Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments

Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organi...

Full description

Saved in:
Bibliographic Details
Published inNanoscale horizons Vol. 4; no. 6; pp. 1293 - 131
Main Authors Wang, Tian-Yu, Meng, Jia-Lin, He, Zhen-Yu, Chen, Lin, Zhu, Hao, Sun, Qing-Qing, Ding, Shi-Jin, Zhou, Peng, Zhang, David Wei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organic solutions. In the present work, a stable waterproof artificial synapse based on a fully transparent electronic device, suitable for wearable applications in organic environments is for the first time demonstrated. Essential synaptic behaviors, including paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning-forgetting-relearning, were successfully emulated. The artificial synaptic device could achieve an optical transmittance of ∼87.5% in the visible light range, which demonstrated reliable long-term potentiation/depression under bent states with a bending radius of 5 mm. After being immersed in water and 5 types of common organic solvents for over 12 hours, the e-synapse could function with 6000 spikes without noticeable degradation in the organic environment. The neural network was constructed from e-synapses with controllable weights update and a device-to-system level simulation framework was developed with a recognition rate of 92.4%, which demonstrated the feasibility of highly transparent, biocompatible, flexible, and waterproof e-synapses used in artificial intelligence systems. Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions.
AbstractList Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organic solutions. In the present work, a stable waterproof artificial synapse based on a fully transparent electronic device, suitable for wearable applications in organic environments is for the first time demonstrated. Essential synaptic behaviors, including paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning–forgetting–relearning, were successfully emulated. The artificial synaptic device could achieve an optical transmittance of ∼87.5% in the visible light range, which demonstrated reliable long-term potentiation/depression under bent states with a bending radius of 5 mm. After being immersed in water and 5 types of common organic solvents for over 12 hours, the e-synapse could function with 6000 spikes without noticeable degradation in the organic environment. The neural network was constructed from e-synapses with controllable weights update and a device-to-system level simulation framework was developed with a recognition rate of 92.4%, which demonstrated the feasibility of highly transparent, biocompatible, flexible, and waterproof e-synapses used in artificial intelligence systems.
Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organic solutions. In the present work, a stable waterproof artificial synapse based on a fully transparent electronic device, suitable for wearable applications in organic environments is for the first time demonstrated. Essential synaptic behaviors, including paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning-forgetting-relearning, were successfully emulated. The artificial synaptic device could achieve an optical transmittance of ∼87.5% in the visible light range, which demonstrated reliable long-term potentiation/depression under bent states with a bending radius of 5 mm. After being immersed in water and 5 types of common organic solvents for over 12 hours, the e-synapse could function with 6000 spikes without noticeable degradation in the organic environment. The neural network was constructed from e-synapses with controllable weights update and a device-to-system level simulation framework was developed with a recognition rate of 92.4%, which demonstrated the feasibility of highly transparent, biocompatible, flexible, and waterproof e-synapses used in artificial intelligence systems. Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions.
Author Wang, Tian-Yu
Sun, Qing-Qing
Chen, Lin
Ding, Shi-Jin
Zhang, David Wei
Meng, Jia-Lin
He, Zhen-Yu
Zhou, Peng
Zhu, Hao
AuthorAffiliation Fudan University
State Key Laboratory of ASIC and System
School of Microelectronics
AuthorAffiliation_xml – name: State Key Laboratory of ASIC and System
– name: School of Microelectronics
– name: Fudan University
Author_xml – sequence: 1
  givenname: Tian-Yu
  surname: Wang
  fullname: Wang, Tian-Yu
– sequence: 2
  givenname: Jia-Lin
  surname: Meng
  fullname: Meng, Jia-Lin
– sequence: 3
  givenname: Zhen-Yu
  surname: He
  fullname: He, Zhen-Yu
– sequence: 4
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
– sequence: 5
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
– sequence: 6
  givenname: Qing-Qing
  surname: Sun
  fullname: Sun, Qing-Qing
– sequence: 7
  givenname: Shi-Jin
  surname: Ding
  fullname: Ding, Shi-Jin
– sequence: 8
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
– sequence: 9
  givenname: David Wei
  surname: Zhang
  fullname: Zhang, David Wei
BookMark eNp9UUtLAzEQDlLBWnvxLkS8iavJZl85SrFWKXrR85LNzrYp22RNUmv_vamVCiKeZuB7zMw3x6injQaETim5poTxG8n1nBCW0MUB6sckTaMsz5Levk-zIzR0bkEIoQXNecH6qB6v2naDvRXadcKC9le4aeFDVS1goWu8Fh5sZ41psNto0TlweK38HHfCB0RjC9LMtPLKaKw0NnYmtJIY9LuyRi-DoztBh41oHQy_6wC9ju9eRpNo-nz_MLqdRpKR3EfAoYlFzdKqSJmkVZ3FCQcCOQCvCJdFw4ACyxMJGS0qEHWc8YZlEGdJxZhgA3Sx8w37vq3A-XJhVlaHkWUcJpCcpSQOrMsdS1rjnIWm7KxaCrspKSm3QZYj_jT5CvIxkMkvslRebI8Nkan2b8nZTmKd3Fv__Cbg5__hZVc37BNfJ48p
CitedBy_id crossref_primary_10_1039_D1TC00987G
crossref_primary_10_1007_s11432_023_3835_4
crossref_primary_10_1016_j_jmst_2020_04_059
crossref_primary_10_1039_D2NR05720D
crossref_primary_10_1109_LED_2019_2956282
crossref_primary_10_1016_j_nanoen_2021_106291
crossref_primary_10_1002_admt_202200193
crossref_primary_10_1088_1361_6528_ac3687
crossref_primary_10_1021_acs_nanolett_9b05271
crossref_primary_10_1002_adfm_202107314
crossref_primary_10_1021_acsami_0c10851
crossref_primary_10_1002_aisy_202200287
crossref_primary_10_1039_D4TC00674G
crossref_primary_10_1002_adfm_202101951
crossref_primary_10_1002_advs_202201117
crossref_primary_10_1002_inf2_12158
crossref_primary_10_1063_5_0124217
crossref_primary_10_1002_advs_202303735
crossref_primary_10_1039_D1NH00452B
crossref_primary_10_3390_electronics12071596
crossref_primary_10_1007_s12274_021_3899_5
crossref_primary_10_1002_aisy_202200053
crossref_primary_10_1039_D3TC00687E
crossref_primary_10_1002_EXP_20220150
crossref_primary_10_1088_1674_4926_24040038
crossref_primary_10_1002_adfm_202401228
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1039_D0NR00919A
crossref_primary_10_1016_j_isci_2020_101889
crossref_primary_10_1039_D4TC00704B
crossref_primary_10_1021_acsami_2c11183
crossref_primary_10_1039_C9TC02802A
crossref_primary_10_1039_D0MH01730B
crossref_primary_10_1039_D2NH00158F
crossref_primary_10_1063_5_0180651
crossref_primary_10_1109_LED_2019_2934895
crossref_primary_10_1002_aelm_202300437
crossref_primary_10_1016_j_nanoen_2022_107898
crossref_primary_10_1021_acsanm_4c00759
crossref_primary_10_1021_acsnano_0c10049
crossref_primary_10_1039_D2NH00524G
crossref_primary_10_1007_s10853_020_05560_z
Cites_doi 10.1021/acsami.7b19406
10.1021/ma9905674
10.1002/aelm.201700665
10.1002/aelm.201600529
10.1002/adma.201502574
10.1002/adfm.201706010
10.1002/adma.201802883
10.1002/adma.201801548
10.1038/nmat4856
10.1039/C8TA05234D
10.1038/nmat4756
10.1038/nature06289
10.1063/1.5027776
10.1038/nnano.2007.151
10.1021/acsnano.7b03347
10.1002/adma.201500315
10.1002/adfm.201800854
10.1021/acsami.7b16330
10.1007/s12274-017-1781-2
10.1126/sciadv.1501136
10.1002/advs.201700442
10.1021/acsami.8b16841
10.1002/adma.201803961
10.1021/acsami.6b12991
10.1002/adma.201704002
10.1038/nature23658
10.1002/adfm.201502499
10.1002/adma.201502719
10.1126/science.1254642
10.1002/aelm.201800195
10.1016/j.seppur.2013.10.029
10.1021/acsnano.6b07894
10.1109/MM.2017.4241350
10.1039/C6NR08687J
10.1038/srep44429
10.1016/j.orgel.2018.06.019
10.1088/1361-6528/28/2/025303
10.1002/adfm.201801690
10.1002/aelm.201500298
10.1002/adfm.201700702
10.1039/C8NR05336G
10.1039/C8NR04734K
10.1016/j.matlet.2010.12.024
10.1002/aelm.201800444
10.1002/adma.200700086
10.1016/j.synthmet.2010.05.033
10.1021/nn202983n
10.1002/adma.201304821
10.1021/acs.nanolett.5b03882
10.1021/acsami.8b10870
10.1002/adfm.201800553
10.1038/s41467-017-00803-1
10.1016/j.orgel.2012.05.044
10.1038/nature16961
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1039/c9nh00341j
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-6764
EndPage 131
ExternalDocumentID 10_1039_C9NH00341J
c9nh00341j
GroupedDBID 0R
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ADMRA
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUNWK
BLAPV
C6K
CKLOX
EBS
ECGLT
EJD
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AAJAE
AARTK
AAXHV
AAYXX
ABASK
ABJNI
ABPDG
AEFDR
AENGV
AETIL
AFOGI
AFRZK
AGEGJ
AGRSR
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
RAOCF
RVUXY
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c307t-e9ef2ad35b853c1bd6249e0e7ee9b09c8f3e1e374ce618bead269f36e264b33a3
ISSN 2055-6756
2055-6764
IngestDate Mon Jun 30 04:58:37 EDT 2025
Tue Jul 01 01:45:36 EDT 2025
Thu Apr 24 23:07:15 EDT 2025
Sat Jan 08 03:27:04 EST 2022
Wed Nov 11 00:25:30 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-e9ef2ad35b853c1bd6249e0e7ee9b09c8f3e1e374ce618bead269f36e264b33a3
Notes 10.1039/c9nh00341j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7145-7564
0000-0002-5766-089X
PQID 2307073502
PQPubID 2047513
PageCount 9
ParticipantIDs crossref_primary_10_1039_C9NH00341J
rsc_primary_c9nh00341j
proquest_journals_2307073502
crossref_citationtrail_10_1039_C9NH00341J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale horizons
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yang (C9NH00341J-(cit6)/*[position()=1]) 2018; 30
Park (C9NH00341J-(cit1)/*[position()=1]) 2017; 11
Bong (C9NH00341J-(cit8)/*[position()=1]) 2017; 37
Zhou (C9NH00341J-(cit46)/*[position()=1]) 2010; 160
Kim (C9NH00341J-(cit23)/*[position()=1]) 2017; 27
Ali (C9NH00341J-(cit15)/*[position()=1]) 2017; 28
Ho (C9NH00341J-(cit19)/*[position()=1]) 2017; 7
Yan (C9NH00341J-(cit54)/*[position()=1]) 2018; 113
Wang (C9NH00341J-(cit26)/*[position()=1]) 2013; 120
Stavrinidou (C9NH00341J-(cit29)/*[position()=1]) 2015; 1
Wang (C9NH00341J-(cit5)/*[position()=1]) 2018; 30
Garreau (C9NH00341J-(cit45)/*[position()=1]) 1999; 32
Merolla (C9NH00341J-(cit3)/*[position()=1]) 2014; 345
Wang (C9NH00341J-(cit21)/*[position()=1]) 2018; 30
Chia (C9NH00341J-(cit44)/*[position()=1]) 2007; 19
Wu (C9NH00341J-(cit43)/*[position()=1]) 2017; 4
Wang (C9NH00341J-(cit50)/*[position()=1]) 2018; 10
Kumar (C9NH00341J-(cit41)/*[position()=1]) 2018; 10
Yu (C9NH00341J-(cit49)/*[position()=1]) 2015
Raeis-Hosseini (C9NH00341J-(cit4)/*[position()=1]) 2018; 28
Wang (C9NH00341J-(cit27)/*[position()=1]) 2011; 65
Shang (C9NH00341J-(cit18)/*[position()=1]) 2017; 9
Kim (C9NH00341J-(cit56)/*[position()=1]) 2017; 11
Lübben (C9NH00341J-(cit24)/*[position()=1]) 2015; 27
Chang (C9NH00341J-(cit52)/*[position()=1]) 2011; 5
Yoon (C9NH00341J-(cit14)/*[position()=1]) 2018; 4
Silver (C9NH00341J-(cit7)/*[position()=1]) 2016; 529
Kim (C9NH00341J-(cit9)/*[position()=1]) 2016; 16
Lee (C9NH00341J-(cit16)/*[position()=1]) 2018; 28
Ko (C9NH00341J-(cit57)/*[position()=1]) 2017; 9
Froemke (C9NH00341J-(cit36)/*[position()=1]) 2007; 450
Chung (C9NH00341J-(cit48)/*[position()=1]) 2018
Hwang (C9NH00341J-(cit13)/*[position()=1]) 2014; 26
Wang (C9NH00341J-(cit37)/*[position()=1]) 2016; 16
Zheng (C9NH00341J-(cit10)/*[position()=1]) 2015; 25
Chen (C9NH00341J-(cit22)/*[position()=1]) 2018; 4
Zheng (C9NH00341J-(cit34)/*[position()=1]) 2018; 62
Liu (C9NH00341J-(cit20)/*[position()=1]) 2015; 27
Yang (C9NH00341J-(cit39)/*[position()=1]) 2018; 10
Penn (C9NH00341J-(cit38)/*[position()=1]) 2017; 549
Ricciardulli (C9NH00341J-(cit31)/*[position()=1]) 2018; 28
Yan (C9NH00341J-(cit11)/*[position()=1]) 2018; 11
Wu (C9NH00341J-(cit2)/*[position()=1]) 2017; 8
Liu (C9NH00341J-(cit51)/*[position()=1]) 2015; 2
He (C9NH00341J-(cit28)/*[position()=1]) 2012; 13
Chen (C9NH00341J-(cit53)/*[position()=1]) 2018; 10
Zhong (C9NH00341J-(cit55)/*[position()=1]) 2018; 28
Hu (C9NH00341J-(cit33)/*[position()=1]) 2018; 6
Ju (C9NH00341J-(cit42)/*[position()=1]) 2007; 2
Kumar (C9NH00341J-(cit12)/*[position()=1]) 2018; 10
Choi (C9NH00341J-(cit32)/*[position()=1]) 2018; 30
Palumbiny (C9NH00341J-(cit35)/*[position()=1]) 2015; 27
Morales-Masis (C9NH00341J-(cit40)/*[position()=1]) 2017; 3
Jerry (C9NH00341J-(cit47)/*[position()=1]) 2017
van de Burgt (C9NH00341J-(cit30)/*[position()=1]) 2017; 16
Zhang (C9NH00341J-(cit17)/*[position()=1]) 2018; 4
Liao (C9NH00341J-(cit25)/*[position()=1]) 2017; 9
References_xml – volume: 10
  start-page: 12768
  year: 2018
  ident: C9NH00341J-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19406
– volume: 32
  start-page: 6807
  year: 1999
  ident: C9NH00341J-(cit45)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma9905674
– volume: 4
  start-page: 1700665
  year: 2018
  ident: C9NH00341J-(cit14)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700665
– volume: 3
  start-page: 1600529
  year: 2017
  ident: C9NH00341J-(cit40)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600529
– volume: 27
  start-page: 6202
  year: 2015
  ident: C9NH00341J-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502574
– volume: 28
  start-page: 1706010
  year: 2018
  ident: C9NH00341J-(cit31)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706010
– volume: 30
  start-page: 1802883
  year: 2018
  ident: C9NH00341J-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802883
– volume: 30
  start-page: 1801548
  year: 2018
  ident: C9NH00341J-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801548
– volume: 16
  start-page: 414
  year: 2017
  ident: C9NH00341J-(cit30)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4856
– volume: 6
  start-page: 16583
  year: 2018
  ident: C9NH00341J-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05234D
– volume: 16
  start-page: 101
  year: 2016
  ident: C9NH00341J-(cit37)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4756
– volume: 450
  start-page: 425
  year: 2007
  ident: C9NH00341J-(cit36)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06289
– start-page: 2
  year: 2017
  ident: C9NH00341J-(cit47)/*[position()=1]
  publication-title: Int. Electron Devices Meet.
– volume: 113
  start-page: 13503
  year: 2018
  ident: C9NH00341J-(cit54)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5027776
– volume: 2
  start-page: 378
  year: 2007
  ident: C9NH00341J-(cit42)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.151
– volume: 11
  start-page: 8962
  year: 2017
  ident: C9NH00341J-(cit1)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03347
– volume: 27
  start-page: 3391
  year: 2015
  ident: C9NH00341J-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500315
– volume: 28
  start-page: 1800854
  year: 2018
  ident: C9NH00341J-(cit55)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800854
– volume: 9
  start-page: 43004
  year: 2017
  ident: C9NH00341J-(cit57)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16330
– volume: 11
  start-page: 1183
  year: 2018
  ident: C9NH00341J-(cit11)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1781-2
– volume: 1
  start-page: e1501136
  year: 2015
  ident: C9NH00341J-(cit29)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501136
– volume: 4
  start-page: 1700442
  year: 2017
  ident: C9NH00341J-(cit43)/*[position()=1]
  publication-title: Advanced Science
  doi: 10.1002/advs.201700442
– volume: 10
  start-page: 37345
  year: 2018
  ident: C9NH00341J-(cit50)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16841
– volume: 30
  start-page: 1803961
  year: 2018
  ident: C9NH00341J-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803961
– volume: 9
  start-page: 4151
  year: 2017
  ident: C9NH00341J-(cit25)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12991
– volume: 30
  start-page: 1704002
  year: 2018
  ident: C9NH00341J-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704002
– volume: 549
  start-page: 384
  year: 2017
  ident: C9NH00341J-(cit38)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature23658
– volume: 25
  start-page: 5885
  year: 2015
  ident: C9NH00341J-(cit10)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502499
– volume: 27
  start-page: 5599
  year: 2015
  ident: C9NH00341J-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502719
– volume: 345
  start-page: 668
  year: 2014
  ident: C9NH00341J-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 4
  start-page: 1800195
  year: 2018
  ident: C9NH00341J-(cit17)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800195
– volume: 120
  start-page: 402
  year: 2013
  ident: C9NH00341J-(cit26)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.10.029
– volume: 11
  start-page: 2814
  year: 2017
  ident: C9NH00341J-(cit56)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07894
– volume: 37
  start-page: 30
  year: 2017
  ident: C9NH00341J-(cit8)/*[position()=1]
  publication-title: IEEE Micro
  doi: 10.1109/MM.2017.4241350
– volume: 9
  start-page: 7037
  year: 2017
  ident: C9NH00341J-(cit18)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR08687J
– volume: 7
  start-page: 44429
  year: 2017
  ident: C9NH00341J-(cit19)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep44429
– volume: 62
  start-page: 491
  year: 2018
  ident: C9NH00341J-(cit34)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.06.019
– volume: 28
  start-page: 25303
  year: 2017
  ident: C9NH00341J-(cit15)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/28/2/025303
– volume: 28
  start-page: 1801690
  year: 2018
  ident: C9NH00341J-(cit16)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801690
– volume: 2
  start-page: 1500298
  year: 2015
  ident: C9NH00341J-(cit51)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500298
– volume: 27
  start-page: 1700702
  year: 2017
  ident: C9NH00341J-(cit23)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700702
– start-page: 13
  year: 2015
  ident: C9NH00341J-(cit49)/*[position()=1]
  publication-title: Int. Electron Devices Meet.
– volume: 10
  start-page: 18135
  year: 2018
  ident: C9NH00341J-(cit39)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR05336G
– start-page: 12
  year: 2018
  ident: C9NH00341J-(cit48)/*[position()=1]
  publication-title: Int. Electron Devices Meet.
– volume: 10
  start-page: 15826
  year: 2018
  ident: C9NH00341J-(cit53)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR04734K
– volume: 65
  start-page: 869
  year: 2011
  ident: C9NH00341J-(cit27)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2010.12.024
– volume: 4
  start-page: 1800444
  year: 2018
  ident: C9NH00341J-(cit22)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800444
– volume: 19
  start-page: 4202
  year: 2007
  ident: C9NH00341J-(cit44)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700086
– volume: 160
  start-page: 1636
  year: 2010
  ident: C9NH00341J-(cit46)/*[position()=1]
  publication-title: Synth. Methods
  doi: 10.1016/j.synthmet.2010.05.033
– volume: 5
  start-page: 7669
  year: 2011
  ident: C9NH00341J-(cit52)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202983n
– volume: 26
  start-page: 1992
  year: 2014
  ident: C9NH00341J-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304821
– volume: 16
  start-page: 334
  year: 2016
  ident: C9NH00341J-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03882
– volume: 10
  start-page: 34370
  year: 2018
  ident: C9NH00341J-(cit12)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10870
– volume: 28
  start-page: 1800553
  year: 2018
  ident: C9NH00341J-(cit4)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800553
– volume: 8
  start-page: 752
  year: 2017
  ident: C9NH00341J-(cit2)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00803-1
– volume: 13
  start-page: 1819
  year: 2012
  ident: C9NH00341J-(cit28)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2012.05.044
– volume: 529
  start-page: 484
  year: 2016
  ident: C9NH00341J-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature16961
SSID ssj0001817983
Score 2.3179543
Snippet Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1293
SubjectTerms Artificial intelligence
Bend radius
Biocompatibility
Computer simulation
Learning
Neural networks
Pattern recognition
Synapses
Title Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments
URI https://www.proquest.com/docview/2307073502
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZr-rI9jO5HWbpuCLaXsXmzLduxHkvoyErXpxS6J2PJJ5IynBCnjPav750t2SrLYNuLCbIsjO7z6U657xNj72FCwmVhHmghIUg0JihlIqlySgKuUEbolj72_SKbXSZnV-nVUKfbsku26rO-28kr-R-rYhvalViy_2DZflBswN9oX7yihfH6Vzam_PGWTnmoGyok7yQEDElcEh-KtsR_lW1N4QpDwua2LtcNWDrbutXVJC6LLSDqSh67Q570A_6bH7-iM141aFb4uFhtlndur6_dke-8xhzxFvy46Q0JtuR3WQbnyx6Js-5fkQX4faeWKeL62c2ISFpWXu-z4jAlLkNq1a39tk6s3DndxMOW70Ap_PAW46hbIn7z86EgmVQt6wUJ7ETXw2rW1xgON_fYfoxJRDxi-yen82_nwx5cTnJtVITQv7dTsBXyyzDAw5hlSET2Nu6UmDYamR-wpzaN4CcdJp6xR1A_Z088cckXrGrRwT10fOIOGxyxwQdscIcNTtjgFhvcwwZf1txig_vYeMkuv57Op7PAnqmBH2M42QYgwcRlJVKFcZqOVJVh_g0hTACkCqXOjYAIxCTRkEW5Qj8TZ9KIDDBwVkKU4pCN6lUNrxiXUWVKScxqbRJhTJngOKJSaa5DBVk4Zh_crBXaCs7TuSc_i7bwQchiKi9m7Qyfjdm7vu-6k1nZ2evYTX5hP8OmICYDrlNpGI_ZIRqkf36w35gd7b5RrCtz9KenXrPHA8SP2Wi7uYE3GIFu1VsLpHt0nosO
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+transparent%2C+flexible+and+waterproof+synapses+with+pattern+recognition+in+organic+environments&rft.jtitle=Nanoscale+horizons&rft.au=Wang%2C+Tian-Yu&rft.au=Meng%2C+Jia-Lin&rft.au=He%2C+Zhen-Yu&rft.au=Chen%2C+Lin&rft.date=2019-11-01&rft.issn=2055-6756&rft.eissn=2055-6764&rft.volume=4&rft.issue=6&rft.spage=1293&rft.epage=131&rft_id=info:doi/10.1039%2Fc9nh00341j&rft.externalDocID=c9nh00341j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon