Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments
Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organi...
Saved in:
Published in | Nanoscale horizons Vol. 4; no. 6; pp. 1293 - 131 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organic solutions. In the present work, a stable waterproof artificial synapse based on a fully transparent electronic device, suitable for wearable applications in organic environments is for the first time demonstrated. Essential synaptic behaviors, including paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning-forgetting-relearning, were successfully emulated. The artificial synaptic device could achieve an optical transmittance of ∼87.5% in the visible light range, which demonstrated reliable long-term potentiation/depression under bent states with a bending radius of 5 mm. After being immersed in water and 5 types of common organic solvents for over 12 hours, the e-synapse could function with 6000 spikes without noticeable degradation in the organic environment. The neural network was constructed from e-synapses with controllable weights update and a device-to-system level simulation framework was developed with a recognition rate of 92.4%, which demonstrated the feasibility of highly transparent, biocompatible, flexible, and waterproof e-synapses used in artificial intelligence systems.
Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. |
---|---|
AbstractList | Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organic solutions. In the present work, a stable waterproof artificial synapse based on a fully transparent electronic device, suitable for wearable applications in organic environments is for the first time demonstrated. Essential synaptic behaviors, including paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning–forgetting–relearning, were successfully emulated. The artificial synaptic device could achieve an optical transmittance of ∼87.5% in the visible light range, which demonstrated reliable long-term potentiation/depression under bent states with a bending radius of 5 mm. After being immersed in water and 5 types of common organic solvents for over 12 hours, the e-synapse could function with 6000 spikes without noticeable degradation in the organic environment. The neural network was constructed from e-synapses with controllable weights update and a device-to-system level simulation framework was developed with a recognition rate of 92.4%, which demonstrated the feasibility of highly transparent, biocompatible, flexible, and waterproof e-synapses used in artificial intelligence systems. Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. However, all transparent and flexible organic e-synapses have the disadvantage of being easily dissolvable in water or organic solutions. In the present work, a stable waterproof artificial synapse based on a fully transparent electronic device, suitable for wearable applications in organic environments is for the first time demonstrated. Essential synaptic behaviors, including paired-pulse facilitation (PPF), long-term potentiation/depression (LTP/LTD), and learning-forgetting-relearning, were successfully emulated. The artificial synaptic device could achieve an optical transmittance of ∼87.5% in the visible light range, which demonstrated reliable long-term potentiation/depression under bent states with a bending radius of 5 mm. After being immersed in water and 5 types of common organic solvents for over 12 hours, the e-synapse could function with 6000 spikes without noticeable degradation in the organic environment. The neural network was constructed from e-synapses with controllable weights update and a device-to-system level simulation framework was developed with a recognition rate of 92.4%, which demonstrated the feasibility of highly transparent, biocompatible, flexible, and waterproof e-synapses used in artificial intelligence systems. Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and memory functions. |
Author | Wang, Tian-Yu Sun, Qing-Qing Chen, Lin Ding, Shi-Jin Zhang, David Wei Meng, Jia-Lin He, Zhen-Yu Zhou, Peng Zhu, Hao |
AuthorAffiliation | Fudan University State Key Laboratory of ASIC and System School of Microelectronics |
AuthorAffiliation_xml | – name: State Key Laboratory of ASIC and System – name: School of Microelectronics – name: Fudan University |
Author_xml | – sequence: 1 givenname: Tian-Yu surname: Wang fullname: Wang, Tian-Yu – sequence: 2 givenname: Jia-Lin surname: Meng fullname: Meng, Jia-Lin – sequence: 3 givenname: Zhen-Yu surname: He fullname: He, Zhen-Yu – sequence: 4 givenname: Lin surname: Chen fullname: Chen, Lin – sequence: 5 givenname: Hao surname: Zhu fullname: Zhu, Hao – sequence: 6 givenname: Qing-Qing surname: Sun fullname: Sun, Qing-Qing – sequence: 7 givenname: Shi-Jin surname: Ding fullname: Ding, Shi-Jin – sequence: 8 givenname: Peng surname: Zhou fullname: Zhou, Peng – sequence: 9 givenname: David Wei surname: Zhang fullname: Zhang, David Wei |
BookMark | eNp9UUtLAzEQDlLBWnvxLkS8iavJZl85SrFWKXrR85LNzrYp22RNUmv_vamVCiKeZuB7zMw3x6injQaETim5poTxG8n1nBCW0MUB6sckTaMsz5Levk-zIzR0bkEIoQXNecH6qB6v2naDvRXadcKC9le4aeFDVS1goWu8Fh5sZ41psNto0TlweK38HHfCB0RjC9LMtPLKaKw0NnYmtJIY9LuyRi-DoztBh41oHQy_6wC9ju9eRpNo-nz_MLqdRpKR3EfAoYlFzdKqSJmkVZ3FCQcCOQCvCJdFw4ACyxMJGS0qEHWc8YZlEGdJxZhgA3Sx8w37vq3A-XJhVlaHkWUcJpCcpSQOrMsdS1rjnIWm7KxaCrspKSm3QZYj_jT5CvIxkMkvslRebI8Nkan2b8nZTmKd3Fv__Cbg5__hZVc37BNfJ48p |
CitedBy_id | crossref_primary_10_1039_D1TC00987G crossref_primary_10_1007_s11432_023_3835_4 crossref_primary_10_1016_j_jmst_2020_04_059 crossref_primary_10_1039_D2NR05720D crossref_primary_10_1109_LED_2019_2956282 crossref_primary_10_1016_j_nanoen_2021_106291 crossref_primary_10_1002_admt_202200193 crossref_primary_10_1088_1361_6528_ac3687 crossref_primary_10_1021_acs_nanolett_9b05271 crossref_primary_10_1002_adfm_202107314 crossref_primary_10_1021_acsami_0c10851 crossref_primary_10_1002_aisy_202200287 crossref_primary_10_1039_D4TC00674G crossref_primary_10_1002_adfm_202101951 crossref_primary_10_1002_advs_202201117 crossref_primary_10_1002_inf2_12158 crossref_primary_10_1063_5_0124217 crossref_primary_10_1002_advs_202303735 crossref_primary_10_1039_D1NH00452B crossref_primary_10_3390_electronics12071596 crossref_primary_10_1007_s12274_021_3899_5 crossref_primary_10_1002_aisy_202200053 crossref_primary_10_1039_D3TC00687E crossref_primary_10_1002_EXP_20220150 crossref_primary_10_1088_1674_4926_24040038 crossref_primary_10_1002_adfm_202401228 crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1039_D0NR00919A crossref_primary_10_1016_j_isci_2020_101889 crossref_primary_10_1039_D4TC00704B crossref_primary_10_1021_acsami_2c11183 crossref_primary_10_1039_C9TC02802A crossref_primary_10_1039_D0MH01730B crossref_primary_10_1039_D2NH00158F crossref_primary_10_1063_5_0180651 crossref_primary_10_1109_LED_2019_2934895 crossref_primary_10_1002_aelm_202300437 crossref_primary_10_1016_j_nanoen_2022_107898 crossref_primary_10_1021_acsanm_4c00759 crossref_primary_10_1021_acsnano_0c10049 crossref_primary_10_1039_D2NH00524G crossref_primary_10_1007_s10853_020_05560_z |
Cites_doi | 10.1021/acsami.7b19406 10.1021/ma9905674 10.1002/aelm.201700665 10.1002/aelm.201600529 10.1002/adma.201502574 10.1002/adfm.201706010 10.1002/adma.201802883 10.1002/adma.201801548 10.1038/nmat4856 10.1039/C8TA05234D 10.1038/nmat4756 10.1038/nature06289 10.1063/1.5027776 10.1038/nnano.2007.151 10.1021/acsnano.7b03347 10.1002/adma.201500315 10.1002/adfm.201800854 10.1021/acsami.7b16330 10.1007/s12274-017-1781-2 10.1126/sciadv.1501136 10.1002/advs.201700442 10.1021/acsami.8b16841 10.1002/adma.201803961 10.1021/acsami.6b12991 10.1002/adma.201704002 10.1038/nature23658 10.1002/adfm.201502499 10.1002/adma.201502719 10.1126/science.1254642 10.1002/aelm.201800195 10.1016/j.seppur.2013.10.029 10.1021/acsnano.6b07894 10.1109/MM.2017.4241350 10.1039/C6NR08687J 10.1038/srep44429 10.1016/j.orgel.2018.06.019 10.1088/1361-6528/28/2/025303 10.1002/adfm.201801690 10.1002/aelm.201500298 10.1002/adfm.201700702 10.1039/C8NR05336G 10.1039/C8NR04734K 10.1016/j.matlet.2010.12.024 10.1002/aelm.201800444 10.1002/adma.200700086 10.1016/j.synthmet.2010.05.033 10.1021/nn202983n 10.1002/adma.201304821 10.1021/acs.nanolett.5b03882 10.1021/acsami.8b10870 10.1002/adfm.201800553 10.1038/s41467-017-00803-1 10.1016/j.orgel.2012.05.044 10.1038/nature16961 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1039/c9nh00341j |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-6764 |
EndPage | 131 |
ExternalDocumentID | 10_1039_C9NH00341J c9nh00341j |
GroupedDBID | 0R AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ADMRA AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUNWK BLAPV C6K CKLOX EBS ECGLT EJD O9- RCNCU RIG RPMJG RRC RSCEA 0R~ AAJAE AARTK AAXHV AAYXX ABASK ABJNI ABPDG AEFDR AENGV AETIL AFOGI AFRZK AGEGJ AGRSR AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 RAOCF RVUXY 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
ID | FETCH-LOGICAL-c307t-e9ef2ad35b853c1bd6249e0e7ee9b09c8f3e1e374ce618bead269f36e264b33a3 |
ISSN | 2055-6756 2055-6764 |
IngestDate | Mon Jun 30 04:58:37 EDT 2025 Tue Jul 01 01:45:36 EDT 2025 Thu Apr 24 23:07:15 EDT 2025 Sat Jan 08 03:27:04 EST 2022 Wed Nov 11 00:25:30 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-e9ef2ad35b853c1bd6249e0e7ee9b09c8f3e1e374ce618bead269f36e264b33a3 |
Notes | 10.1039/c9nh00341j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7145-7564 0000-0002-5766-089X |
PQID | 2307073502 |
PQPubID | 2047513 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_C9NH00341J rsc_primary_c9nh00341j proquest_journals_2307073502 crossref_citationtrail_10_1039_C9NH00341J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale horizons |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yang (C9NH00341J-(cit6)/*[position()=1]) 2018; 30 Park (C9NH00341J-(cit1)/*[position()=1]) 2017; 11 Bong (C9NH00341J-(cit8)/*[position()=1]) 2017; 37 Zhou (C9NH00341J-(cit46)/*[position()=1]) 2010; 160 Kim (C9NH00341J-(cit23)/*[position()=1]) 2017; 27 Ali (C9NH00341J-(cit15)/*[position()=1]) 2017; 28 Ho (C9NH00341J-(cit19)/*[position()=1]) 2017; 7 Yan (C9NH00341J-(cit54)/*[position()=1]) 2018; 113 Wang (C9NH00341J-(cit26)/*[position()=1]) 2013; 120 Stavrinidou (C9NH00341J-(cit29)/*[position()=1]) 2015; 1 Wang (C9NH00341J-(cit5)/*[position()=1]) 2018; 30 Garreau (C9NH00341J-(cit45)/*[position()=1]) 1999; 32 Merolla (C9NH00341J-(cit3)/*[position()=1]) 2014; 345 Wang (C9NH00341J-(cit21)/*[position()=1]) 2018; 30 Chia (C9NH00341J-(cit44)/*[position()=1]) 2007; 19 Wu (C9NH00341J-(cit43)/*[position()=1]) 2017; 4 Wang (C9NH00341J-(cit50)/*[position()=1]) 2018; 10 Kumar (C9NH00341J-(cit41)/*[position()=1]) 2018; 10 Yu (C9NH00341J-(cit49)/*[position()=1]) 2015 Raeis-Hosseini (C9NH00341J-(cit4)/*[position()=1]) 2018; 28 Wang (C9NH00341J-(cit27)/*[position()=1]) 2011; 65 Shang (C9NH00341J-(cit18)/*[position()=1]) 2017; 9 Kim (C9NH00341J-(cit56)/*[position()=1]) 2017; 11 Lübben (C9NH00341J-(cit24)/*[position()=1]) 2015; 27 Chang (C9NH00341J-(cit52)/*[position()=1]) 2011; 5 Yoon (C9NH00341J-(cit14)/*[position()=1]) 2018; 4 Silver (C9NH00341J-(cit7)/*[position()=1]) 2016; 529 Kim (C9NH00341J-(cit9)/*[position()=1]) 2016; 16 Lee (C9NH00341J-(cit16)/*[position()=1]) 2018; 28 Ko (C9NH00341J-(cit57)/*[position()=1]) 2017; 9 Froemke (C9NH00341J-(cit36)/*[position()=1]) 2007; 450 Chung (C9NH00341J-(cit48)/*[position()=1]) 2018 Hwang (C9NH00341J-(cit13)/*[position()=1]) 2014; 26 Wang (C9NH00341J-(cit37)/*[position()=1]) 2016; 16 Zheng (C9NH00341J-(cit10)/*[position()=1]) 2015; 25 Chen (C9NH00341J-(cit22)/*[position()=1]) 2018; 4 Zheng (C9NH00341J-(cit34)/*[position()=1]) 2018; 62 Liu (C9NH00341J-(cit20)/*[position()=1]) 2015; 27 Yang (C9NH00341J-(cit39)/*[position()=1]) 2018; 10 Penn (C9NH00341J-(cit38)/*[position()=1]) 2017; 549 Ricciardulli (C9NH00341J-(cit31)/*[position()=1]) 2018; 28 Yan (C9NH00341J-(cit11)/*[position()=1]) 2018; 11 Wu (C9NH00341J-(cit2)/*[position()=1]) 2017; 8 Liu (C9NH00341J-(cit51)/*[position()=1]) 2015; 2 He (C9NH00341J-(cit28)/*[position()=1]) 2012; 13 Chen (C9NH00341J-(cit53)/*[position()=1]) 2018; 10 Zhong (C9NH00341J-(cit55)/*[position()=1]) 2018; 28 Hu (C9NH00341J-(cit33)/*[position()=1]) 2018; 6 Ju (C9NH00341J-(cit42)/*[position()=1]) 2007; 2 Kumar (C9NH00341J-(cit12)/*[position()=1]) 2018; 10 Choi (C9NH00341J-(cit32)/*[position()=1]) 2018; 30 Palumbiny (C9NH00341J-(cit35)/*[position()=1]) 2015; 27 Morales-Masis (C9NH00341J-(cit40)/*[position()=1]) 2017; 3 Jerry (C9NH00341J-(cit47)/*[position()=1]) 2017 van de Burgt (C9NH00341J-(cit30)/*[position()=1]) 2017; 16 Zhang (C9NH00341J-(cit17)/*[position()=1]) 2018; 4 Liao (C9NH00341J-(cit25)/*[position()=1]) 2017; 9 |
References_xml | – volume: 10 start-page: 12768 year: 2018 ident: C9NH00341J-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19406 – volume: 32 start-page: 6807 year: 1999 ident: C9NH00341J-(cit45)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma9905674 – volume: 4 start-page: 1700665 year: 2018 ident: C9NH00341J-(cit14)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700665 – volume: 3 start-page: 1600529 year: 2017 ident: C9NH00341J-(cit40)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600529 – volume: 27 start-page: 6202 year: 2015 ident: C9NH00341J-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502574 – volume: 28 start-page: 1706010 year: 2018 ident: C9NH00341J-(cit31)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706010 – volume: 30 start-page: 1802883 year: 2018 ident: C9NH00341J-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802883 – volume: 30 start-page: 1801548 year: 2018 ident: C9NH00341J-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201801548 – volume: 16 start-page: 414 year: 2017 ident: C9NH00341J-(cit30)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4856 – volume: 6 start-page: 16583 year: 2018 ident: C9NH00341J-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05234D – volume: 16 start-page: 101 year: 2016 ident: C9NH00341J-(cit37)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4756 – volume: 450 start-page: 425 year: 2007 ident: C9NH00341J-(cit36)/*[position()=1] publication-title: Nature doi: 10.1038/nature06289 – start-page: 2 year: 2017 ident: C9NH00341J-(cit47)/*[position()=1] publication-title: Int. Electron Devices Meet. – volume: 113 start-page: 13503 year: 2018 ident: C9NH00341J-(cit54)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5027776 – volume: 2 start-page: 378 year: 2007 ident: C9NH00341J-(cit42)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.151 – volume: 11 start-page: 8962 year: 2017 ident: C9NH00341J-(cit1)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b03347 – volume: 27 start-page: 3391 year: 2015 ident: C9NH00341J-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500315 – volume: 28 start-page: 1800854 year: 2018 ident: C9NH00341J-(cit55)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800854 – volume: 9 start-page: 43004 year: 2017 ident: C9NH00341J-(cit57)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16330 – volume: 11 start-page: 1183 year: 2018 ident: C9NH00341J-(cit11)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-017-1781-2 – volume: 1 start-page: e1501136 year: 2015 ident: C9NH00341J-(cit29)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1501136 – volume: 4 start-page: 1700442 year: 2017 ident: C9NH00341J-(cit43)/*[position()=1] publication-title: Advanced Science doi: 10.1002/advs.201700442 – volume: 10 start-page: 37345 year: 2018 ident: C9NH00341J-(cit50)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16841 – volume: 30 start-page: 1803961 year: 2018 ident: C9NH00341J-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803961 – volume: 9 start-page: 4151 year: 2017 ident: C9NH00341J-(cit25)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12991 – volume: 30 start-page: 1704002 year: 2018 ident: C9NH00341J-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704002 – volume: 549 start-page: 384 year: 2017 ident: C9NH00341J-(cit38)/*[position()=1] publication-title: Nature doi: 10.1038/nature23658 – volume: 25 start-page: 5885 year: 2015 ident: C9NH00341J-(cit10)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502499 – volume: 27 start-page: 5599 year: 2015 ident: C9NH00341J-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502719 – volume: 345 start-page: 668 year: 2014 ident: C9NH00341J-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1254642 – volume: 4 start-page: 1800195 year: 2018 ident: C9NH00341J-(cit17)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800195 – volume: 120 start-page: 402 year: 2013 ident: C9NH00341J-(cit26)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.10.029 – volume: 11 start-page: 2814 year: 2017 ident: C9NH00341J-(cit56)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b07894 – volume: 37 start-page: 30 year: 2017 ident: C9NH00341J-(cit8)/*[position()=1] publication-title: IEEE Micro doi: 10.1109/MM.2017.4241350 – volume: 9 start-page: 7037 year: 2017 ident: C9NH00341J-(cit18)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR08687J – volume: 7 start-page: 44429 year: 2017 ident: C9NH00341J-(cit19)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep44429 – volume: 62 start-page: 491 year: 2018 ident: C9NH00341J-(cit34)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.06.019 – volume: 28 start-page: 25303 year: 2017 ident: C9NH00341J-(cit15)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/28/2/025303 – volume: 28 start-page: 1801690 year: 2018 ident: C9NH00341J-(cit16)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801690 – volume: 2 start-page: 1500298 year: 2015 ident: C9NH00341J-(cit51)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500298 – volume: 27 start-page: 1700702 year: 2017 ident: C9NH00341J-(cit23)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700702 – start-page: 13 year: 2015 ident: C9NH00341J-(cit49)/*[position()=1] publication-title: Int. Electron Devices Meet. – volume: 10 start-page: 18135 year: 2018 ident: C9NH00341J-(cit39)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR05336G – start-page: 12 year: 2018 ident: C9NH00341J-(cit48)/*[position()=1] publication-title: Int. Electron Devices Meet. – volume: 10 start-page: 15826 year: 2018 ident: C9NH00341J-(cit53)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR04734K – volume: 65 start-page: 869 year: 2011 ident: C9NH00341J-(cit27)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.12.024 – volume: 4 start-page: 1800444 year: 2018 ident: C9NH00341J-(cit22)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800444 – volume: 19 start-page: 4202 year: 2007 ident: C9NH00341J-(cit44)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200700086 – volume: 160 start-page: 1636 year: 2010 ident: C9NH00341J-(cit46)/*[position()=1] publication-title: Synth. Methods doi: 10.1016/j.synthmet.2010.05.033 – volume: 5 start-page: 7669 year: 2011 ident: C9NH00341J-(cit52)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202983n – volume: 26 start-page: 1992 year: 2014 ident: C9NH00341J-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304821 – volume: 16 start-page: 334 year: 2016 ident: C9NH00341J-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03882 – volume: 10 start-page: 34370 year: 2018 ident: C9NH00341J-(cit12)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10870 – volume: 28 start-page: 1800553 year: 2018 ident: C9NH00341J-(cit4)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800553 – volume: 8 start-page: 752 year: 2017 ident: C9NH00341J-(cit2)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00803-1 – volume: 13 start-page: 1819 year: 2012 ident: C9NH00341J-(cit28)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2012.05.044 – volume: 529 start-page: 484 year: 2016 ident: C9NH00341J-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature16961 |
SSID | ssj0001817983 |
Score | 2.3179543 |
Snippet | Artificial intelligence applications require bio-inspired neuromorphic systems that consist of electronic synapses (e-synapses) able to perform learning and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1293 |
SubjectTerms | Artificial intelligence Bend radius Biocompatibility Computer simulation Learning Neural networks Pattern recognition Synapses |
Title | Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments |
URI | https://www.proquest.com/docview/2307073502 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZr-rI9jO5HWbpuCLaXsXmzLduxHkvoyErXpxS6J2PJJ5IynBCnjPav750t2SrLYNuLCbIsjO7z6U657xNj72FCwmVhHmghIUg0JihlIqlySgKuUEbolj72_SKbXSZnV-nVUKfbsku26rO-28kr-R-rYhvalViy_2DZflBswN9oX7yihfH6Vzam_PGWTnmoGyok7yQEDElcEh-KtsR_lW1N4QpDwua2LtcNWDrbutXVJC6LLSDqSh67Q570A_6bH7-iM141aFb4uFhtlndur6_dke-8xhzxFvy46Q0JtuR3WQbnyx6Js-5fkQX4faeWKeL62c2ISFpWXu-z4jAlLkNq1a39tk6s3DndxMOW70Ap_PAW46hbIn7z86EgmVQt6wUJ7ETXw2rW1xgON_fYfoxJRDxi-yen82_nwx5cTnJtVITQv7dTsBXyyzDAw5hlSET2Nu6UmDYamR-wpzaN4CcdJp6xR1A_Z088cckXrGrRwT10fOIOGxyxwQdscIcNTtjgFhvcwwZf1txig_vYeMkuv57Op7PAnqmBH2M42QYgwcRlJVKFcZqOVJVh_g0hTACkCqXOjYAIxCTRkEW5Qj8TZ9KIDDBwVkKU4pCN6lUNrxiXUWVKScxqbRJhTJngOKJSaa5DBVk4Zh_crBXaCs7TuSc_i7bwQchiKi9m7Qyfjdm7vu-6k1nZ2evYTX5hP8OmICYDrlNpGI_ZIRqkf36w35gd7b5RrCtz9KenXrPHA8SP2Wi7uYE3GIFu1VsLpHt0nosO |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+transparent%2C+flexible+and+waterproof+synapses+with+pattern+recognition+in+organic+environments&rft.jtitle=Nanoscale+horizons&rft.au=Wang%2C+Tian-Yu&rft.au=Meng%2C+Jia-Lin&rft.au=He%2C+Zhen-Yu&rft.au=Chen%2C+Lin&rft.date=2019-11-01&rft.issn=2055-6756&rft.eissn=2055-6764&rft.volume=4&rft.issue=6&rft.spage=1293&rft.epage=131&rft_id=info:doi/10.1039%2Fc9nh00341j&rft.externalDocID=c9nh00341j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-6756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-6756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-6756&client=summon |