Determination of compound channel apparent shear stress: application of novel data mining models

Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of discharge. The current study investigated various data mining models to estimate apparent shear stress in a symmetric compound channel with smooth...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 21; no. 5; pp. 798 - 811
Main Authors Khozani, Zohreh Sheikh, Khosravi, Khabat, Pham, Binh Thai, Kløve, Bjørn, Wan Mohtar, Wan Hanna Melini, Yaseen, Zaher Mundher
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of discharge. The current study investigated various data mining models to estimate apparent shear stress in a symmetric compound channel with smooth and rough floodplains. The applied predictive models include random forest (RF), random tree (RT), reduced error pruning tree (REPT), M5P, and the distinguished hybrid bagging-M5P model. The models are constructed based on several correlated physical channel characteristic variables to predict the apparent shear stress. A sensitivity analysis is applied to select the best function tuning parameters for each model. Results showed that input with six variables exhibited the best prediction results for RF model while input with four variables produced the best performance for other models. Based on the optimised input variables for each model, the efficiency of five predictive models discussed here was evaluated. It was found that the M5P and hybrid bagging-M5P models with the coefficient of determination (R2) equal to 0.905 and 0.92, respectively, in the testing stage are superior in estimating apparent shear stress in compound channels than other RF, RT and REPT models.
AbstractList Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of discharge. The current study investigated various data mining models to estimate apparent shear stress in a symmetric compound channel with smooth and rough floodplains. The applied predictive models include random forest (RF), random tree (RT), reduced error pruning tree (REPT), M5P, and the distinguished hybrid bagging-M5P model. The models are constructed based on several correlated physical channel characteristic variables to predict the apparent shear stress. A sensitivity analysis is applied to select the best function tuning parameters for each model. Results showed that input with six variables exhibited the best prediction results for RF model while input with four variables produced the best performance for other models. Based on the optimised input variables for each model, the efficiency of five predictive models discussed here was evaluated. It was found that the M5P and hybrid bagging-M5P models with the coefficient of determination (R2) equal to 0.905 and 0.92, respectively, in the testing stage are superior in estimating apparent shear stress in compound channels than other RF, RT and REPT models.
Author Yaseen, Zaher Mundher
Pham, Binh Thai
Wan Mohtar, Wan Hanna Melini
Khosravi, Khabat
Kløve, Bjørn
Khozani, Zohreh Sheikh
Author_xml – sequence: 1
  givenname: Zohreh Sheikh
  surname: Khozani
  fullname: Khozani, Zohreh Sheikh
  organization: Smart and Sustainable Township Research Center, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
– sequence: 2
  givenname: Khabat
  surname: Khosravi
  fullname: Khosravi, Khabat
  organization: Department of Watershed Management Engineering, Faculty of Natural Resources, Sari Agricultural Science and Natural Resources University, Sari, Iran
– sequence: 3
  givenname: Binh Thai
  surname: Pham
  fullname: Pham, Binh Thai
  organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
– sequence: 4
  givenname: Bjørn
  surname: Kløve
  fullname: Kløve, Bjørn
  organization: Water, Energy and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, Finland
– sequence: 5
  givenname: Wan Hanna Melini
  surname: Wan Mohtar
  fullname: Wan Mohtar, Wan Hanna Melini
  organization: Smart and Sustainable Township Research Center, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
– sequence: 6
  givenname: Zaher Mundher
  surname: Yaseen
  fullname: Yaseen, Zaher Mundher
  organization: Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
BookMark eNp1kD1PwzAQhi1UJNrCymyJOeH80ThhQ-VTqsQCs3Fsh6ZK7GC7SP33pC1iQGK60-l97nTPDE2cdxahSwI5JUVxvd6Z4HMKpMqBiRM0JbxYZEQwPjn0PBOEkzM0i3EDQAkryRS939lkQ986lVrvsG-w9v3gt85gvVbO2Q6rYVDBuoTj2qqAYwo2xpv9uGv1L-b815g1Kik8bmvdB-69sV08R6eN6qK9-Klz9PZw_7p8ylYvj8_L21WmGYiUNaYGq0hZCKKrRVWTQlWGstqAbowAbUphgBULxqyilhEBvNJQalMQqDkt2BxdHfcOwX9ubUxy47fBjSclZQCcUy6qMZUfUzr4GINt5BDaXoWdJCD3FuXBotxblKPFEeB_AN2mw9MpqLb7D_sGQJh7Bw
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3221430
crossref_primary_10_1016_j_jhydrol_2021_126100
crossref_primary_10_1007_s00704_020_03263_8
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_2166_hydro_2024_047
crossref_primary_10_1007_s00366_020_01003_0
crossref_primary_10_1016_j_compag_2019_105041
crossref_primary_10_1371_journal_pone_0229731
crossref_primary_10_3390_fluids7010020
crossref_primary_10_1016_j_engappai_2024_108158
crossref_primary_10_1016_j_scitotenv_2020_137612
crossref_primary_10_1016_j_jclepro_2022_135522
crossref_primary_10_1016_j_jher_2021_07_003
crossref_primary_10_3390_rs12020266
crossref_primary_10_1007_s11269_024_03760_9
crossref_primary_10_1007_s12145_022_00830_7
crossref_primary_10_1016_j_powtec_2019_11_046
crossref_primary_10_1007_s12665_022_10216_z
crossref_primary_10_1016_j_engappai_2020_104012
crossref_primary_10_2166_ws_2021_168
crossref_primary_10_1007_s11069_023_06060_4
crossref_primary_10_1016_j_jwpe_2025_107251
crossref_primary_10_3390_app9183841
crossref_primary_10_5194_hess_29_535_2025
crossref_primary_10_3390_app9245458
crossref_primary_10_1016_j_fuel_2023_128623
crossref_primary_10_3390_agronomy13030716
crossref_primary_10_1016_j_jhydrol_2020_124774
crossref_primary_10_1038_s41598_022_09482_5
crossref_primary_10_1016_j_engappai_2023_107277
crossref_primary_10_46604_aiti_2021_5307
crossref_primary_10_1016_j_flowmeasinst_2021_102079
crossref_primary_10_1016_j_jhydrol_2020_125423
crossref_primary_10_3390_w12102951
crossref_primary_10_1016_j_scitotenv_2020_136836
crossref_primary_10_3390_e21111046
crossref_primary_10_1016_j_asej_2021_02_034
crossref_primary_10_1080_19942060_2021_2002721
crossref_primary_10_1016_j_ijmst_2021_08_005
crossref_primary_10_1080_00207543_2023_2166139
crossref_primary_10_1016_j_scitotenv_2021_149811
crossref_primary_10_1007_s13201_019_1056_z
crossref_primary_10_1016_j_pedsph_2022_06_009
crossref_primary_10_1155_2022_1518202
crossref_primary_10_1016_j_mineng_2021_106790
crossref_primary_10_1080_02626667_2020_1754419
crossref_primary_10_1016_j_chemosphere_2019_125450
crossref_primary_10_1016_j_eswa_2023_120885
crossref_primary_10_1016_j_oceaneng_2021_109721
crossref_primary_10_1016_j_envsoft_2021_105165
crossref_primary_10_1007_s00521_022_07112_9
crossref_primary_10_1007_s11053_021_09922_5
crossref_primary_10_1007_s40996_022_00904_y
crossref_primary_10_1007_s00704_022_04037_0
crossref_primary_10_1038_s41598_022_22763_3
crossref_primary_10_1007_s10661_021_09586_x
crossref_primary_10_2166_hydro_2022_002
crossref_primary_10_1007_s11709_020_0634_3
crossref_primary_10_1016_j_ecoenv_2020_111059
crossref_primary_10_1007_s10462_024_10707_4
crossref_primary_10_2174_1874836801913010178
crossref_primary_10_1080_10106049_2022_2122590
crossref_primary_10_1155_2020_8844367
crossref_primary_10_1007_s11356_024_33027_0
crossref_primary_10_1016_j_jclepro_2022_130900
crossref_primary_10_3390_ijgi9080479
crossref_primary_10_1007_s00366_021_01398_4
crossref_primary_10_3390_app9214715
Cites_doi 10.1007/s10021-005-0054-1
10.1007/BF00058655
10.1016/j.asoc.2017.05.024
10.1061/(ASCE)0733-9429(1999)125:7(696)
10.2166/hydro.2015.097
10.1016/j.flowmeasinst.2013.04.013
10.1061/(ASCE)0733-9429(1983)109:8(1073)
10.1603/0022-2585-39.3.485
10.1061/(ASCE)0733-9429(1984)110:10(1412)
10.1016/j.jhydrol.2016.09.035
10.1023/A:1010933404324
10.1002/hyp.6837
10.1061/(ASCE)1084-0699(2004)9:6(491)
10.1016/S0377-2217(03)00186-3
10.1080/1573062X.2017.1325495
10.1080/01431160500256531
10.1016/j.geoderma.2018.05.030
10.1016/j.jag.2012.03.012
10.1080/00221688109499530
10.1016/j.flowmeasinst.2015.04.010
10.1016/j.flowmeasinst.2017.08.005
10.1016/j.amc.2018.06.016
10.1016/j.ijsrc.2017.04.004
10.1016/j.wse.2018.07.001
10.1016/j.agwat.2018.06.018
10.1080/09715010.2010.10515011
10.13031/2013.23153
10.1007/BF00872358
10.2166/hydro.2012.119
10.1080/00221687809499626
10.1016/j.jhydrol.2018.10.015
10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO;2-W
10.1007/s10955-008-9589-9
10.9790/0661-1268386
10.1680/iicep.1982.1625
10.2166/hydro.2012.193
10.1016/j.flowmeasinst.2016.06.020
10.1613/jair.816
10.1016/0309-1708(84)90016-2
10.5194/hess-22-4771-2018
10.1080/00221681003704137
10.1016/j.measurement.2016.03.018
10.1080/00221689009499084
10.1080/09645290701409939
10.1029/1998WR900018
10.1061/JYCEAJ.0005904
ContentType Journal Article
Copyright Copyright IWA Publishing Sep 2019
Copyright_xml – notice: Copyright IWA Publishing Sep 2019
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOI 10.2166/hydro.2019.037
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1465-1734
EndPage 811
ExternalDocumentID 10_2166_hydro_2019_037
GeographicLocations United States--US
India
GeographicLocations_xml – name: United States--US
– name: India
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYOK
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
EJD
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c307t-fdb0ea18671c959b16a9d23bd0cfd70cd87d036533ea2e317049c08cd610b4263
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Sat Jul 26 00:09:18 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Tue Jul 01 04:10:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-fdb0ea18671c959b16a9d23bd0cfd70cd87d036533ea2e317049c08cd610b4263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/21/5/798/602624/jh0210798.pdf
PQID 2300442479
PQPubID 2044529
PageCount 14
ParticipantIDs proquest_journals_2300442479
crossref_primary_10_2166_hydro_2019_037
crossref_citationtrail_10_2166_hydro_2019_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2019
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2020032614300702000_HYDRO-D-19-00037C6) 1999; 125
(2020032614300702000_HYDRO-D-19-00037C13) 2004; 154
(2020032614300702000_HYDRO-D-19-00037C45) 1992
(2020032614300702000_HYDRO-D-19-00037C34) 2011; 95
(2020032614300702000_HYDRO-D-19-00037C56) 2004; 9
(2020032614300702000_HYDRO-D-19-00037C30) 1983; 109
(2020032614300702000_HYDRO-D-19-00037C66) 2014
(2020032614300702000_HYDRO-D-19-00037C33) 2002; 2
(2020032614300702000_HYDRO-D-19-00037C5) 2018; 338
(2020032614300702000_HYDRO-D-19-00037C22) 2013; 15
(2020032614300702000_HYDRO-D-19-00037C67) 2015; 25
(2020032614300702000_HYDRO-D-19-00037C58) 2018; 208
(2020032614300702000_HYDRO-D-19-00037C62) 2011
(2020032614300702000_HYDRO-D-19-00037C23) 2012; 15
(2020032614300702000_HYDRO-D-19-00037C9) 2019; 21
(2020032614300702000_HYDRO-D-19-00037C68) 2016; 542
(2020032614300702000_HYDRO-D-19-00037C44) 1984; 7
(2020032614300702000_HYDRO-D-19-00037C46) 1981; 19
(2020032614300702000_HYDRO-D-19-00037C70) 2016; 87
(2020032614300702000_HYDRO-D-19-00037C4) 2009; 1
(2020032614300702000_HYDRO-D-19-00037C2) 2013; 33
(2020032614300702000_HYDRO-D-19-00037C10) 2013; 1
(2020032614300702000_HYDRO-D-19-00037C48) 2018; 330
(2020032614300702000_HYDRO-D-19-00037C8) 2001; 45
(2020032614300702000_HYDRO-D-19-00037C57) 2017; 57
(2020032614300702000_HYDRO-D-19-00037C65) 2013
(2020032614300702000_HYDRO-D-19-00037C31) 1984; 110
(2020032614300702000_HYDRO-D-19-00037C50) 2019
(2020032614300702000_HYDRO-D-19-00037C17) 2001; 15
(2020032614300702000_HYDRO-D-19-00037C21) 2007; 2
(2020032614300702000_HYDRO-D-19-00037C63) 1990; 28
(2020032614300702000_HYDRO-D-19-00037C14) 2008; 133
(2020032614300702000_HYDRO-D-19-00037C7) 1996; 24
(2020032614300702000_HYDRO-D-19-00037C47) 2002; 39
(2020032614300702000_HYDRO-D-19-00037C42) 2013; 12
(2020032614300702000_HYDRO-D-19-00037C54) 2017; 14
(2020032614300702000_HYDRO-D-19-00037C20) 2015; 45
(2020032614300702000_HYDRO-D-19-00037C40) 2004; 28
(2020032614300702000_HYDRO-D-19-00037C52) 2017; 32
(2020032614300702000_HYDRO-D-19-00037C27) 2018; 22
(2020032614300702000_HYDRO-D-19-00037C37) 2007; 50
(2020032614300702000_HYDRO-D-19-00037C24) 2013; 15
(2020032614300702000_HYDRO-D-19-00037C3) 1984
(2020032614300702000_HYDRO-D-19-00037C15) 2016; 50
(2020032614300702000_HYDRO-D-19-00037C64) 1982; 108
(2020032614300702000_HYDRO-D-19-00037C25) 2010; 16
(2020032614300702000_HYDRO-D-19-00037C49) 1964; 7
(2020032614300702000_HYDRO-D-19-00037C53) 2017; 58
(2020032614300702000_HYDRO-D-19-00037C29) 2012; 428–429
(2020032614300702000_HYDRO-D-19-00037C26) 2018; 567
(2020032614300702000_HYDRO-D-19-00037C35) 2012
(2020032614300702000_HYDRO-D-19-00037C11) 2015; 17
(2020032614300702000_HYDRO-D-19-00037C19) 2016; 128
(2020032614300702000_HYDRO-D-19-00037C18) 1982; 73
(2020032614300702000_HYDRO-D-19-00037C28) 2008; 22
(2020032614300702000_HYDRO-D-19-00037C43) 2006; 9
(2020032614300702000_HYDRO-D-19-00037C39) 1978; 16
(2020032614300702000_HYDRO-D-19-00037C36) 2010; 48
(2020032614300702000_HYDRO-D-19-00037C16) 1997; 10
(2020032614300702000_HYDRO-D-19-00037C61) 2005
(2020032614300702000_HYDRO-D-19-00037C60) 2007; 15
(2020032614300702000_HYDRO-D-19-00037C12) 1992; 6
(2020032614300702000_HYDRO-D-19-00037C59) 2019
(2020032614300702000_HYDRO-D-19-00037C51) 2015; 73
(2020032614300702000_HYDRO-D-19-00037C38) 2012; 18
(2020032614300702000_HYDRO-D-19-00037C1) 2018
(2020032614300702000_HYDRO-D-19-00037C41) 2006; 27
(2020032614300702000_HYDRO-D-19-00037C32) 1999; 35
(2020032614300702000_HYDRO-D-19-00037C55) 2018; 11
References_xml – volume: 95
  start-page: 855
  year: 2011
  ident: 2020032614300702000_HYDRO-D-19-00037C34
  article-title: Suspended sediment load prediction of river systems: an artificial neural network approach
  publication-title: Agricultural Water Management
– volume: 9
  start-page: 181
  year: 2006
  ident: 2020032614300702000_HYDRO-D-19-00037C43
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– volume: 24
  start-page: 123
  year: 1996
  ident: 2020032614300702000_HYDRO-D-19-00037C7
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 58
  start-page: 441
  year: 2017
  ident: 2020032614300702000_HYDRO-D-19-00037C53
  article-title: Estimating the shear stress distribution in circular channels based on the randomized neural network technique
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.024
– volume: 125
  start-page: 696
  year: 1999
  ident: 2020032614300702000_HYDRO-D-19-00037C6
  article-title: Momentum transfer for practical flow computation in compound channels
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(1999)125:7(696)
– volume: 1
  start-page: 208
  year: 2013
  ident: 2020032614300702000_HYDRO-D-19-00037C10
  article-title: Early prediction of heart diseases using data mining techniques
  publication-title: Carribean Journal of Science and Technology
– volume: 2
  start-page: 58
  year: 2007
  ident: 2020032614300702000_HYDRO-D-19-00037C21
  article-title: Rapid-exploring random tree algorithm for path planning of robot based on grid method
  publication-title: Journal of Nanjing Normal University (Engineering and Technology Edition)
– volume: 17
  start-page: 977
  year: 2015
  ident: 2020032614300702000_HYDRO-D-19-00037C11
  article-title: Improving predictions made by ANN model using data quality assessment: an application to local scour around bridge piers
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2015.097
– volume: 33
  start-page: 77
  year: 2013
  ident: 2020032614300702000_HYDRO-D-19-00037C2
  article-title: Development of empirical regression-based models for predicting mean velocities in asymmetric compound channels
  publication-title: Flow Measurement and Instrumentation
  doi: 10.1016/j.flowmeasinst.2013.04.013
– volume: 109
  start-page: 1073
  year: 1983
  ident: 2020032614300702000_HYDRO-D-19-00037C30
  article-title: Flood plain and main channel flow interaction
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(1983)109:8(1073)
– volume: 39
  start-page: 485
  year: 2002
  ident: 2020032614300702000_HYDRO-D-19-00037C47
  article-title: Geographical information systems and bootstrap aggregation (bagging) of tree-based classifiers for Lyme disease risk prediction in Trentino, Italian Alps
  publication-title: Journal of Medical Entomology
  doi: 10.1603/0022-2585-39.3.485
– volume: 110
  start-page: 1412
  year: 1984
  ident: 2020032614300702000_HYDRO-D-19-00037C31
  article-title: Boundary shear in symmetrical compound channels
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(1984)110:10(1412)
– volume: 542
  start-page: 603
  year: 2016
  ident: 2020032614300702000_HYDRO-D-19-00037C68
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2016.09.035
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques, Annals of Physics
  year: 2011
  ident: 2020032614300702000_HYDRO-D-19-00037C62
– volume: 45
  start-page: 5
  year: 2001
  ident: 2020032614300702000_HYDRO-D-19-00037C8
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 22
  start-page: 2449
  year: 2008
  ident: 2020032614300702000_HYDRO-D-19-00037C28
  article-title: The potential of different ANN techniques in evapotranspiration modelling
  publication-title: Hydrological Processes
  doi: 10.1002/hyp.6837
– volume: 9
  start-page: 491
  year: 2004
  ident: 2020032614300702000_HYDRO-D-19-00037C56
  article-title: M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)1084-0699(2004)9:6(491)
– volume: 154
  start-page: 526
  year: 2004
  ident: 2020032614300702000_HYDRO-D-19-00037C13
  article-title: Bankruptcy prediction using a data envelopment analysis
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(03)00186-3
– volume-title: Nature-Inspired Optimization Algorithms
  year: 2014
  ident: 2020032614300702000_HYDRO-D-19-00037C66
– volume: 14
  start-page: 999
  year: 2017
  ident: 2020032614300702000_HYDRO-D-19-00037C54
  article-title: Efficient shear stress distribution detection in circular channels using Extreme Learning Machines and the M5 model tree algorithm
  publication-title: Urban Water Journal
  doi: 10.1080/1573062X.2017.1325495
– volume: 27
  start-page: 825
  year: 2006
  ident: 2020032614300702000_HYDRO-D-19-00037C41
  article-title: M5 model tree for land cover classification
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160500256531
– volume: 128
  start-page: 875
  year: 2016
  ident: 2020032614300702000_HYDRO-D-19-00037C19
  article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review
  publication-title: Theoretical and Applied Climatology
– volume: 330
  start-page: 52
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C48
  article-title: Non-tuned data intelligent model for soil temperature estimation: a new approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.030
– volume: 21
  year: 2019
  ident: 2020032614300702000_HYDRO-D-19-00037C9
  article-title: Review and comparison of performance indices for automatic model induction
  publication-title: Journal of Hydroinformatics
– volume: 15
  start-page: 147
  year: 2012
  ident: 2020032614300702000_HYDRO-D-19-00037C23
  article-title: An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel
  publication-title: Journal of Hydroinformatics
– volume: 18
  start-page: 399
  year: 2012
  ident: 2020032614300702000_HYDRO-D-19-00037C38
  article-title: High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2012.03.012
– volume: 19
  start-page: 43
  year: 1981
  ident: 2020032614300702000_HYDRO-D-19-00037C46
  article-title: Hydraulics of channels with flood-plains
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221688109499530
– volume: 45
  start-page: 62
  year: 2015
  ident: 2020032614300702000_HYDRO-D-19-00037C20
  article-title: Assessment of stage-discharge predictors for compound open-channels
  publication-title: Flow Measurement and Instrumentation
  doi: 10.1016/j.flowmeasinst.2015.04.010
– volume: 428–429
  start-page: 94
  year: 2012
  ident: 2020032614300702000_HYDRO-D-19-00037C29
  article-title: Modelling discharge-sediment relationship using neural networks with artificial bee colony algorithm
  publication-title: Journal of Hydrology
– volume: 57
  start-page: 57
  year: 2017
  ident: 2020032614300702000_HYDRO-D-19-00037C57
  article-title: An improved method for predicting discharge of homogeneous compound channels based on energy concept
  publication-title: Flow Measurement and Instrumentation
  doi: 10.1016/j.flowmeasinst.2017.08.005
– volume: 338
  start-page: 400
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C5
  article-title: Evaluating the apparent shear stress in prismatic compound channels using the genetic algorithm based on multi-layer perceptron: a comparative study
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2018.06.016
– volume: 32
  start-page: 575
  year: 2017
  ident: 2020032614300702000_HYDRO-D-19-00037C52
  article-title: An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming
  publication-title: International Journal of Sediment Research
  doi: 10.1016/j.ijsrc.2017.04.004
– volume: 11
  start-page: 167
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C55
  article-title: An expert system for predicting shear stress distribution in circular open channels using gene expression programming
  publication-title: Water Science and Engineering
  doi: 10.1016/j.wse.2018.07.001
– volume: 208
  start-page: 140
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C58
  article-title: Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in Burkina Faso
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2018.06.018
– volume: 16
  start-page: 1
  year: 2010
  ident: 2020032614300702000_HYDRO-D-19-00037C25
  article-title: Apparent shear stress in a compound channel
  publication-title: ISH Journal of Hydraulic Engineering
  doi: 10.1080/09715010.2010.10515011
– volume: 50
  start-page: 885
  year: 2007
  ident: 2020032614300702000_HYDRO-D-19-00037C37
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.23153
– start-page: 392
  year: 2012
  ident: 2020032614300702000_HYDRO-D-19-00037C35
  article-title: A comparative study of reduced error pruning method in decision tree algorithms
– volume: 6
  start-page: 235
  year: 1992
  ident: 2020032614300702000_HYDRO-D-19-00037C12
  article-title: Apparent shear stress in smooth compound channels
  publication-title: Water Resources Management
  doi: 10.1007/BF00872358
– volume: 15
  start-page: 540
  year: 2013
  ident: 2020032614300702000_HYDRO-D-19-00037C22
  article-title: Artificial neural network (ANN) modeling of dynamic effects on two-phase flow in homogenous porous media
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2012.119
– volume: 16
  start-page: 139
  year: 1978
  ident: 2020032614300702000_HYDRO-D-19-00037C39
  article-title: Momentum transfer in a compound channel
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221687809499626
– year: 2019
  ident: 2020032614300702000_HYDRO-D-19-00037C50
  article-title: The potential of novel data mining models for global solar radiation prediction
  publication-title: International Journal of Environmental Science and Technology
– volume: 567
  start-page: 165
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C26
  article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.10.015
– volume: 28
  start-page: 101
  year: 2004
  ident: 2020032614300702000_HYDRO-D-19-00037C40
  article-title: Comparison of methods for predicting discharge in straight compound channels using the apparent shear stress concept
  publication-title: Turkish Journal of Engineering and Environmental Sciences
– volume: 1
  start-page: 3
  year: 2009
  ident: 2020032614300702000_HYDRO-D-19-00037C4
  article-title: The state of educational data mining in 2009: a review and future visions
  publication-title: Journal of Educational Data Mining
– volume: 10
  start-page: 421
  year: 1997
  ident: 2020032614300702000_HYDRO-D-19-00037C16
  article-title: On the profile of random trees
  publication-title: Random Structures and Algorithms
  doi: 10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO;2-W
– volume: 133
  start-page: 151
  year: 2008
  ident: 2020032614300702000_HYDRO-D-19-00037C14
  article-title: Parking on a random tree
  publication-title: Journal of Statistical Physics
  doi: 10.1007/s10955-008-9589-9
– start-page: 561
  year: 1984
  ident: 2020032614300702000_HYDRO-D-19-00037C3
  article-title: Resistance to flow in channels with overbank flood-plain flow
– volume: 12
  start-page: 83
  year: 2013
  ident: 2020032614300702000_HYDRO-D-19-00037C42
  article-title: A heart disease prediction model using decision tree
  publication-title: IOSR Journal of Computer Engineering (IOSR-JCE)
  doi: 10.9790/0661-1268386
– volume: 73
  start-page: 849
  year: 1982
  ident: 2020032614300702000_HYDRO-D-19-00037C18
  article-title: Rating curves for rivers with overbank flow
  publication-title: Proceedings of the Institution of Civil Engineers
  doi: 10.1680/iicep.1982.1625
– volume: 7
  start-page: 793
  year: 1964
  ident: 2020032614300702000_HYDRO-D-19-00037C49
  article-title: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain
  publication-title: La Houille Blanche
– volume: 15
  start-page: 138
  year: 2013
  ident: 2020032614300702000_HYDRO-D-19-00037C24
  article-title: Predicting apparent shear stress in prismatic compound open channels using artificial neural networks
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2012.193
– volume: 73
  year: 2015
  ident: 2020032614300702000_HYDRO-D-19-00037C51
  article-title: Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogenous roughness
  publication-title: Water Science and Technology
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2005
  ident: 2020032614300702000_HYDRO-D-19-00037C61
– year: 2019
  ident: 2020032614300702000_HYDRO-D-19-00037C59
  article-title: Hydraulic head uncertainty estimations of a complex artificial intelligence model using multiple methodologies
  publication-title: Journal of Hydroinformatics
– volume: 50
  start-page: 147
  year: 2016
  ident: 2020032614300702000_HYDRO-D-19-00037C15
  article-title: Prediction of depth averaged velocity and boundary shear distribution of a compound channel based on the mixing layer theory
  publication-title: Flow Measurement and Instrumentation
  doi: 10.1016/j.flowmeasinst.2016.06.020
– volume: 15
  start-page: 163
  year: 2001
  ident: 2020032614300702000_HYDRO-D-19-00037C17
  article-title: An analysis of reduced error pruning
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.816
– volume: 7
  start-page: 180
  year: 1984
  ident: 2020032614300702000_HYDRO-D-19-00037C44
  article-title: Comparison of methods for predicting discharge in compound open channels
  publication-title: Advances in Water Resources
  doi: 10.1016/0309-1708(84)90016-2
– volume: 22
  start-page: 4771
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C27
  article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-22-4771-2018
– volume: 48
  start-page: 169
  year: 2010
  ident: 2020032614300702000_HYDRO-D-19-00037C36
  article-title: Apparent friction coefficient in straight compound channels
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221681003704137
– volume: 87
  start-page: 87
  year: 2016
  ident: 2020032614300702000_HYDRO-D-19-00037C70
  article-title: Application of a genetic algorithm in predicting the percentage of shear force carried by walls in smooth rectangular channels
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.03.018
– start-page: 405
  volume-title: Artificial Intelligence, Evolutionary Computing and Metaheuristics
  year: 2013
  ident: 2020032614300702000_HYDRO-D-19-00037C65
  article-title: Metaheuristic optimization: Nature-inspired algorithms and applications
– volume: 2
  start-page: 18
  year: 2002
  ident: 2020032614300702000_HYDRO-D-19-00037C33
  article-title: Classification and regression by random Forest
  publication-title: R News
– volume: 28
  start-page: 157
  year: 1990
  ident: 2020032614300702000_HYDRO-D-19-00037C63
  article-title: An improved method of calculation for steady uniform flow in prismatic main channel/flood plain sections
  publication-title: Journal of Hydraulic Research
  doi: 10.1080/00221689009499084
– volume: 15
  start-page: 405
  year: 2007
  ident: 2020032614300702000_HYDRO-D-19-00037C60
  article-title: Predicting academic performance by data mining methods
  publication-title: Education Economics
  doi: 10.1080/09645290701409939
– volume: 35
  start-page: 233
  year: 1999
  ident: 2020032614300702000_HYDRO-D-19-00037C32
  article-title: Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resources Research
  doi: 10.1029/1998WR900018
– start-page: 1131
  year: 2018
  ident: 2020032614300702000_HYDRO-D-19-00037C1
  article-title: Nature inspired algorithm
– start-page: 343
  year: 1992
  ident: 2020032614300702000_HYDRO-D-19-00037C45
  article-title: Learning with continuous classes
– volume: 25
  start-page: 1533
  year: 2015
  ident: 2020032614300702000_HYDRO-D-19-00037C67
  article-title: RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia
  publication-title: Neural Computing and Applications
– volume: 108
  start-page: 975
  year: 1982
  ident: 2020032614300702000_HYDRO-D-19-00037C64
  article-title: Discharge assessment in compound channel flow
  publication-title: Journal of the Hydraulics Division
  doi: 10.1061/JYCEAJ.0005904
SSID ssj0021381
Score 2.4301324
Snippet Momentum exchange in the mixing region between the floodplain and the main channel is an essential hydraulic process, particularly for the estimation of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 798
SubjectTerms Accuracy
Algorithms
Bagging
Compound channels
Data analysis
Data mining
Decision trees
Engineering
Environmental protection
Error reduction
Flood predictions
Floodplains
Gene expression
Geometry
Hydrology
Momentum
Neural networks
Optimization
Parameter sensitivity
Prediction models
Pruning
R&D
Rain
Research & development
Researchers
Sensitivity analysis
Shear stress
Stormwater management
Studies
Time series
Watershed management
Title Determination of compound channel apparent shear stress: application of novel data mining models
URI https://www.proquest.com/docview/2300442479
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLagHYABQQFRKMgDEpPVHM5hFsTRqkKiQohK3YKvqENJShuQ-u_xS5zSDjDnxcOz_Q778_chdCV9JpjULtHUD4nJ-Cnh3GdE0pQFMo4pL6mUnofhYESfxsHYHrgtLKyyjolloFa5hDPyrgfUUNSjEbudfRJQjYLbVSuhsY2aJgTHcQM173vDl9dVy-X6pUypCQeAOqRuRdvouWHYnSzVHF7_ucByGm2mpc2oXKaa_gHatzUivqsm9RBt6ayF9taYA1tox4qXT5ZH6P2xhrSAk3GeYsCJg1wShme9mZ5iPgOgeVbgBQhY4-qByA1eu72G37L829gCZhR_lLoRuNTJWRyjUb_39jAgVjiBSLNlC5Iq4WheUtdJFjDhhpwpzxfKkamKHKniSJnMZSo9zT1tKgjTJkgnlsrUUgIY3E9QI8szfYow17HrU5pGPDW1ixPGIpKK-yrQqXKUoG1Ear8l0rKKg7jFNDHdBfg5Kf2cgJ8T4-c2ul7Zzyo-jT8tO_U0JHZfLZLfVXD2_-dztAsDVWiwDmoU8y99YcqHQlzaNfIDBRrGsQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOQAHxCqWAj6AOFlkcbMgIcRSVKBUCLVSb6ljO-IAaaEF1J_iG5nJUuAAN85xLGU8nhnHb94D2FNuGIfK2NwI1-OY8RMupRtyJZKwpoJAyIxK6bblNTriulvrTsFH2QtDsMoyJmaBWvcV_SM_dIgaSjjCD08Gz5xUo-h2tZTQyN3ixozf8cg2PL66wPXdd5zLevu8wQtVAa7Qn0c80bFlZMbrpsJaGNueDLXjxtpSifYtpQNfY1jHMshIx2B6xRpaWYHSWGjERG-O807DDH6a5VRg5qzeurufHPFsN5NFxfBDKEdh5zSRju15hw9j_ULdhjaxqvo_0-DPLJCltstFWChqUnaaO9ESTJl0Gea_MRUuw2whlv4wXoHeRQmhoUVl_YQRLp3kmRi1EafmkckBAdvTERuSYDbLG1KO2Lfbcnot7b_hWMKosqdMp4JlujzDVej8i0nXoJL2U7MOTJrAdoVIfJlgrWR5QewrLV1dM4m2dCw2gJd2i1TBYk5iGo8RnmbIzlFm54jsHKGdN-BgMn6Q83f8OrJaLkNU7ONh9OV1m38_3oXZRvu2GTWvWjdbMEeT5ki0KlRGL69mG0uXUbxT-AuD3n-76CdeiwM7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3HTsNAEB1BkCgHRBWdPYA4reKycUFCCAgRNUIIJG5mvUU5gBNIAOXX-DpmXCgHuHH2eg-z4yneN-8BbCk_TmNlXG6EH3DM-JZL6cdcCRs3VBQJmVMpXbaDk1txdte4G4H3ahaGYJVVTMwDte4q-kde94gaSngijOu2hEVcNVv7vSdOClJ001rJaRQucm6Gb9i-9fdOm3jW257XOr45OuGlwgBX6NsDbnXqGJlzvKm4EaduIGPt-al2lNWho3QUagzxWBIZ6RlMtVhPKydSGouOlKjOcd9RGAupK6rB2OFx--r6s91z_VwiFUMRIR6FW1BGem4Q1DtD_UyThy4xrIY_U-LPjJCnudYMTJf1KTsoHGoWRkw2B1PfWAvnYKIUTu8M5-G-WcFp6IBZ1zLCqJNUE6OR4sw8MNkjkHs2YH0Sz2bFcMou-3ZzTq9l3VdcS3hV9phrVrBco6e_ALf_YtJFqGXdzCwBkyZyfSFsKC3WTU4QpaHS0tcNY7WjU7EMvLJbokpGcxLWeEiwsyE7J7mdE7JzgnZehp3P9b2Cy-PXlWvVMSTlN91Pvjxw5e_HmzCOrplcnLbPV2GS9ixAaWtQGzy_mHWsYgbpRukuDO7_20M_ABT2B3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+compound+channel+apparent+shear+stress%3A+application+of+novel+data+mining+models&rft.jtitle=Journal+of+hydroinformatics&rft.au=Khozani%2C+Zohreh+Sheikh&rft.au=Khosravi%2C+Khabat&rft.au=Pham%2C+Binh+Thai&rft.au=Kl%C3%B8ve%2C+Bj%C3%B8rn&rft.date=2019-09-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=21&rft.issue=5&rft.spage=798&rft.epage=811&rft_id=info:doi/10.2166%2Fhydro.2019.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2019_037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon