Nonlinear analysis of instability produced by linear mode coupling

We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave envelopes in the situation when a linear instability is produced by mode coalescence (intersection of the dispersion curves) in the presence of a we...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 113; no. 1; pp. 26 - 42
Main Authors Grimshaw, Roger, He, Jianming, Malomed, Boris A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 1998
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave envelopes in the situation when a linear instability is produced by mode coalescence (intersection of the dispersion curves) in the presence of a weak linear coupling between the two modes. Analytical considerations produce a simple condition for onset of collapse in this system, in the form of an inequality on the coefficients of the nonlinear terms. Exactly the same inequality turns out to determine the modulational stability of the continuous wave solutions with the wave number which corresponds to the center of the linear instability band. When collapse is absent, the continuous wave solutions are subject only to a long-wave modulational instability which can be eliminated by appropriate periodic boundary conditions, but in the opposite case modulational instability extends to all wave numbers. Numerical simulations demonstrate that there are two basic scenarios of principal interest. Either collapse occurs (exactly when the collapse condition is satisfied), or otherwise an initial periodic wave breaks down due to successive sideband instabilities into an apparently chaotic state. The predicted behaviors may be expected as a result of an interface instability in a number of hydrodynamic systems.
AbstractList We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave envelopes in the situation when a linear instability is produced by mode coalescence (intersection of the dispersion curves) in the presence of a weak linear coupling between the two modes. Analytical considerations produce a simple condition for onset of collapse in this system, in the form of an inequality on the coefficients of the nonlinear terms. Exactly the same inequality turns out to determine the modulational stability of the continuous wave solutions with the wave number which corresponds to the center of the linear instability band. When collapse is absent, the continuous wave solutions are subject only to a long-wave modulational instability which can be eliminated by appropriate periodic boundary conditions, but in the opposite case modulational instability extends to all wave numbers. Numerical simulations demonstrate that there are two basic scenarios of principal interest. Either collapse occurs (exactly when the collapse condition is satisfied), or otherwise an initial periodic wave breaks down due to successive sideband instabilities into an apparently chaotic state. The predicted behaviors may be expected as a result of an interface instability in a number of hydrodynamic systems.
Author He, Jianming
Grimshaw, Roger
Malomed, Boris A.
Author_xml – sequence: 1
  givenname: Roger
  surname: Grimshaw
  fullname: Grimshaw, Roger
  email: rhjg@wave.maths.monash.edu.au
– sequence: 2
  givenname: Jianming
  surname: He
  fullname: He, Jianming
– sequence: 3
  givenname: Boris A.
  surname: Malomed
  fullname: Malomed, Boris A.
  email: malomed@eng.tau.ac.il
BookMark eNqFkEtLAzEUhYNUsK3-BGGWuhjNYzpJcCFafEHRhboOmTwkMk1Kkgrz700fuHDTzb0cOOfA-SZg5IM3AJwjeIUgaq_fy6E1poxfcHoJIWK85kdgjBjFNYMYj8D4z3ICJil9w-KihI7B_WvwvfNGxkp62Q_JpSrYyvmUZed6l4dqFYNeK6Orbqj21mXQplJhvSr66xQcW9knc7b_U_D5-PAxf64Xb08v87tFrQikubZt28gOIow5JRpKyhG1LWaGYVmUahWznbFcUmlJRzHpSEN4MzOtIlZrRKZgtutVMaQUjRWr6JYyDgJBsQEhtiDEZqXgVGxBCF5yN_9yymWZXfA5StcfTN_u0qZM-3EmiqSc8YWHi0ZloYM70PALreR6tQ
CitedBy_id crossref_primary_10_1103_PhysRevE_65_066606
crossref_primary_10_1016_S0167_2789_99_00049_4
Cites_doi 10.1103/PhysRevLett.69.1149
10.1103/PhysRevE.49.1283
10.1103/PhysRevLett.76.1824
10.1002/sapm1975543181
10.1103/PhysRevLett.73.3391
10.1364/OL.17.001566
10.1016/0375-9601(89)90441-6
10.1103/PhysRevLett.72.949
10.1016/0167-2789(91)90247-7
ContentType Journal Article
Copyright 1998
Copyright_xml – notice: 1998
DBID AAYXX
CITATION
DOI 10.1016/S0167-2789(97)00189-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 42
ExternalDocumentID 10_1016_S0167_2789_97_00189_9
S0167278997001899
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c307t-f664ab0122973d0a7917f628e82a0a7c6c8fbef9a7af3b723b343945e6c3fdd13
IEDL.DBID AIKHN
ISSN 0167-2789
IngestDate Tue Jul 01 03:25:27 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:14:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Instability
Resonance
Wave collapse
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-f664ab0122973d0a7917f628e82a0a7c6c8fbef9a7af3b723b343945e6c3fdd13
PageCount 17
ParticipantIDs crossref_primary_10_1016_S0167_2789_97_00189_9
crossref_citationtrail_10_1016_S0167_2789_97_00189_9
elsevier_sciencedirect_doi_10_1016_S0167_2789_97_00189_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-00-00
PublicationDateYYYYMMDD 1998-01-01
PublicationDate_xml – year: 1998
  text: 1998-00-00
PublicationDecade 1990
PublicationTitle Physica. D
PublicationYear 1998
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Goodridge, Shi, Lathrop (BIB7) 1996; 76
Aceves, Wabnitz (BIB2) 1989; 141
Craik (BIB1) 1985
Benney, Maslowe (BIB4) 1975; 54
Newell, Zakharov, Brenner, Shi, Nagel, Kuznetsov, Spector, Zakharov (BIB8) 1992; 69
Wadati, Iizuka, Yajima (BIB6) 1991; 51
Winful, Zamir, Feldman, Aceves, De Angelis, Wabnitz (BIB9) 1991; 17
Grimshaw, Malomed (BIB3) 1994; 72
R. Grimshaw and P. Christodoulides, in preparation.
Hasegawa, Kodama (BIB5) 1995
Craik (10.1016/S0167-2789(97)00189-9_BIB1) 1985
Aceves (10.1016/S0167-2789(97)00189-9_BIB9_2) 1992; 17
Grimshaw (10.1016/S0167-2789(97)00189-9_BIB3) 1994; 72
Wadati (10.1016/S0167-2789(97)00189-9_BIB6) 1991; 51
Aceves (10.1016/S0167-2789(97)00189-9_BIB2) 1989; 141
Goodridge (10.1016/S0167-2789(97)00189-9_BIB7) 1996; 76
Benney (10.1016/S0167-2789(97)00189-9_BIB4) 1975; 54
Hasegawa (10.1016/S0167-2789(97)00189-9_BIB5) 1995
Newell (10.1016/S0167-2789(97)00189-9_BIB8_1) 1992; 69
Brenner (10.1016/S0167-2789(97)00189-9_BIB8_2) 1994; 73
Kuznetsov (10.1016/S0167-2789(97)00189-9_BIB8_3) 1994; 49
Winful (10.1016/S0167-2789(97)00189-9_BIB9_1) 1991; 17
10.1016/S0167-2789(97)00189-9_BIB10
References_xml – reference: R. Grimshaw and P. Christodoulides, in preparation.
– volume: 51
  start-page: 388
  year: 1991
  ident: BIB6
  publication-title: Physica D
– volume: 17
  start-page: 1266
  year: 1991
  ident: BIB9
  publication-title: Appl. Phys. Lett.
– volume: 141
  start-page: 37
  year: 1989
  ident: BIB2
  publication-title: Phys. Lett. A
– volume: 69
  start-page: 1149
  year: 1992
  ident: BIB8
  publication-title: Phys. Rev. Lett.
– volume: 72
  start-page: 949
  year: 1994
  ident: BIB3
  publication-title: Phys. Rev. Lett.
– year: 1995
  ident: BIB5
  article-title: Solitons in Optical Communications
– year: 1985
  ident: BIB1
  article-title: Wave Interactions in Fluid Flows
– volume: 76
  start-page: 1824
  year: 1996
  ident: BIB7
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 181
  year: 1975
  ident: BIB4
  publication-title: Stud. Appl. Math.
– volume: 69
  start-page: 1149
  year: 1992
  ident: 10.1016/S0167-2789(97)00189-9_BIB8_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1149
– volume: 49
  start-page: 1283
  year: 1994
  ident: 10.1016/S0167-2789(97)00189-9_BIB8_3
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.1283
– volume: 76
  start-page: 1824
  year: 1996
  ident: 10.1016/S0167-2789(97)00189-9_BIB7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.1824
– volume: 54
  start-page: 181
  year: 1975
  ident: 10.1016/S0167-2789(97)00189-9_BIB4
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1975543181
– year: 1985
  ident: 10.1016/S0167-2789(97)00189-9_BIB1
– volume: 73
  start-page: 3391
  year: 1994
  ident: 10.1016/S0167-2789(97)00189-9_BIB8_2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.3391
– ident: 10.1016/S0167-2789(97)00189-9_BIB10
– year: 1995
  ident: 10.1016/S0167-2789(97)00189-9_BIB5
– volume: 17
  start-page: 1266
  year: 1991
  ident: 10.1016/S0167-2789(97)00189-9_BIB9_1
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 1566
  year: 1992
  ident: 10.1016/S0167-2789(97)00189-9_BIB9_2
  publication-title: Opt. Lett.
  doi: 10.1364/OL.17.001566
– volume: 141
  start-page: 37
  year: 1989
  ident: 10.1016/S0167-2789(97)00189-9_BIB2
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(89)90441-6
– volume: 72
  start-page: 949
  year: 1994
  ident: 10.1016/S0167-2789(97)00189-9_BIB3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.949
– volume: 51
  start-page: 388
  year: 1991
  ident: 10.1016/S0167-2789(97)00189-9_BIB6
  publication-title: Physica D
  doi: 10.1016/0167-2789(91)90247-7
SSID ssj0001737
Score 1.53812
Snippet We consider a system of two first-order complex partial differential equations with cubic nonlinear terms, which is a generic asymptotic model for wave...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Instability
Resonance
Wave collapse
Title Nonlinear analysis of instability produced by linear mode coupling
URI https://dx.doi.org/10.1016/S0167-2789(97)00189-9
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76QNCDaFWsj5KDBz2k3e3uJptjLZaq2IsWelvy2EhB2lLbQy_-dpNsWiuIgqfdDTthGWYnk8x83wBcKS2ITnOKGQ9SHIskwYKKBCtFhAoSGWjXveFpQPrD-GGUjErQXWNhbFml9_2FT3fe2o-0vDZbs_G49WwL6C2Ok9nUqbmUodqOGDGmXe3cP_YHG4cc0oI601J8W4EvIE8xiRu8ZvTGzYPZz0vU1rLTO4B9Hy-iTvFJh1DKJzXY22IRrMGOq-KU70dwOyiIL_gccU82gqYajW0I6IpgV2jmGF5zhcQK-VdtMxwkp0uLzX09hmHv7qXbx75JApbm91xgTUjMhU2QMRqpgFOz_9KkneZpm5snSWSqRa4Zp1xHgrYjEVkwbJITGWmlwugEKpPpJD8FFIsgFYRJs2nhsUwiQbgUASWKqpDJlNUhXuslk55B3DayeMu2SsUIzaw6M5fXDu1NHZobsVlBofGXQLpWevbNFjLj5n8XPfu_6DnsFnhDe7xyAZXFfJlfmoBjIRpQbn6EDW9Wnw7Jz0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gxqgHo6gRnz140ENhYXf7OCqRoAIXIeG26WNrSAwQhAMXf7vbbhFMjCaedrfpNJtJZ_qY-b4BuNZGEsNSirkIGI5kHGNJZYy1JlIHsQqMq97Q6ZJWP3oaxIMCNJZYGJtW6X1_7tOdt_YtVa_N6mQ4rL7YBHqL4-Q2dJo9NmAzyszXWmflY5XnUaM5caYl-LbdVzCefAjXeMPprRsF858XqLVFp7kPe363iO7yHzqAQjoqwe4ah2AJtlwOp3o_hPtuTnshpkh4qhE0NmhoN4AuBXaBJo7fNdVILpDvakvhIDWeW2Tu6xH0mw-9Rgv7EglYZcY5w4aQSEgbHuM01IGg2enLkDpLWV1kX4ooZmRquKDChJLWQxlaKGycEhUarWvhMRRH41F6AiiSAZOEq-zIIiIVh5IIJQNKNNU1rhgvQ7TUS6I8f7gtY_GWrCWKEZpYdSYuql2zL2WofIlNcgKNvwTYUunJt5mQZE7-d9HT_4tewXar12kn7cfu8xns5MhDe9FyDsXZdJ5eZFuPmbx0U-sTrgHQBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+analysis+of+instability+produced+by+linear+mode+coupling&rft.jtitle=Physica.+D&rft.au=Grimshaw%2C+Roger&rft.au=He%2C+Jianming&rft.au=Malomed%2C+Boris+A.&rft.date=1998&rft.issn=0167-2789&rft.volume=113&rft.issue=1&rft.spage=26&rft.epage=42&rft_id=info:doi/10.1016%2FS0167-2789%2897%2900189-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0167_2789_97_00189_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon