Nonlinear analysis of instability produced by linear mode coupling
We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave envelopes in the situation when a linear instability is produced by mode coalescence (intersection of the dispersion curves) in the presence of a we...
Saved in:
Published in | Physica. D Vol. 113; no. 1; pp. 26 - 42 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave envelopes in the situation when a linear instability is produced by mode coalescence (intersection of the dispersion curves) in the presence of a weak linear coupling between the two modes. Analytical considerations produce a simple condition for onset of collapse in this system, in the form of an inequality on the coefficients of the nonlinear terms. Exactly the same inequality turns out to determine the modulational stability of the continuous wave solutions with the wave number which corresponds to the center of the linear instability band. When collapse is absent, the continuous wave solutions are subject only to a long-wave modulational instability which can be eliminated by appropriate periodic boundary conditions, but in the opposite case modulational instability extends to all wave numbers. Numerical simulations demonstrate that there are two basic scenarios of principal interest. Either collapse occurs (exactly when the collapse condition is satisfied), or otherwise an initial periodic wave breaks down due to successive sideband instabilities into an apparently chaotic state. The predicted behaviors may be expected as a result of an interface instability in a number of hydrodynamic systems. |
---|---|
AbstractList | We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave envelopes in the situation when a linear instability is produced by mode coalescence (intersection of the dispersion curves) in the presence of a weak linear coupling between the two modes. Analytical considerations produce a simple condition for onset of collapse in this system, in the form of an inequality on the coefficients of the nonlinear terms. Exactly the same inequality turns out to determine the modulational stability of the continuous wave solutions with the wave number which corresponds to the center of the linear instability band. When collapse is absent, the continuous wave solutions are subject only to a long-wave modulational instability which can be eliminated by appropriate periodic boundary conditions, but in the opposite case modulational instability extends to all wave numbers. Numerical simulations demonstrate that there are two basic scenarios of principal interest. Either collapse occurs (exactly when the collapse condition is satisfied), or otherwise an initial periodic wave breaks down due to successive sideband instabilities into an apparently chaotic state. The predicted behaviors may be expected as a result of an interface instability in a number of hydrodynamic systems. |
Author | He, Jianming Grimshaw, Roger Malomed, Boris A. |
Author_xml | – sequence: 1 givenname: Roger surname: Grimshaw fullname: Grimshaw, Roger email: rhjg@wave.maths.monash.edu.au – sequence: 2 givenname: Jianming surname: He fullname: He, Jianming – sequence: 3 givenname: Boris A. surname: Malomed fullname: Malomed, Boris A. email: malomed@eng.tau.ac.il |
BookMark | eNqFkEtLAzEUhYNUsK3-BGGWuhjNYzpJcCFafEHRhboOmTwkMk1Kkgrz700fuHDTzb0cOOfA-SZg5IM3AJwjeIUgaq_fy6E1poxfcHoJIWK85kdgjBjFNYMYj8D4z3ICJil9w-KihI7B_WvwvfNGxkp62Q_JpSrYyvmUZed6l4dqFYNeK6Orbqj21mXQplJhvSr66xQcW9knc7b_U_D5-PAxf64Xb08v87tFrQikubZt28gOIow5JRpKyhG1LWaGYVmUahWznbFcUmlJRzHpSEN4MzOtIlZrRKZgtutVMaQUjRWr6JYyDgJBsQEhtiDEZqXgVGxBCF5yN_9yymWZXfA5StcfTN_u0qZM-3EmiqSc8YWHi0ZloYM70PALreR6tQ |
CitedBy_id | crossref_primary_10_1103_PhysRevE_65_066606 crossref_primary_10_1016_S0167_2789_99_00049_4 |
Cites_doi | 10.1103/PhysRevLett.69.1149 10.1103/PhysRevE.49.1283 10.1103/PhysRevLett.76.1824 10.1002/sapm1975543181 10.1103/PhysRevLett.73.3391 10.1364/OL.17.001566 10.1016/0375-9601(89)90441-6 10.1103/PhysRevLett.72.949 10.1016/0167-2789(91)90247-7 |
ContentType | Journal Article |
Copyright | 1998 |
Copyright_xml | – notice: 1998 |
DBID | AAYXX CITATION |
DOI | 10.1016/S0167-2789(97)00189-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-8022 |
EndPage | 42 |
ExternalDocumentID | 10_1016_S0167_2789_97_00189_9 S0167278997001899 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W K-O KOM M38 M41 MHUIS MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSW SSZ T5K TN5 TWZ WUQ XJT XPP YNT YYP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c307t-f664ab0122973d0a7917f628e82a0a7c6c8fbef9a7af3b723b343945e6c3fdd13 |
IEDL.DBID | AIKHN |
ISSN | 0167-2789 |
IngestDate | Tue Jul 01 03:25:27 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Fri Feb 23 02:14:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Instability Resonance Wave collapse |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-f664ab0122973d0a7917f628e82a0a7c6c8fbef9a7af3b723b343945e6c3fdd13 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1016_S0167_2789_97_00189_9 crossref_citationtrail_10_1016_S0167_2789_97_00189_9 elsevier_sciencedirect_doi_10_1016_S0167_2789_97_00189_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-00-00 |
PublicationDateYYYYMMDD | 1998-01-01 |
PublicationDate_xml | – year: 1998 text: 1998-00-00 |
PublicationDecade | 1990 |
PublicationTitle | Physica. D |
PublicationYear | 1998 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Goodridge, Shi, Lathrop (BIB7) 1996; 76 Aceves, Wabnitz (BIB2) 1989; 141 Craik (BIB1) 1985 Benney, Maslowe (BIB4) 1975; 54 Newell, Zakharov, Brenner, Shi, Nagel, Kuznetsov, Spector, Zakharov (BIB8) 1992; 69 Wadati, Iizuka, Yajima (BIB6) 1991; 51 Winful, Zamir, Feldman, Aceves, De Angelis, Wabnitz (BIB9) 1991; 17 Grimshaw, Malomed (BIB3) 1994; 72 R. Grimshaw and P. Christodoulides, in preparation. Hasegawa, Kodama (BIB5) 1995 Craik (10.1016/S0167-2789(97)00189-9_BIB1) 1985 Aceves (10.1016/S0167-2789(97)00189-9_BIB9_2) 1992; 17 Grimshaw (10.1016/S0167-2789(97)00189-9_BIB3) 1994; 72 Wadati (10.1016/S0167-2789(97)00189-9_BIB6) 1991; 51 Aceves (10.1016/S0167-2789(97)00189-9_BIB2) 1989; 141 Goodridge (10.1016/S0167-2789(97)00189-9_BIB7) 1996; 76 Benney (10.1016/S0167-2789(97)00189-9_BIB4) 1975; 54 Hasegawa (10.1016/S0167-2789(97)00189-9_BIB5) 1995 Newell (10.1016/S0167-2789(97)00189-9_BIB8_1) 1992; 69 Brenner (10.1016/S0167-2789(97)00189-9_BIB8_2) 1994; 73 Kuznetsov (10.1016/S0167-2789(97)00189-9_BIB8_3) 1994; 49 Winful (10.1016/S0167-2789(97)00189-9_BIB9_1) 1991; 17 10.1016/S0167-2789(97)00189-9_BIB10 |
References_xml | – reference: R. Grimshaw and P. Christodoulides, in preparation. – volume: 51 start-page: 388 year: 1991 ident: BIB6 publication-title: Physica D – volume: 17 start-page: 1266 year: 1991 ident: BIB9 publication-title: Appl. Phys. Lett. – volume: 141 start-page: 37 year: 1989 ident: BIB2 publication-title: Phys. Lett. A – volume: 69 start-page: 1149 year: 1992 ident: BIB8 publication-title: Phys. Rev. Lett. – volume: 72 start-page: 949 year: 1994 ident: BIB3 publication-title: Phys. Rev. Lett. – year: 1995 ident: BIB5 article-title: Solitons in Optical Communications – year: 1985 ident: BIB1 article-title: Wave Interactions in Fluid Flows – volume: 76 start-page: 1824 year: 1996 ident: BIB7 publication-title: Phys. Rev. Lett. – volume: 54 start-page: 181 year: 1975 ident: BIB4 publication-title: Stud. Appl. Math. – volume: 69 start-page: 1149 year: 1992 ident: 10.1016/S0167-2789(97)00189-9_BIB8_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1149 – volume: 49 start-page: 1283 year: 1994 ident: 10.1016/S0167-2789(97)00189-9_BIB8_3 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.1283 – volume: 76 start-page: 1824 year: 1996 ident: 10.1016/S0167-2789(97)00189-9_BIB7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.1824 – volume: 54 start-page: 181 year: 1975 ident: 10.1016/S0167-2789(97)00189-9_BIB4 publication-title: Stud. Appl. Math. doi: 10.1002/sapm1975543181 – year: 1985 ident: 10.1016/S0167-2789(97)00189-9_BIB1 – volume: 73 start-page: 3391 year: 1994 ident: 10.1016/S0167-2789(97)00189-9_BIB8_2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.3391 – ident: 10.1016/S0167-2789(97)00189-9_BIB10 – year: 1995 ident: 10.1016/S0167-2789(97)00189-9_BIB5 – volume: 17 start-page: 1266 year: 1991 ident: 10.1016/S0167-2789(97)00189-9_BIB9_1 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 1566 year: 1992 ident: 10.1016/S0167-2789(97)00189-9_BIB9_2 publication-title: Opt. Lett. doi: 10.1364/OL.17.001566 – volume: 141 start-page: 37 year: 1989 ident: 10.1016/S0167-2789(97)00189-9_BIB2 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(89)90441-6 – volume: 72 start-page: 949 year: 1994 ident: 10.1016/S0167-2789(97)00189-9_BIB3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.949 – volume: 51 start-page: 388 year: 1991 ident: 10.1016/S0167-2789(97)00189-9_BIB6 publication-title: Physica D doi: 10.1016/0167-2789(91)90247-7 |
SSID | ssj0001737 |
Score | 1.53812 |
Snippet | We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | Instability Resonance Wave collapse |
Title | Nonlinear analysis of instability produced by linear mode coupling |
URI | https://dx.doi.org/10.1016/S0167-2789(97)00189-9 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76QNCDaFWsj5KDBz2k3e3uJptjLZaq2IsWelvy2EhB2lLbQy_-dpNsWiuIgqfdDTthGWYnk8x83wBcKS2ITnOKGQ9SHIskwYKKBCtFhAoSGWjXveFpQPrD-GGUjErQXWNhbFml9_2FT3fe2o-0vDZbs_G49WwL6C2Ok9nUqbmUodqOGDGmXe3cP_YHG4cc0oI601J8W4EvIE8xiRu8ZvTGzYPZz0vU1rLTO4B9Hy-iTvFJh1DKJzXY22IRrMGOq-KU70dwOyiIL_gccU82gqYajW0I6IpgV2jmGF5zhcQK-VdtMxwkp0uLzX09hmHv7qXbx75JApbm91xgTUjMhU2QMRqpgFOz_9KkneZpm5snSWSqRa4Zp1xHgrYjEVkwbJITGWmlwugEKpPpJD8FFIsgFYRJs2nhsUwiQbgUASWKqpDJlNUhXuslk55B3DayeMu2SsUIzaw6M5fXDu1NHZobsVlBofGXQLpWevbNFjLj5n8XPfu_6DnsFnhDe7xyAZXFfJlfmoBjIRpQbn6EDW9Wnw7Jz0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gxqgHo6gRnz140ENhYXf7OCqRoAIXIeG26WNrSAwQhAMXf7vbbhFMjCaedrfpNJtJZ_qY-b4BuNZGEsNSirkIGI5kHGNJZYy1JlIHsQqMq97Q6ZJWP3oaxIMCNJZYGJtW6X1_7tOdt_YtVa_N6mQ4rL7YBHqL4-Q2dJo9NmAzyszXWmflY5XnUaM5caYl-LbdVzCefAjXeMPprRsF858XqLVFp7kPe363iO7yHzqAQjoqwe4ah2AJtlwOp3o_hPtuTnshpkh4qhE0NmhoN4AuBXaBJo7fNdVILpDvakvhIDWeW2Tu6xH0mw-9Rgv7EglYZcY5w4aQSEgbHuM01IGg2enLkDpLWV1kX4ooZmRquKDChJLWQxlaKGycEhUarWvhMRRH41F6AiiSAZOEq-zIIiIVh5IIJQNKNNU1rhgvQ7TUS6I8f7gtY_GWrCWKEZpYdSYuql2zL2WofIlNcgKNvwTYUunJt5mQZE7-d9HT_4tewXar12kn7cfu8xns5MhDe9FyDsXZdJ5eZFuPmbx0U-sTrgHQBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+analysis+of+instability+produced+by+linear+mode+coupling&rft.jtitle=Physica.+D&rft.au=Grimshaw%2C+Roger&rft.au=He%2C+Jianming&rft.au=Malomed%2C+Boris+A.&rft.date=1998&rft.issn=0167-2789&rft.volume=113&rft.issue=1&rft.spage=26&rft.epage=42&rft_id=info:doi/10.1016%2FS0167-2789%2897%2900189-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0167_2789_97_00189_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |