  issue: 3
  year: 2019
  end-page: 551
  article-title: Spaceborne imaging spectroscopy for sustainable agriculture: Contributions and challenges
  publication-title: Surv. Geophys.
– volume: 52
  start-page: 554
  year: 2016
  end-page: 567
  article-title: Spectral band selection for vegetation properties retrieval using Gaussian processes regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 2448
  issue: 10
  year: 1973
  end-page: 2453
  article-title: Willstatter‐Stoll theory of leaf reflectance evaluated by ray tracing
  publication-title: Appl. Opt.
– volume: 192‐193
  start-page: 140
  year: 2014
  end-page: 148
  article-title: Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm
  publication-title: Agric. For. Meteorol.
– volume: 201
  start-page: 101
  year: 2016
  end-page: 110
  article-title: Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops
  publication-title: J. Plant Physiol.
– volume: 213
  start-page: 160
  year: 2015
  end-page: 172
  article-title: Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology
  publication-title: Agric. For. Meteorol.
– volume: 23
  start-page: 344
  year: 2013
  end-page: 351
  article-title: Remote estimation of crop and grass chlorophyll and nitrogen content using red‐edge bands on Sentinel‐2 and ‐3
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 38
  start-page: 9
  year: 2012
  end-page: 22
  article-title: Quality assessment of Landsat surface reflectance products using MODIS data
  publication-title: Comput. Geosci.
– volume: 166
  start-page: 157
  year: 2009
  end-page: 167
  article-title: Non‐destructive determination of maize leaf and canopy chlorophyll content
  publication-title: J. Plant Physiol.
– volume: 31
  start-page: 1433
  year: 2002
  end-page: 1441
  article-title: Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery
  publication-title: J. Environ. Qual.
– volume: 33
  start-page: L11402
  year: 2006b
  article-title: Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves
  publication-title: Geophys. Res. Lett.
– volume: 98
  start-page: 271
  year: 2010
  end-page: 282
  article-title: Earth observation products for operational irrigation management in the context of the pleiades project
  publication-title: Agric. Water Manage.
– start-page: 183
  year: 2015
  end-page: 190
– volume: 25
  start-page: 5403
  year: 2004
  end-page: 5413
  article-title: The MERIS terrestrial chlorophyll index
  publication-title: Int. J. Remote Sens.
– volume: 115
  start-page: 415
  year: 2011
  end-page: 426
  article-title: Optimal modalities for radiative transfer‐neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with chris/proba observations
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 656
  year: 1971
  end-page: 662
  article-title: Reflectance and transmittance of light by leaves
  publication-title: Plant Physiol
– volume: 115
  start-page: 3468
  year: 2011
  end-page: 3478
  article-title: Comparison of different vegetation indices for the remote assessment of green leaf area index of crops
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 373
  year: 2005
  end-page: 400
  article-title: Probing interactions in fixed and multilevel regression: Inferential and graphical techniques
  publication-title: Multivariate Behav. Res.
– start-page: 329
  year: 2011
  end-page: 358
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  article-title: A Landsat surface reflectance data set for North America. 1990–2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 128
  start-page: 186
  issue: 21
  year: 2013
  end-page: 196
  article-title: Remote estimation of gross primary productivity in crops using MODIS 250 m data
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 561
  issue: 3
  year: 2012
  end-page: 582
  article-title: Optimal exploitation of the sentinel‐2 spectral capabilities for crop leaf area index mapping
  publication-title: Remote Sens
– volume: 114
  start-page: 1856
  year: 2010
  end-page: 1862
  article-title: The potential of the MERIS Terrestrial chlorophyll Index for carbon flux estimation
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 867
  issue: 2
  year: 2013
  end-page: 874
  article-title: Gaussian process retrieval of chlorophyll content from imaging spectroscopy data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 34
  start-page: 205
  year: 1985
  end-page: 213
  article-title: Partitioning solar radiation into direct and diffuse, visible and near‐infrared components
  publication-title: Agric. For. Meteorol.
– volume: 68
  start-page: 3851
  year: 1996
  end-page: 3858
  article-title: Elimination of uninformative variables for multivariate calibration
  publication-title: Anal. Chem.
– volume: 217
  start-page: 30
  year: 2018
  end-page: 37
  article-title: Convergence of daily light use efficiency in irrigated and rainfed C3 and C4 crops
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: L08403
  year: 2005
  article-title: Remote estimation of canopy chlorophyll content in crops
  publication-title: Geophys. Res. Lett.
– volume: 6
  start-page: 360
  issue: 5
  year: 2015
  end-page: 369
  article-title: Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venµs sensors
  publication-title: Remote Sens. Lett.
– volume: 9
  start-page: 479
  year: 2003
  end-page: 492
  article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future
  publication-title: Glob. Change Biol.
– volume: 4
  start-page: 108
  issue: 1
  year: 2014
  end-page: 123
  article-title: Elements of an integrated phenotyping system for monitoring crop status at canopy level
  publication-title: Agronomy (Basel)
– volume: 131
  start-page: 77
  year: 2005
  end-page: 96
  article-title: Annual carbon dioxide exchange in irrigated and rainfed maize‐based agroecosystems
  publication-title: Agric. For. Meteorol.
– start-page: 3
  year: 2018
  end-page: 24
– volume: 131
  start-page: 180
  year: 2005
  end-page: 190
  article-title: Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season
  publication-title: Agric. For. Meteorol.
– volume: 112
  start-page: 2592
  issue: 5
  year: 2008
  end-page: 2604
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sens. Environ.
– volume: 121
  start-page: 404
  year: 2012
  end-page: 414
  article-title: Remote estimation of crop gross primary production with Landsat data
  publication-title: Remote Sens. Environ.
– volume: 42
  start-page: 2786
  year: 2004
  end-page: 2795
  article-title: Four years of Landsat‐7 on‐orbit geometric calibration and performance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 165
  year: 2007
  end-page: 193
  article-title: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 111
  start-page: D08S11
  year: 2006a
  article-title: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity
  publication-title: Geophys. Res. Lett.
– volume: 29
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Remote estimation of grassland gross primary production during extreme meteorological seasons
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 23
  start-page: 865
  issue: 13
  year: 2003
  end-page: 877
  article-title: Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (quercus douglasii) under prolonged summer drought and high temperature
  publication-title: Tree Physiol
– volume: 43
  start-page: 173
  year: 2004
  end-page: 178
  article-title: Collecting spectral data over cropland vegetation using machine‐positioning versus hand‐positioning of the sensor
  publication-title: Comput. Electron. Agric.
– start-page: 189
  year: 1999
  end-page: 248
  article-title: GeoBotany: Vegetation mapping for earth sciences
– volume: 11
  start-page: 4695
  issue: 17
  year: 2014
  end-page: 4712
  article-title: Monitoring of carbon dioxide fluxes in a subalpine grassland ecosystem of the Italian alps using a multispectral sensor
  publication-title: Biogeosciences
– volume: 9
  start-page: 383
  year: 2003
  end-page: 395
  article-title: A cross‐biome comparison of daily light use efficiency for gross primary production
  publication-title: Glob. Change Biol.
– volume: 161
  start-page: 165
  year: 2004
  end-page: 173
  article-title: Wide dynamic range vegetation index for remote quantification of crop biophysical characteristics
  publication-title: J. Plant Physiol.
– volume: 10
  issue: 12
  year: 2018
  article-title: Model‐based optimization of spectral sampling for the retrieval of crop variables with the PROSAIL model
  publication-title: Remote Sens
– volume: 115
  start-page: 978
  year: 2011
  end-page: 989
  article-title: Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 451
  year: 1964
  end-page: 494
  article-title: Die Beziehungen zwischen Chlorophyllgehalt, assimilierender Flaeche und Trockensubstanzproduktion in einigen Pflanzengemeinschaften. (The relationships between chlorophyll content, assimilating area and dry matter production in some plant communities.)
  publication-title: Beitr. Biol. Pflanzen.
– volume: 218‐219
  start-page: 243
  year: 2016
  end-page: 249
  article-title: Informative spectral bands for remote green LAI estimation in C3 and C4 crops
  publication-title: Agric. For. Meteorol.
– volume: 14
  start-page: 55
  year: 1975
  end-page: 118
– volume: 115
  start-page: 3091
  year: 2011
  end-page: 3101
  article-title: Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 318
  year: 2017
  article-title: Toward generic models for green LAI estimation in maize and soybean: Satellite observations
  publication-title: Remote Sens
– volume: 117
  start-page: 440
  year: 2012
  end-page: 448
  article-title: Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content
  publication-title: Remote Sens. Environ.
– volume: 90
  start-page: 188
  year: 2008
  end-page: 194
  article-title: A variable selection method based on uninformative variable elimination for multivariate calibration of near‐infrared spectra
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 160
  start-page: 271
  issue: 3
  year: 2003
  end-page: 282
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non‐destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
– volume: 120
  start-page: 25
  issue: 1
  year: 2012
  end-page: 36
  article-title: Sentinel‐2: Esa's optical high‐resolution mission for gmes operational services
  publication-title: Remote Sens. Environ.
– volume: 26
  start-page: 1403
  issue: 7
  year: 2005
  end-page: 1421
  article-title: Usefulness and limits of MODIS GPP for estimating wheat yield
  publication-title: Int. J. Remote Sens.
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  end-page: 259
  article-title: Stacked generalization
  publication-title: Neural Netw
– ident: e_1_2_7_42_1
  doi: 10.3390/rs4030561
– ident: e_1_2_7_50_1
  doi: 10.1046/j.1365‐2486.2003.00573.x
– ident: e_1_2_7_14_1
  doi: 10.1016/j.agwat.2010.08.020
– ident: e_1_2_7_51_1
– ident: e_1_2_7_35_1
  doi: 10.1080/2150704X.2015.1034888
– ident: e_1_2_7_7_1
  doi: 10.1021/ac960321m
– ident: e_1_2_7_30_1
  doi: 10.3390/rs9040318
– ident: e_1_2_7_55_1
  doi: 10.1016/j.jag.2016.07.016
– ident: e_1_2_7_5_1
  doi: 10.3390/rs10122063
– ident: e_1_2_7_21_1
  doi: 10.1029/2006GL026457
– ident: e_1_2_7_23_1
  doi: 10.3920/978‐90‐8686‐814‐8_22
– ident: e_1_2_7_56_1
  doi: 10.1016/j.rse.2011.08.010
– volume: 40
  start-page: 451
  year: 1964
  ident: e_1_2_7_33_1
  article-title: Die Beziehungen zwischen Chlorophyllgehalt, assimilierender Flaeche und Trockensubstanzproduktion in einigen Pflanzengemeinschaften. (The relationships between chlorophyll content, assimilating area and dry matter production in some plant communities.)
  publication-title: Beitr. Biol. Pflanzen.
  contributor:
    fullname: Medina E.
– ident: e_1_2_7_36_1
  doi: 10.1016/j.agrformet.2014.03.004
– ident: e_1_2_7_4_1
  doi: 10.1207/s15327906mbr4003_5
– ident: e_1_2_7_38_1
  doi: 10.1016/j.rse.2011.10.021
– ident: e_1_2_7_58_1
  doi: 10.1007/978-3-642-80913-2_4
– ident: e_1_2_7_49_1
  doi: 10.1201/b11222
– ident: e_1_2_7_16_1
  doi: 10.1078/0176‐1617‐01176
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jag.2006.05.003
– ident: e_1_2_7_13_1
  doi: 10.1016/j.rse.2011.11.026
– ident: e_1_2_7_61_1
  doi: 10.1093/treephys/23.13.865
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cageo.2011.04.011
– ident: e_1_2_7_25_1
  doi: 10.1029/2005GL022688
– ident: e_1_2_7_11_1
  doi: 10.1080/0143116042000274015
– ident: e_1_2_7_20_1
  doi: 10.1078/0176‐1617‐00887
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jag.2012.10.008
– ident: e_1_2_7_32_1
  doi: 10.1109/LGRS.2005.857030
– ident: e_1_2_7_48_1
  doi: 10.1016/j.agrformet.2005.05.007
– ident: e_1_2_7_17_1
  doi: 10.1201/b11222‐21
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1365‐2486.2003.00629.x
– ident: e_1_2_7_10_1
  doi: 10.1016/j.rse.2007.12.003
– ident: e_1_2_7_27_1
  doi: 10.1007/s10712-018-9492-0
– ident: e_1_2_7_2_1
  doi: 10.1364/AO.12.002448
– ident: e_1_2_7_18_1
  doi: 10.1201/9780429431180-1
– ident: e_1_2_7_44_1
  doi: 10.3390/agronomy4010108
– ident: e_1_2_7_45_1
  doi: 10.1016/j.compag.2003.11.002
– ident: e_1_2_7_57_1
  doi: 10.1016/0168-1923(85)90020-6
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jplph.2016.05.019
– ident: e_1_2_7_53_1
  doi: 10.1016/j.agrformet.2005.05.003
– ident: e_1_2_7_26_1
  doi: 10.1029/2005JD006017
– ident: e_1_2_7_52_1
  doi: 10.1016/j.rse.2010.09.012
– ident: e_1_2_7_19_1
  doi: 10.1016/j.rse.2018.08.007
– ident: e_1_2_7_54_1
  doi: 10.1109/JSTARS.2012.2222356
– ident: e_1_2_7_41_1
  doi: 10.1080/01431160512331326567
– ident: e_1_2_7_46_1
  doi: 10.1016/j.rse.2011.06.015
– ident: e_1_2_7_62_1
  doi: 10.2134/jeq2002.1433
– ident: e_1_2_7_39_1
  doi: 10.1016/j.rse.2010.12.001
– ident: e_1_2_7_59_1
  doi: 10.1016/S0893‐6080(05)80023‐1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.agrformet.2015.12.064
– ident: e_1_2_7_60_1
  doi: 10.1104/pp.47.5.656
– ident: e_1_2_7_34_1
  doi: 10.1016/j.rse.2004.06.005
– ident: e_1_2_7_40_1
  doi: 10.1016/j.rse.2012.10.005
– ident: e_1_2_7_47_1
  doi: 10.5194/bg‐11‐4695‐2014
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jag.2013.12.008
– ident: e_1_2_7_22_1
  doi: 10.1016/j.rse.2012.02.017
– ident: e_1_2_7_31_1
  doi: 10.1109/TGRS.2004.836769
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jplph.2008.03.004
– ident: e_1_2_7_28_1
  doi: 10.1016/j.rse.2010.03.010
– ident: e_1_2_7_37_1
  doi: 10.1016/j.agrformet.2015.04.008
– ident: e_1_2_7_6_1
  doi: 10.1016/j.chemolab.2007.10.001
SSID ssj0011941
Score 2.3606017
Snippet Gross primary production (GPP) is a measure for crop productivity, indicating yield and expressing C exchange of agro‐ecosystems. A multitude of satellite...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2981
Title Gross Primary Production Estimation in Crops Using Solely Remotely Sensed Data
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2019.05.0332
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG5QL3owrnFPD94mo7TTGYaDB1TEkIjEJdHTZJZCNAYMwgGu_nHfa8ssLgl4mUwaUtq-b75-bd97JeQ49BMQ2VLYzOOxLTiTtu9VHDuqeCBOKrKaqOOCm5Z3_SiaT-5TqfSZ81oaDaOTePJrXMl_rAplYFeMkp3DsmmlUADvYF94goXhOZONGzjFWW2TMKKtk7eiPevw4eqYRBXVN-i_f1jaOeC-_ybfUHeDifDlHpaxoDkvdYhaqlNr3YGKdrDy7VAMqrnh-SU7vFc3FVm3k3RfuTsapz4U2nPbhHWZTAXZQdTY-HTk3CrNDgSrmlC8IqvCl6xZVWoiBRlmYy68AtMyloNUgTer-uIWMwfjHPkbv2P6OZy8cAxesSkq66pjdkgLybS_TXKp6yEserCWIKsjKLsB1rFAljiwFdDk0nm91b5LD6NYVbDpKgq7qWOvsJbTny0p6Jv8ekcJloc1smpWGrSmYbNOSrK3QVbAsCbbitwkLQUgagBEMwDRDED0pUcVgKgCENUAolMAUQ0gigDaIo9X9YeLa9tcsGHHmKXI5jHrcCHLrt_xZIJJqyPf970EhI0MQ8FEJ-ShGyYgmjvQ3bKLUc1OBByeMC5F7GyTxV6_J3cIjWNHel4k3cSPBAtFFAMDgHjmFRA_rhS7xJoOS_CuexX8bYpdcqZGboafBrVGk9cad7etJhZjeiOH7831b_tkOYP1AVkcDkbyEKTmMDoyUPgC-M55aQ
link.rule.ids 315,783,787,27936,27937
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gross+Primary+Production+Estimation+in+Crops+Using+Solely+Remotely+Sensed+Data&rft.jtitle=Agronomy+journal&rft.au=Peng%2C+Yi&rft.au=Kira%2C+Oz&rft.au=Nguy%E2%80%90Robertson%2C+Anthony&rft.au=Suyker%2C+Andrew&rft.date=2019-11-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=111&rft.issue=6&rft.spage=2981&rft.epage=2990&rft_id=info:doi/10.2134%2Fagronj2019.05.0332&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2019_05_0332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon