Determination of compound channel apparent shear stress: application of novel data mining models
Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of discharge. The current study investigated various data mining models to estimate apparent shear stress in a symmetric compound channel with smooth...
Saved in:
Published in | Journal of hydroinformatics Vol. 21; no. 5; pp. 798 - 811 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of discharge. The current study investigated various data mining models to estimate apparent shear stress in a symmetric compound channel with smooth and rough floodplains. The applied predictive models include random forest (RF), random tree (RT), reduced error pruning tree (REPT), M5P, and the distinguished hybrid bagging-M5P model. The models are constructed based on several correlated physical channel characteristic variables to predict the apparent shear stress. A sensitivity analysis is applied to select the best function tuning parameters for each model. Results showed that input with six variables exhibited the best prediction results for RF model while input with four variables produced the best performance for other models. Based on the optimised input variables for each model, the efficiency of five predictive models discussed here was evaluated. It was found that the M5P and hybrid bagging-M5P models with the coefficient of determination (R2) equal to 0.905 and 0.92, respectively, in the testing stage are superior in estimating apparent shear stress in compound channels than other RF, RT and REPT models. |
---|---|
AbstractList | Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of discharge. The current study investigated various data mining models to estimate apparent shear stress in a symmetric compound channel with smooth and rough floodplains. The applied predictive models include random forest (RF), random tree (RT), reduced error pruning tree (REPT), M5P, and the distinguished hybrid bagging-M5P model. The models are constructed based on several correlated physical channel characteristic variables to predict the apparent shear stress. A sensitivity analysis is applied to select the best function tuning parameters for each model. Results showed that input with six variables exhibited the best prediction results for RF model while input with four variables produced the best performance for other models. Based on the optimised input variables for each model, the efficiency of five predictive models discussed here was evaluated. It was found that the M5P and hybrid bagging-M5P models with the coefficient of determination (R2) equal to 0.905 and 0.92, respectively, in the testing stage are superior in estimating apparent shear stress in compound channels than other RF, RT and REPT models. |
Author | Yaseen, Zaher Mundher Pham, Binh Thai Wan Mohtar, Wan Hanna Melini Khosravi, Khabat Kløve, Bjørn Khozani, Zohreh Sheikh |
Author_xml | – sequence: 1 givenname: Zohreh Sheikh surname: Khozani fullname: Khozani, Zohreh Sheikh organization: Smart and Sustainable Township Research Center, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia – sequence: 2 givenname: Khabat surname: Khosravi fullname: Khosravi, Khabat organization: Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Science and Natural Resources University, Sari, Iran – sequence: 3 givenname: Binh Thai surname: Pham fullname: Pham, Binh Thai organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam – sequence: 4 givenname: Bjørn surname: Kløve fullname: Kløve, Bjørn organization: Water, Energy and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, Finland – sequence: 5 givenname: Wan Hanna Melini surname: Wan Mohtar fullname: Wan Mohtar, Wan Hanna Melini organization: Smart and Sustainable Township Research Center, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia – sequence: 6 givenname: Zaher Mundher surname: Yaseen fullname: Yaseen, Zaher Mundher organization: Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
BookMark | eNp1kD1PwzAQhi1UJNrCymyJOeH80ThhQ-VTqsQCs3Fsh6ZK7GC7SP33pC1iQGK60-l97nTPDE2cdxahSwI5JUVxvd6Z4HMKpMqBiRM0JbxYZEQwPjn0PBOEkzM0i3EDQAkryRS939lkQ986lVrvsG-w9v3gt85gvVbO2Q6rYVDBuoTj2qqAYwo2xpv9uGv1L-b815g1Kik8bmvdB-69sV08R6eN6qK9-Klz9PZw_7p8ylYvj8_L21WmGYiUNaYGq0hZCKKrRVWTQlWGstqAbowAbUphgBULxqyilhEBvNJQalMQqDkt2BxdHfcOwX9ubUxy47fBjSclZQCcUy6qMZUfUzr4GINt5BDaXoWdJCD3FuXBotxblKPFEeB_AN2mw9MpqLb7D_sGQJh7Bw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3221430 crossref_primary_10_1016_j_jhydrol_2021_126100 crossref_primary_10_1007_s00704_020_03263_8 crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_2166_hydro_2024_047 crossref_primary_10_1007_s00366_020_01003_0 crossref_primary_10_1016_j_compag_2019_105041 crossref_primary_10_1371_journal_pone_0229731 crossref_primary_10_3390_fluids7010020 crossref_primary_10_1016_j_engappai_2024_108158 crossref_primary_10_1016_j_scitotenv_2020_137612 crossref_primary_10_1016_j_jclepro_2022_135522 crossref_primary_10_1016_j_jher_2021_07_003 crossref_primary_10_3390_rs12020266 crossref_primary_10_1007_s11269_024_03760_9 crossref_primary_10_1007_s12145_022_00830_7 crossref_primary_10_1016_j_powtec_2019_11_046 crossref_primary_10_1007_s12665_022_10216_z crossref_primary_10_1016_j_engappai_2020_104012 crossref_primary_10_2166_ws_2021_168 crossref_primary_10_1007_s11069_023_06060_4 crossref_primary_10_1016_j_jwpe_2025_107251 crossref_primary_10_3390_app9183841 crossref_primary_10_5194_hess_29_535_2025 crossref_primary_10_3390_app9245458 crossref_primary_10_1016_j_fuel_2023_128623 crossref_primary_10_3390_agronomy13030716 crossref_primary_10_1016_j_jhydrol_2020_124774 crossref_primary_10_1038_s41598_022_09482_5 crossref_primary_10_1016_j_engappai_2023_107277 crossref_primary_10_46604_aiti_2021_5307 crossref_primary_10_1016_j_flowmeasinst_2021_102079 crossref_primary_10_1016_j_jhydrol_2020_125423 crossref_primary_10_3390_w12102951 crossref_primary_10_1016_j_scitotenv_2020_136836 crossref_primary_10_3390_e21111046 crossref_primary_10_1016_j_asej_2021_02_034 crossref_primary_10_1080_19942060_2021_2002721 crossref_primary_10_1016_j_ijmst_2021_08_005 crossref_primary_10_1080_00207543_2023_2166139 crossref_primary_10_1016_j_scitotenv_2021_149811 crossref_primary_10_1007_s13201_019_1056_z crossref_primary_10_1016_j_pedsph_2022_06_009 crossref_primary_10_1155_2022_1518202 crossref_primary_10_1016_j_mineng_2021_106790 crossref_primary_10_1080_02626667_2020_1754419 crossref_primary_10_1016_j_chemosphere_2019_125450 crossref_primary_10_1016_j_eswa_2023_120885 crossref_primary_10_1016_j_oceaneng_2021_109721 crossref_primary_10_1016_j_envsoft_2021_105165 crossref_primary_10_1007_s00521_022_07112_9 crossref_primary_10_1007_s11053_021_09922_5 crossref_primary_10_1007_s40996_022_00904_y crossref_primary_10_1007_s00704_022_04037_0 crossref_primary_10_1038_s41598_022_22763_3 crossref_primary_10_1007_s10661_021_09586_x crossref_primary_10_2166_hydro_2022_002 crossref_primary_10_1007_s11709_020_0634_3 crossref_primary_10_1016_j_ecoenv_2020_111059 crossref_primary_10_1007_s10462_024_10707_4 crossref_primary_10_2174_1874836801913010178 crossref_primary_10_1080_10106049_2022_2122590 crossref_primary_10_1155_2020_8844367 crossref_primary_10_1007_s11356_024_33027_0 crossref_primary_10_1016_j_jclepro_2022_130900 crossref_primary_10_3390_ijgi9080479 crossref_primary_10_1007_s00366_021_01398_4 crossref_primary_10_3390_app9214715 |
Cites_doi | 10.1007/s10021-005-0054-1 10.1007/BF00058655 10.1016/j.asoc.2017.05.024 10.1061/(ASCE)0733-9429(1999)125:7(696) 10.2166/hydro.2015.097 10.1016/j.flowmeasinst.2013.04.013 10.1061/(ASCE)0733-9429(1983)109:8(1073) 10.1603/0022-2585-39.3.485 10.1061/(ASCE)0733-9429(1984)110:10(1412) 10.1016/j.jhydrol.2016.09.035 10.1023/A:1010933404324 10.1002/hyp.6837 10.1061/(ASCE)1084-0699(2004)9:6(491) 10.1016/S0377-2217(03)00186-3 10.1080/1573062X.2017.1325495 10.1080/01431160500256531 10.1016/j.geoderma.2018.05.030 10.1016/j.jag.2012.03.012 10.1080/00221688109499530 10.1016/j.flowmeasinst.2015.04.010 10.1016/j.flowmeasinst.2017.08.005 10.1016/j.amc.2018.06.016 10.1016/j.ijsrc.2017.04.004 10.1016/j.wse.2018.07.001 10.1016/j.agwat.2018.06.018 10.1080/09715010.2010.10515011 10.13031/2013.23153 10.1007/BF00872358 10.2166/hydro.2012.119 10.1080/00221687809499626 10.1016/j.jhydrol.2018.10.015 10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO;2-W 10.1007/s10955-008-9589-9 10.9790/0661-1268386 10.1680/iicep.1982.1625 10.2166/hydro.2012.193 10.1016/j.flowmeasinst.2016.06.020 10.1613/jair.816 10.1016/0309-1708(84)90016-2 10.5194/hess-22-4771-2018 10.1080/00221681003704137 10.1016/j.measurement.2016.03.018 10.1080/00221689009499084 10.1080/09645290701409939 10.1029/1998WR900018 10.1061/JYCEAJ.0005904 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Sep 2019 |
Copyright_xml | – notice: Copyright IWA Publishing Sep 2019 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
DOI | 10.2166/hydro.2019.037 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1465-1734 |
EndPage | 811 |
ExternalDocumentID | 10_2166_hydro_2019_037 |
GeographicLocations | United States--US India |
GeographicLocations_xml | – name: United States--US – name: India |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYOK AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS EJD GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c307t-fdb0ea18671c959b16a9d23bd0cfd70cd87d036533ea2e317049c08cd610b4263 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Sat Jul 26 00:09:18 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 04:10:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-fdb0ea18671c959b16a9d23bd0cfd70cd87d036533ea2e317049c08cd610b4263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/21/5/798/602624/jh0210798.pdf |
PQID | 2300442479 |
PQPubID | 2044529 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2300442479 crossref_primary_10_2166_hydro_2019_037 crossref_citationtrail_10_2166_hydro_2019_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2019 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | (2020032614300702000_HYDRO-D-19-00037C6) 1999; 125 (2020032614300702000_HYDRO-D-19-00037C13) 2004; 154 (2020032614300702000_HYDRO-D-19-00037C45) 1992 (2020032614300702000_HYDRO-D-19-00037C34) 2011; 95 (2020032614300702000_HYDRO-D-19-00037C56) 2004; 9 (2020032614300702000_HYDRO-D-19-00037C30) 1983; 109 (2020032614300702000_HYDRO-D-19-00037C66) 2014 (2020032614300702000_HYDRO-D-19-00037C33) 2002; 2 (2020032614300702000_HYDRO-D-19-00037C5) 2018; 338 (2020032614300702000_HYDRO-D-19-00037C22) 2013; 15 (2020032614300702000_HYDRO-D-19-00037C67) 2015; 25 (2020032614300702000_HYDRO-D-19-00037C58) 2018; 208 (2020032614300702000_HYDRO-D-19-00037C62) 2011 (2020032614300702000_HYDRO-D-19-00037C23) 2012; 15 (2020032614300702000_HYDRO-D-19-00037C9) 2019; 21 (2020032614300702000_HYDRO-D-19-00037C68) 2016; 542 (2020032614300702000_HYDRO-D-19-00037C44) 1984; 7 (2020032614300702000_HYDRO-D-19-00037C46) 1981; 19 (2020032614300702000_HYDRO-D-19-00037C70) 2016; 87 (2020032614300702000_HYDRO-D-19-00037C4) 2009; 1 (2020032614300702000_HYDRO-D-19-00037C2) 2013; 33 (2020032614300702000_HYDRO-D-19-00037C10) 2013; 1 (2020032614300702000_HYDRO-D-19-00037C48) 2018; 330 (2020032614300702000_HYDRO-D-19-00037C8) 2001; 45 (2020032614300702000_HYDRO-D-19-00037C57) 2017; 57 (2020032614300702000_HYDRO-D-19-00037C65) 2013 (2020032614300702000_HYDRO-D-19-00037C31) 1984; 110 (2020032614300702000_HYDRO-D-19-00037C50) 2019 (2020032614300702000_HYDRO-D-19-00037C17) 2001; 15 (2020032614300702000_HYDRO-D-19-00037C21) 2007; 2 (2020032614300702000_HYDRO-D-19-00037C63) 1990; 28 (2020032614300702000_HYDRO-D-19-00037C14) 2008; 133 (2020032614300702000_HYDRO-D-19-00037C7) 1996; 24 (2020032614300702000_HYDRO-D-19-00037C47) 2002; 39 (2020032614300702000_HYDRO-D-19-00037C42) 2013; 12 (2020032614300702000_HYDRO-D-19-00037C54) 2017; 14 (2020032614300702000_HYDRO-D-19-00037C20) 2015; 45 (2020032614300702000_HYDRO-D-19-00037C40) 2004; 28 (2020032614300702000_HYDRO-D-19-00037C52) 2017; 32 (2020032614300702000_HYDRO-D-19-00037C27) 2018; 22 (2020032614300702000_HYDRO-D-19-00037C37) 2007; 50 (2020032614300702000_HYDRO-D-19-00037C24) 2013; 15 (2020032614300702000_HYDRO-D-19-00037C3) 1984 (2020032614300702000_HYDRO-D-19-00037C15) 2016; 50 (2020032614300702000_HYDRO-D-19-00037C64) 1982; 108 (2020032614300702000_HYDRO-D-19-00037C25) 2010; 16 (2020032614300702000_HYDRO-D-19-00037C49) 1964; 7 (2020032614300702000_HYDRO-D-19-00037C53) 2017; 58 (2020032614300702000_HYDRO-D-19-00037C29) 2012; 428–429 (2020032614300702000_HYDRO-D-19-00037C26) 2018; 567 (2020032614300702000_HYDRO-D-19-00037C35) 2012 (2020032614300702000_HYDRO-D-19-00037C11) 2015; 17 (2020032614300702000_HYDRO-D-19-00037C19) 2016; 128 (2020032614300702000_HYDRO-D-19-00037C18) 1982; 73 (2020032614300702000_HYDRO-D-19-00037C28) 2008; 22 (2020032614300702000_HYDRO-D-19-00037C43) 2006; 9 (2020032614300702000_HYDRO-D-19-00037C39) 1978; 16 (2020032614300702000_HYDRO-D-19-00037C36) 2010; 48 (2020032614300702000_HYDRO-D-19-00037C16) 1997; 10 (2020032614300702000_HYDRO-D-19-00037C61) 2005 (2020032614300702000_HYDRO-D-19-00037C60) 2007; 15 (2020032614300702000_HYDRO-D-19-00037C12) 1992; 6 (2020032614300702000_HYDRO-D-19-00037C59) 2019 (2020032614300702000_HYDRO-D-19-00037C51) 2015; 73 (2020032614300702000_HYDRO-D-19-00037C38) 2012; 18 (2020032614300702000_HYDRO-D-19-00037C1) 2018 (2020032614300702000_HYDRO-D-19-00037C41) 2006; 27 (2020032614300702000_HYDRO-D-19-00037C32) 1999; 35 (2020032614300702000_HYDRO-D-19-00037C55) 2018; 11 |
References_xml | – volume: 95 start-page: 855 year: 2011 ident: 2020032614300702000_HYDRO-D-19-00037C34 article-title: Suspended sediment load prediction of river systems: an artificial neural network approach publication-title: Agricultural Water Management – volume: 9 start-page: 181 year: 2006 ident: 2020032614300702000_HYDRO-D-19-00037C43 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems doi: 10.1007/s10021-005-0054-1 – volume: 24 start-page: 123 year: 1996 ident: 2020032614300702000_HYDRO-D-19-00037C7 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 58 start-page: 441 year: 2017 ident: 2020032614300702000_HYDRO-D-19-00037C53 article-title: Estimating the shear stress distribution in circular channels based on the randomized neural network technique publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.024 – volume: 125 start-page: 696 year: 1999 ident: 2020032614300702000_HYDRO-D-19-00037C6 article-title: Momentum transfer for practical flow computation in compound channels publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(1999)125:7(696) – volume: 1 start-page: 208 year: 2013 ident: 2020032614300702000_HYDRO-D-19-00037C10 article-title: Early prediction of heart diseases using data mining techniques publication-title: Carribean Journal of Science and Technology – volume: 2 start-page: 58 year: 2007 ident: 2020032614300702000_HYDRO-D-19-00037C21 article-title: Rapid-exploring random tree algorithm for path planning of robot based on grid method publication-title: Journal of Nanjing Normal University (Engineering and Technology Edition) – volume: 17 start-page: 977 year: 2015 ident: 2020032614300702000_HYDRO-D-19-00037C11 article-title: Improving predictions made by ANN model using data quality assessment: an application to local scour around bridge piers publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2015.097 – volume: 33 start-page: 77 year: 2013 ident: 2020032614300702000_HYDRO-D-19-00037C2 article-title: Development of empirical regression-based models for predicting mean velocities in asymmetric compound channels publication-title: Flow Measurement and Instrumentation doi: 10.1016/j.flowmeasinst.2013.04.013 – volume: 109 start-page: 1073 year: 1983 ident: 2020032614300702000_HYDRO-D-19-00037C30 article-title: Flood plain and main channel flow interaction publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(1983)109:8(1073) – volume: 39 start-page: 485 year: 2002 ident: 2020032614300702000_HYDRO-D-19-00037C47 article-title: Geographical information systems and bootstrap aggregation (bagging) of tree-based classifiers for Lyme disease risk prediction in Trentino, Italian Alps publication-title: Journal of Medical Entomology doi: 10.1603/0022-2585-39.3.485 – volume: 110 start-page: 1412 year: 1984 ident: 2020032614300702000_HYDRO-D-19-00037C31 article-title: Boundary shear in symmetrical compound channels publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(1984)110:10(1412) – volume: 542 start-page: 603 year: 2016 ident: 2020032614300702000_HYDRO-D-19-00037C68 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.09.035 – volume-title: Data Mining: Practical Machine Learning Tools and Techniques, Annals of Physics year: 2011 ident: 2020032614300702000_HYDRO-D-19-00037C62 – volume: 45 start-page: 5 year: 2001 ident: 2020032614300702000_HYDRO-D-19-00037C8 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 22 start-page: 2449 year: 2008 ident: 2020032614300702000_HYDRO-D-19-00037C28 article-title: The potential of different ANN techniques in evapotranspiration modelling publication-title: Hydrological Processes doi: 10.1002/hyp.6837 – volume: 9 start-page: 491 year: 2004 ident: 2020032614300702000_HYDRO-D-19-00037C56 article-title: M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)1084-0699(2004)9:6(491) – volume: 154 start-page: 526 year: 2004 ident: 2020032614300702000_HYDRO-D-19-00037C13 article-title: Bankruptcy prediction using a data envelopment analysis publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(03)00186-3 – volume-title: Nature-Inspired Optimization Algorithms year: 2014 ident: 2020032614300702000_HYDRO-D-19-00037C66 – volume: 14 start-page: 999 year: 2017 ident: 2020032614300702000_HYDRO-D-19-00037C54 article-title: Efficient shear stress distribution detection in circular channels using Extreme Learning Machines and the M5 model tree algorithm publication-title: Urban Water Journal doi: 10.1080/1573062X.2017.1325495 – volume: 27 start-page: 825 year: 2006 ident: 2020032614300702000_HYDRO-D-19-00037C41 article-title: M5 model tree for land cover classification publication-title: International Journal of Remote Sensing doi: 10.1080/01431160500256531 – volume: 128 start-page: 875 year: 2016 ident: 2020032614300702000_HYDRO-D-19-00037C19 article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review publication-title: Theoretical and Applied Climatology – volume: 330 start-page: 52 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C48 article-title: Non-tuned data intelligent model for soil temperature estimation: a new approach publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.030 – volume: 21 year: 2019 ident: 2020032614300702000_HYDRO-D-19-00037C9 article-title: Review and comparison of performance indices for automatic model induction publication-title: Journal of Hydroinformatics – volume: 15 start-page: 147 year: 2012 ident: 2020032614300702000_HYDRO-D-19-00037C23 article-title: An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel publication-title: Journal of Hydroinformatics – volume: 18 start-page: 399 year: 2012 ident: 2020032614300702000_HYDRO-D-19-00037C38 article-title: High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2012.03.012 – volume: 19 start-page: 43 year: 1981 ident: 2020032614300702000_HYDRO-D-19-00037C46 article-title: Hydraulics of channels with flood-plains publication-title: Journal of Hydraulic Research doi: 10.1080/00221688109499530 – volume: 45 start-page: 62 year: 2015 ident: 2020032614300702000_HYDRO-D-19-00037C20 article-title: Assessment of stage-discharge predictors for compound open-channels publication-title: Flow Measurement and Instrumentation doi: 10.1016/j.flowmeasinst.2015.04.010 – volume: 428–429 start-page: 94 year: 2012 ident: 2020032614300702000_HYDRO-D-19-00037C29 article-title: Modelling discharge-sediment relationship using neural networks with artificial bee colony algorithm publication-title: Journal of Hydrology – volume: 57 start-page: 57 year: 2017 ident: 2020032614300702000_HYDRO-D-19-00037C57 article-title: An improved method for predicting discharge of homogeneous compound channels based on energy concept publication-title: Flow Measurement and Instrumentation doi: 10.1016/j.flowmeasinst.2017.08.005 – volume: 338 start-page: 400 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C5 article-title: Evaluating the apparent shear stress in prismatic compound channels using the genetic algorithm based on multi-layer perceptron: a comparative study publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2018.06.016 – volume: 32 start-page: 575 year: 2017 ident: 2020032614300702000_HYDRO-D-19-00037C52 article-title: An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming publication-title: International Journal of Sediment Research doi: 10.1016/j.ijsrc.2017.04.004 – volume: 11 start-page: 167 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C55 article-title: An expert system for predicting shear stress distribution in circular open channels using gene expression programming publication-title: Water Science and Engineering doi: 10.1016/j.wse.2018.07.001 – volume: 208 start-page: 140 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C58 article-title: Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in Burkina Faso publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2018.06.018 – volume: 16 start-page: 1 year: 2010 ident: 2020032614300702000_HYDRO-D-19-00037C25 article-title: Apparent shear stress in a compound channel publication-title: ISH Journal of Hydraulic Engineering doi: 10.1080/09715010.2010.10515011 – volume: 50 start-page: 885 year: 2007 ident: 2020032614300702000_HYDRO-D-19-00037C37 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Transactions of the ASABE doi: 10.13031/2013.23153 – start-page: 392 year: 2012 ident: 2020032614300702000_HYDRO-D-19-00037C35 article-title: A comparative study of reduced error pruning method in decision tree algorithms – volume: 6 start-page: 235 year: 1992 ident: 2020032614300702000_HYDRO-D-19-00037C12 article-title: Apparent shear stress in smooth compound channels publication-title: Water Resources Management doi: 10.1007/BF00872358 – volume: 15 start-page: 540 year: 2013 ident: 2020032614300702000_HYDRO-D-19-00037C22 article-title: Artificial neural network (ANN) modeling of dynamic effects on two-phase flow in homogenous porous media publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2012.119 – volume: 16 start-page: 139 year: 1978 ident: 2020032614300702000_HYDRO-D-19-00037C39 article-title: Momentum transfer in a compound channel publication-title: Journal of Hydraulic Research doi: 10.1080/00221687809499626 – year: 2019 ident: 2020032614300702000_HYDRO-D-19-00037C50 article-title: The potential of novel data mining models for global solar radiation prediction publication-title: International Journal of Environmental Science and Technology – volume: 567 start-page: 165 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C26 article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.10.015 – volume: 28 start-page: 101 year: 2004 ident: 2020032614300702000_HYDRO-D-19-00037C40 article-title: Comparison of methods for predicting discharge in straight compound channels using the apparent shear stress concept publication-title: Turkish Journal of Engineering and Environmental Sciences – volume: 1 start-page: 3 year: 2009 ident: 2020032614300702000_HYDRO-D-19-00037C4 article-title: The state of educational data mining in 2009: a review and future visions publication-title: Journal of Educational Data Mining – volume: 10 start-page: 421 year: 1997 ident: 2020032614300702000_HYDRO-D-19-00037C16 article-title: On the profile of random trees publication-title: Random Structures and Algorithms doi: 10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO;2-W – volume: 133 start-page: 151 year: 2008 ident: 2020032614300702000_HYDRO-D-19-00037C14 article-title: Parking on a random tree publication-title: Journal of Statistical Physics doi: 10.1007/s10955-008-9589-9 – start-page: 561 year: 1984 ident: 2020032614300702000_HYDRO-D-19-00037C3 article-title: Resistance to flow in channels with overbank flood-plain flow – volume: 12 start-page: 83 year: 2013 ident: 2020032614300702000_HYDRO-D-19-00037C42 article-title: A heart disease prediction model using decision tree publication-title: IOSR Journal of Computer Engineering (IOSR-JCE) doi: 10.9790/0661-1268386 – volume: 73 start-page: 849 year: 1982 ident: 2020032614300702000_HYDRO-D-19-00037C18 article-title: Rating curves for rivers with overbank flow publication-title: Proceedings of the Institution of Civil Engineers doi: 10.1680/iicep.1982.1625 – volume: 7 start-page: 793 year: 1964 ident: 2020032614300702000_HYDRO-D-19-00037C49 article-title: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain publication-title: La Houille Blanche – volume: 15 start-page: 138 year: 2013 ident: 2020032614300702000_HYDRO-D-19-00037C24 article-title: Predicting apparent shear stress in prismatic compound open channels using artificial neural networks publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2012.193 – volume: 73 year: 2015 ident: 2020032614300702000_HYDRO-D-19-00037C51 article-title: Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogenous roughness publication-title: Water Science and Technology – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2005 ident: 2020032614300702000_HYDRO-D-19-00037C61 – year: 2019 ident: 2020032614300702000_HYDRO-D-19-00037C59 article-title: Hydraulic head uncertainty estimations of a complex artificial intelligence model using multiple methodologies publication-title: Journal of Hydroinformatics – volume: 50 start-page: 147 year: 2016 ident: 2020032614300702000_HYDRO-D-19-00037C15 article-title: Prediction of depth averaged velocity and boundary shear distribution of a compound channel based on the mixing layer theory publication-title: Flow Measurement and Instrumentation doi: 10.1016/j.flowmeasinst.2016.06.020 – volume: 15 start-page: 163 year: 2001 ident: 2020032614300702000_HYDRO-D-19-00037C17 article-title: An analysis of reduced error pruning publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.816 – volume: 7 start-page: 180 year: 1984 ident: 2020032614300702000_HYDRO-D-19-00037C44 article-title: Comparison of methods for predicting discharge in compound open channels publication-title: Advances in Water Resources doi: 10.1016/0309-1708(84)90016-2 – volume: 22 start-page: 4771 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C27 article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-22-4771-2018 – volume: 48 start-page: 169 year: 2010 ident: 2020032614300702000_HYDRO-D-19-00037C36 article-title: Apparent friction coefficient in straight compound channels publication-title: Journal of Hydraulic Research doi: 10.1080/00221681003704137 – volume: 87 start-page: 87 year: 2016 ident: 2020032614300702000_HYDRO-D-19-00037C70 article-title: Application of a genetic algorithm in predicting the percentage of shear force carried by walls in smooth rectangular channels publication-title: Measurement doi: 10.1016/j.measurement.2016.03.018 – start-page: 405 volume-title: Artificial Intelligence, Evolutionary Computing and Metaheuristics year: 2013 ident: 2020032614300702000_HYDRO-D-19-00037C65 article-title: Metaheuristic optimization: Nature-inspired algorithms and applications – volume: 2 start-page: 18 year: 2002 ident: 2020032614300702000_HYDRO-D-19-00037C33 article-title: Classification and regression by random Forest publication-title: R News – volume: 28 start-page: 157 year: 1990 ident: 2020032614300702000_HYDRO-D-19-00037C63 article-title: An improved method of calculation for steady uniform flow in prismatic main channel/flood plain sections publication-title: Journal of Hydraulic Research doi: 10.1080/00221689009499084 – volume: 15 start-page: 405 year: 2007 ident: 2020032614300702000_HYDRO-D-19-00037C60 article-title: Predicting academic performance by data mining methods publication-title: Education Economics doi: 10.1080/09645290701409939 – volume: 35 start-page: 233 year: 1999 ident: 2020032614300702000_HYDRO-D-19-00037C32 article-title: Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation publication-title: Water Resources Research doi: 10.1029/1998WR900018 – start-page: 1131 year: 2018 ident: 2020032614300702000_HYDRO-D-19-00037C1 article-title: Nature inspired algorithm – start-page: 343 year: 1992 ident: 2020032614300702000_HYDRO-D-19-00037C45 article-title: Learning with continuous classes – volume: 25 start-page: 1533 year: 2015 ident: 2020032614300702000_HYDRO-D-19-00037C67 article-title: RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia publication-title: Neural Computing and Applications – volume: 108 start-page: 975 year: 1982 ident: 2020032614300702000_HYDRO-D-19-00037C64 article-title: Discharge assessment in compound channel flow publication-title: Journal of the Hydraulics Division doi: 10.1061/JYCEAJ.0005904 |
SSID | ssj0021381 |
Score | 2.4301324 |
Snippet | Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 798 |
SubjectTerms | Accuracy Algorithms Bagging Compound channels Data analysis Data mining Decision trees Engineering Environmental protection Error reduction Flood predictions Floodplains Gene expression Geometry Hydrology Momentum Neural networks Optimization Parameter sensitivity Prediction models Pruning R&D Rain Research & development Researchers Sensitivity analysis Shear stress Stormwater management Studies Time series Watershed management |
Title | Determination of compound channel apparent shear stress: application of novel data mining models |
URI | https://www.proquest.com/docview/2300442479 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLagHYABQQFRKMgDEpPVHM5hFsTRqkKiQohK3YKvqENJShuQ-u_xS5zSDjDnxcOz_Q778_chdCV9JpjULtHUD4nJ-Cnh3GdE0pQFMo4pL6mUnofhYESfxsHYHrgtLKyyjolloFa5hDPyrgfUUNSjEbudfRJQjYLbVSuhsY2aJgTHcQM173vDl9dVy-X6pUypCQeAOqRuRdvouWHYnSzVHF7_ucByGm2mpc2oXKaa_gHatzUivqsm9RBt6ayF9taYA1tox4qXT5ZH6P2xhrSAk3GeYsCJg1wShme9mZ5iPgOgeVbgBQhY4-qByA1eu72G37L829gCZhR_lLoRuNTJWRyjUb_39jAgVjiBSLNlC5Iq4WheUtdJFjDhhpwpzxfKkamKHKniSJnMZSo9zT1tKgjTJkgnlsrUUgIY3E9QI8szfYow17HrU5pGPDW1ixPGIpKK-yrQqXKUoG1Ear8l0rKKg7jFNDHdBfg5Kf2cgJ8T4-c2ul7Zzyo-jT8tO_U0JHZfLZLfVXD2_-dztAsDVWiwDmoU8y99YcqHQlzaNfIDBRrGsQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCqWAj6AOFlkcbMgIcRSVKBUCLVSb6ljO-IAaaEF1J_iG5nJUuAAN85xLGU8nhnHb94D2FNuGIfK2NwI1-OY8RMupRtyJZKwpoJAyIxK6bblNTriulvrTsFH2QtDsMoyJmaBWvcV_SM_dIgaSjjCD08Gz5xUo-h2tZTQyN3ixozf8cg2PL66wPXdd5zLevu8wQtVAa7Qn0c80bFlZMbrpsJaGNueDLXjxtpSifYtpQNfY1jHMshIx2B6xRpaWYHSWGjERG-O807DDH6a5VRg5qzeurufHPFsN5NFxfBDKEdh5zSRju15hw9j_ULdhjaxqvo_0-DPLJCltstFWChqUnaaO9ESTJl0Gea_MRUuw2whlv4wXoHeRQmhoUVl_YQRLp3kmRi1EafmkckBAdvTERuSYDbLG1KO2Lfbcnot7b_hWMKosqdMp4JlujzDVej8i0nXoJL2U7MOTJrAdoVIfJlgrWR5QewrLV1dM4m2dCw2gJd2i1TBYk5iGo8RnmbIzlFm54jsHKGdN-BgMn6Q83f8OrJaLkNU7ONh9OV1m38_3oXZRvu2GTWvWjdbMEeT5ki0KlRGL69mG0uXUbxT-AuD3n-76CdeiwM7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3HTsNAEB1BkCgHRBWdPYA4reKycUFCCAgRNUIIJG5mvUU5gBNIAOXX-DpmXCgHuHH2eg-z4yneN-8BbCk_TmNlXG6EH3DM-JZL6cdcCRs3VBQJmVMpXbaDk1txdte4G4H3ahaGYJVVTMwDte4q-kde94gaSngijOu2hEVcNVv7vSdOClJ001rJaRQucm6Gb9i-9fdOm3jW257XOr45OuGlwgBX6NsDbnXqGJlzvKm4EaduIGPt-al2lNWho3QUagzxWBIZ6RlMtVhPKydSGouOlKjOcd9RGAupK6rB2OFx--r6s91z_VwiFUMRIR6FW1BGem4Q1DtD_UyThy4xrIY_U-LPjJCnudYMTJf1KTsoHGoWRkw2B1PfWAvnYKIUTu8M5-G-WcFp6IBZ1zLCqJNUE6OR4sw8MNkjkHs2YH0Sz2bFcMou-3ZzTq9l3VdcS3hV9phrVrBco6e_ALf_YtJFqGXdzCwBkyZyfSFsKC3WTU4QpaHS0tcNY7WjU7EMvLJbokpGcxLWeEiwsyE7J7mdE7JzgnZehp3P9b2Cy-PXlWvVMSTlN91Pvjxw5e_HmzCOrplcnLbPV2GS9ixAaWtQGzy_mHWsYgbpRukuDO7_20M_ABT2B3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+compound+channel+apparent+shear+stress%3A+application+of+novel+data+mining+models&rft.jtitle=Journal+of+hydroinformatics&rft.au=Khozani%2C+Zohreh+Sheikh&rft.au=Khosravi%2C+Khabat&rft.au=Pham%2C+Binh+Thai&rft.au=Kl%C3%B8ve%2C+Bj%C3%B8rn&rft.date=2019-09-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=21&rft.issue=5&rft.spage=798&rft.epage=811&rft_id=info:doi/10.2166%2Fhydro.2019.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2019_037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |