Ensemble learning approach for detecting breast invasive ductal carcinoma from histopathological images
Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-obser...
Saved in:
Published in | Pathology, research and practice Vol. 272; p. 156041 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes. |
---|---|
AbstractList | Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes. Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes.Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes. |
ArticleNumber | 156041 |
Author | Bora, Kangkana Shekhar Das, Himanish Borah, Kasmika |
Author_xml | – sequence: 1 givenname: Himanish surname: Shekhar Das fullname: Shekhar Das, Himanish email: himanish.das@cottonuniversity.ac.in – sequence: 2 givenname: Kasmika surname: Borah fullname: Borah, Kasmika – sequence: 3 givenname: Kangkana surname: Bora fullname: Bora, Kangkana email: kangkana.bora@cottonuniversity.ac.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40460639$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOwzAQRS1URFvgA9ggL9mkjOM4D7FCVXlISGxgbTnOpHWV2MFOK_H3uGphyWpGo3NHc-fOycQ6i4TcMFgwYPn9djH4YZFCKhZM5JCxMzJjOSsTyDmbkBnwLEuA83JK5iFsAaCI0AWZZpDlkalmZL2yAfu6Q9qh8tbYNVXD4J3SG9o6TxscUY-Hce1RhZEau1fB7JE2Oz2qjmrltbGuV7T1rqcbE0Y3qHHjOrc2OgKmV2sMV-S8VV3A61O9JJ9Pq4_lS_L2_vy6fHxLNIdiTLBCrhtRCw1FXecCW-BNVUFalYwVJbJW1QJSLFLgsc_SSqdYclVgi1kpan5J7o57o4evHYZR9iZo7Dpl0e2C5CkTooCC8YjentBd3WMjBx9P9d_y9zkRYEdAexeCx_YPYSAPAchtnAzyEIA8BhA1D0cNRpN7g14GbdBqbIyPj5SNM_-ofwCrho7G |
Cites_doi | 10.1002/cncr.35188 10.4103/0973-1482.126448 10.1016/B978-012119792-6/50130-3 10.1007/978-981-16-2641-8_8 10.1016/j.compbiomed.2013.08.003 10.1145/3700906.3700937 10.1109/IMSA58542.2023.10217501 10.1109/TBME.2015.2496264 10.3390/s22020669 10.1007/s00521-023-08484-2 10.1038/s41598-023-30480-8 10.3389/fgene.2022.1097207 10.1007/978-981-15-6329-4_39 10.1109/IJCNN.2016.7727519 10.3390/math10214126 10.1016/j.eswa.2018.09.049 10.1016/j.compbiomed.2021.104253 10.1007/s00138-012-0459-8 10.1109/TCBB.2022.3174091 10.1007/s00268-010-0683-1 10.7326/M15-0964 10.1007/s11704-019-8208-z 10.1109/RBME.2009.2034865 10.1109/ICMTMA.2019.00157 10.1016/j.jnlest.2022.100161 10.3390/diagnostics14192253 10.1109/TMI.2013.2275151 10.1016/j.amjsurg.2003.12.039 10.1109/ICPR.2016.7900002 10.1109/TPAMI.2013.50 |
ContentType | Journal Article |
Copyright | 2025 Elsevier GmbH Copyright © 2025 Elsevier GmbH. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier GmbH – notice: Copyright © 2025 Elsevier GmbH. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.prp.2025.156041 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1618-0631 |
ExternalDocumentID | 40460639 10_1016_j_prp_2025_156041 S0344033825002341 |
Genre | Journal Article |
GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 123 1B1 1~. 1~5 29O 3O- 4.4 457 4CK 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 88I 8AF 8FE 8FH 8FI 8FJ 8G5 8P~ 8R4 8R5 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AAKPP AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABLJU ABMAC ABMZM ABUDA ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACGOD ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADKUU ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKOJK BLC BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IHE J1W K-O KOM L7B LK8 M1P M2O M2P M2Q M41 M7P MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PADUT PC. PEA PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRG PROAC PSQYO PUEGO Q2X Q38 R2- ROL RPZ S0X SDF SDG SES SEW SJFOW SSH SSU SSZ T5I T5J T5K UDS UKHRP X7M ZGI ZXP ~G- AAYXX AGRNS ALIPV CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c307t-e9e3cd5b5c07bb65ef03d9902981178e1fab502e72031fa429c2e83a7efe485b3 |
IEDL.DBID | .~1 |
ISSN | 0344-0338 1618-0631 |
IngestDate | Fri Jul 11 17:09:28 EDT 2025 Tue Jul 22 01:41:52 EDT 2025 Thu Jul 31 00:43:25 EDT 2025 Sat Aug 30 17:12:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ensemble Learning Breast cancer Histopathology Deep Learning Image classification |
Language | English |
License | Copyright © 2025 Elsevier GmbH. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-e9e3cd5b5c07bb65ef03d9902981178e1fab502e72031fa429c2e83a7efe485b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 40460639 |
PQID | 3215570713 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3215570713 pubmed_primary_40460639 crossref_primary_10_1016_j_prp_2025_156041 elsevier_sciencedirect_doi_10_1016_j_prp_2025_156041 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Pathology, research and practice |
PublicationTitleAlternate | Pathol Res Pract |
PublicationYear | 2025 |
Publisher | Elsevier GmbH |
Publisher_xml | – name: Elsevier GmbH |
References | Arzanova, Mayrovitz (bib2) 2022 Aug 6 Dong, Yu, Cao, Shi, Ma (bib30) 2020 Apr; 14 Kowal, Filipczuk, Obuchowicz, Korbicz, Monczak (bib13) 2013; 43 Yasemın (bib11) 2024; 14 Garg, Singh (bib12) 2023 Mar-Apr; 20 George, Anna, Evanthia, Vassilios (bib5) 2013 Oct 1; 9 Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016. Bora, Mahanta, Borah, Chyrmang, Barua, Mallik, Das, Zhao (bib26) 2022 Nov 4; 10 Elmore, Nelson, Pepe, Longton, Tosteson, Geller, Onega, Carney, Jackson, Allison, Weaver (bib8) 2016 May 17; 164 Zhang, Zhang, Coenen, Lu (bib15) 2012; 24 Olimov, Subramanian, Ugli (bib29) 2023; 13 Nadeen, Amgad., Mariam, Ahmed., Haidy, Haitham., Moamen, Zaher., Ammar, Mohammed. (2023). 1. A Robust Ensemble Deep Learning Approach for Breast Cancer Diagnosis. doi: 10.1109/imsa58542.2023.10217501. Das, Das, Neog, Mallik, Bora, Zhao (bib27) 2023 Jan 4; 13 Sayın İ., Soydaş M.A., Mert Y.E., Yarkataş A., Ergun B., Yeh S.S., Üvet H. Comparative Analysis of Deep Learning Architectures for Breast Cancer Diagnosis Using the BreaKHis Dataset. arXiv preprint arXiv:2309.01007. 2023 Sep 2. Li, Li, Sisk, Ye, Wallace, Speier, Arnold (bib22) 2021 Apr; 131 Rai R., Sisodia D.S. Real-time data augmentation based transfer learning model for breast cancer diagnosis using histopathological images. In Advances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018 2021 (pp. 473-488). Springer Singapore. Mukesh, Likhita, Yamini (bib25) 2023 Jul 14 Filipczuk, Fevens, Krzyzak, Monczak (bib14) 2013; 32 Bengio, Courville, Vincent (bib16) 2013; 35 Rana, Bhushan (bib36) 2023 Jul; 35 Leong, Shen, Liu, Agarwal, Tajima, Paik, Sandelin, Derossis, Cody, Foulkes (bib1) 2010 Oct; 34 Sudharshan, Petitjean, Spanhol, Oliveira, Heutte, Honeine (bib6) 2019 Mar 1; 117 Salama, Aly (bib23) 2022 Sep 1; 20 Ju Y., Wang X., Chen X. Research on OMR recognition based on convolutional neural network tensorflow platform. In 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 2019 Apr 28 (pp. 688-691). IEEE. Spanhol, Oliveira, Petitjean, Heutte (bib17) 2016; 63 Agarwal P., Yadav A., Mathur P. Breast cancer prediction on breakhis dataset using deep cnn and transfer learning model. InData Engineering for Smart Systems: Proceedings of SSIC 2021 2022 (pp. 77-88). Springer Singapore. Gurcan, Boucheron, Can, Madabhushi, Rajpoot, Yener (bib21) 2009; 2 Sampat, Markey, Bovik (bib9) 2005; 2.1 Sathishkumar, Sankarapillai, Mathew, Nair, Gangane, Khuraijam, Barmon, Pandya, Majumdar, Deshmane, Zomawia (bib3) 2024 May 15; 130 Komenaka, El-Tamer, Troxel, Hamele-Bena, Joseph, Horowitz, Ditkoff, Schnabel (bib4) 2004 Apr 1; 187 Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. Khan, Aslam, Anwar, Alsaif, Chrouf, Alzahrani, Alamoudi, Kamaleldin, Awary (bib24) 2022 Jan 16; 22 Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016. Wang W., Li Y., Yan X., Xiao M., Gao M. Breast cancer image classification method based on deep transfer learning. In Proceedings of the International Conference on Image Processing, Machine Learning and Pattern Recognition 2024 Sep 13 (pp. 190-197). Tseng, Matsuyama, MacDonald-Dickinson (bib7) 2023 Apr; 64 Dietterich (bib28) 2002 Mar; 2 10.1016/j.prp.2025.156041_bib34 Spanhol (10.1016/j.prp.2025.156041_bib17) 2016; 63 10.1016/j.prp.2025.156041_bib33 10.1016/j.prp.2025.156041_bib35 Arzanova (10.1016/j.prp.2025.156041_bib2) 2022 10.1016/j.prp.2025.156041_bib10 10.1016/j.prp.2025.156041_bib32 Leong (10.1016/j.prp.2025.156041_bib1) 2010; 34 10.1016/j.prp.2025.156041_bib31 10.1016/j.prp.2025.156041_bib19 Sathishkumar (10.1016/j.prp.2025.156041_bib3) 2024; 130 Das (10.1016/j.prp.2025.156041_bib27) 2023; 13 Kowal (10.1016/j.prp.2025.156041_bib13) 2013; 43 10.1016/j.prp.2025.156041_bib18 Zhang (10.1016/j.prp.2025.156041_bib15) 2012; 24 Elmore (10.1016/j.prp.2025.156041_bib8) 2016; 164 Dong (10.1016/j.prp.2025.156041_bib30) 2020; 14 Li (10.1016/j.prp.2025.156041_bib22) 2021; 131 Rana (10.1016/j.prp.2025.156041_bib36) 2023; 35 Komenaka (10.1016/j.prp.2025.156041_bib4) 2004; 187 Sampat (10.1016/j.prp.2025.156041_bib9) 2005; 2.1 George (10.1016/j.prp.2025.156041_bib5) 2013; 9 10.1016/j.prp.2025.156041_bib20 Gurcan (10.1016/j.prp.2025.156041_bib21) 2009; 2 Bora (10.1016/j.prp.2025.156041_bib26) 2022; 10 Dietterich (10.1016/j.prp.2025.156041_bib28) 2002; 2 Khan (10.1016/j.prp.2025.156041_bib24) 2022; 22 Bengio (10.1016/j.prp.2025.156041_bib16) 2013; 35 Sudharshan (10.1016/j.prp.2025.156041_bib6) 2019; 117 Tseng (10.1016/j.prp.2025.156041_bib7) 2023; 64 Yasemın (10.1016/j.prp.2025.156041_bib11) 2024; 14 Olimov (10.1016/j.prp.2025.156041_bib29) 2023; 13 Garg (10.1016/j.prp.2025.156041_bib12) 2023; 20 Filipczuk (10.1016/j.prp.2025.156041_bib14) 2013; 32 Salama (10.1016/j.prp.2025.156041_bib23) 2022; 20 Mukesh (10.1016/j.prp.2025.156041_bib25) 2023 |
References_xml | – volume: 43 start-page: 1563 year: 2013 end-page: 1572 ident: bib13 article-title: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images publication-title: Comput. Biol. Med. – reference: Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016. – start-page: 1 year: 2022 Aug 6 end-page: 9 ident: bib2 article-title: The Epidemiology of Breast Cancer – reference: Ju Y., Wang X., Chen X. Research on OMR recognition based on convolutional neural network tensorflow platform. In 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 2019 Apr 28 (pp. 688-691). IEEE. – volume: 117 start-page: 103 year: 2019 Mar 1 end-page: 111 ident: bib6 article-title: Multiple instance learning for histopathological breast cancer image classification publication-title: Expert Syst. Appl. – reference: Nadeen, Amgad., Mariam, Ahmed., Haidy, Haitham., Moamen, Zaher., Ammar, Mohammed. (2023). 1. A Robust Ensemble Deep Learning Approach for Breast Cancer Diagnosis. doi: 10.1109/imsa58542.2023.10217501. – volume: 63 start-page: 1455 year: 2016 end-page: 1462 ident: bib17 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 564 year: 2013 Oct 1 end-page: 570 ident: bib5 article-title: Encapsulated papillary carcinoma of the breast: an overview publication-title: J. Cancer Res. Ther. – volume: 131 year: 2021 Apr ident: bib22 article-title: A multi-resolution model for histopathology image classification and localization with multiple instance learning publication-title: Comput. Biol. Med – volume: 35 start-page: 14243 year: 2023 Jul end-page: 14257 ident: bib36 article-title: Classifying breast cancer using transfer learning models based on histopathological images publication-title: Neural Comput. Appl. – volume: 64 start-page: 389 year: 2023 Apr end-page: 391 ident: bib7 article-title: Histology: the gold standard for diagnosis? publication-title: Can. Vet. J. – volume: 2.1 start-page: 1195 year: 2005 end-page: 1217 ident: bib9 article-title: Computer-aided detection and diagnosis in mammography publication-title: Handb. Image Video Process. – volume: 24 start-page: 1405 year: 2012 end-page: 1420 ident: bib15 article-title: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles publication-title: Mach. Vis. Appl. – reference: Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016. – volume: 34 start-page: 2308 year: 2010 Oct end-page: 2324 ident: bib1 article-title: Is breast cancer the same disease in Asian and Western countries? publication-title: World J. Surg. – volume: 2 start-page: 147 year: 2009 end-page: 171 ident: bib21 article-title: Histopathological image analysis: a review publication-title: IEEE Rev. Biomed. Eng. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bib16 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. – reference: Rai R., Sisodia D.S. Real-time data augmentation based transfer learning model for breast cancer diagnosis using histopathological images. In Advances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018 2021 (pp. 473-488). Springer Singapore. – reference: Agarwal P., Yadav A., Mathur P. Breast cancer prediction on breakhis dataset using deep cnn and transfer learning model. InData Engineering for Smart Systems: Proceedings of SSIC 2021 2022 (pp. 77-88). Springer Singapore. – volume: 13 start-page: 1097207 year: 2023 Jan 4 ident: bib27 article-title: Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach publication-title: Front. Genet. – volume: 14 start-page: 241 year: 2020 Apr end-page: 258 ident: bib30 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. – volume: 10 start-page: 4126 year: 2022 Nov 4 ident: bib26 article-title: Machine learning based approach for automated cervical dysplasia detection using multi-resolution transform domain features publication-title: Mathematics – start-page: 161 year: 2023 Jul 14 end-page: 172 ident: bib25 article-title: Performance Analysis of InceptionV3, VGG16, and Resnet50 Models for Crevices Recognition on Surfaces publication-title: International Conference on Data Science and Applications – volume: 130 start-page: 1816 year: 2024 May 15 end-page: 1825 ident: bib3 article-title: Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme publication-title: Cancer – volume: 32 start-page: 2169 year: 2013 end-page: 2178 ident: bib14 article-title: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies publication-title: IEEE Trans. Med. Imaging – reference: Wang W., Li Y., Yan X., Xiao M., Gao M. Breast cancer image classification method based on deep transfer learning. In Proceedings of the International Conference on Image Processing, Machine Learning and Pattern Recognition 2024 Sep 13 (pp. 190-197). – volume: 20 start-page: 1529 year: 2023 Mar-Apr end-page: 1539 ident: bib12 article-title: Transfer learning based lightweight ensemble model for imbalanced breast cancer classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform – volume: 22 start-page: 669 year: 2022 Jan 16 ident: bib24 article-title: Using a deep learning model to explore the impact of clinical data on COVID-19 diagnosis using chest X-ray publication-title: Sensors – volume: 2 start-page: 110 year: 2002 Mar end-page: 125 ident: bib28 article-title: Ensemble learning publication-title: Handb. Brain Theory Neural Netw. – volume: 14 start-page: 2253 year: 2024 ident: bib11 article-title: Equilibrium optimization-based ensemble CNN framework for breast cancer multiclass classification using histopathological image publication-title: Diagnostics – volume: 20 year: 2022 Sep 1 ident: bib23 article-title: Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images publication-title: J. Electron. Sci. Technol. – reference: Sayın İ., Soydaş M.A., Mert Y.E., Yarkataş A., Ergun B., Yeh S.S., Üvet H. Comparative Analysis of Deep Learning Architectures for Breast Cancer Diagnosis Using the BreaKHis Dataset. arXiv preprint arXiv:2309.01007. 2023 Sep 2. – volume: 13 start-page: 3595 year: 2023 ident: bib29 article-title: Consecutive multiscale feature learning-based image classification model publication-title: Sci. Rep. – volume: 187 start-page: 528 year: 2004 Apr 1 end-page: 532 ident: bib4 article-title: Pure mucinous carcinoma of the breast publication-title: Am. J. Surg. – volume: 164 start-page: 649 year: 2016 May 17 end-page: 655 ident: bib8 article-title: Variability in pathologists' interpretations of individual breast biopsy slides: a population perspective publication-title: Ann. Intern. Med. – volume: 2 start-page: 110 issue: 1 year: 2002 ident: 10.1016/j.prp.2025.156041_bib28 article-title: Ensemble learning publication-title: Handb. Brain Theory Neural Netw. – ident: 10.1016/j.prp.2025.156041_bib19 – volume: 130 start-page: 1816 issue: 10 year: 2024 ident: 10.1016/j.prp.2025.156041_bib3 article-title: Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme publication-title: Cancer doi: 10.1002/cncr.35188 – volume: 9 start-page: 564 issue: 4 year: 2013 ident: 10.1016/j.prp.2025.156041_bib5 article-title: Encapsulated papillary carcinoma of the breast: an overview publication-title: J. Cancer Res. Ther. doi: 10.4103/0973-1482.126448 – volume: 2.1 start-page: 1195 year: 2005 ident: 10.1016/j.prp.2025.156041_bib9 article-title: Computer-aided detection and diagnosis in mammography publication-title: Handb. Image Video Process. doi: 10.1016/B978-012119792-6/50130-3 – ident: 10.1016/j.prp.2025.156041_bib32 doi: 10.1007/978-981-16-2641-8_8 – volume: 43 start-page: 1563 year: 2013 ident: 10.1016/j.prp.2025.156041_bib13 article-title: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.08.003 – ident: 10.1016/j.prp.2025.156041_bib33 doi: 10.1145/3700906.3700937 – ident: 10.1016/j.prp.2025.156041_bib10 doi: 10.1109/IMSA58542.2023.10217501 – volume: 63 start-page: 1455 year: 2016 ident: 10.1016/j.prp.2025.156041_bib17 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 – volume: 22 start-page: 669 issue: 2 year: 2022 ident: 10.1016/j.prp.2025.156041_bib24 article-title: Using a deep learning model to explore the impact of clinical data on COVID-19 diagnosis using chest X-ray publication-title: Sensors doi: 10.3390/s22020669 – volume: 35 start-page: 14243 issue: 19 year: 2023 ident: 10.1016/j.prp.2025.156041_bib36 article-title: Classifying breast cancer using transfer learning models based on histopathological images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08484-2 – ident: 10.1016/j.prp.2025.156041_bib34 – volume: 13 start-page: 3595 year: 2023 ident: 10.1016/j.prp.2025.156041_bib29 article-title: Consecutive multiscale feature learning-based image classification model publication-title: Sci. Rep. doi: 10.1038/s41598-023-30480-8 – volume: 13 start-page: 1097207 year: 2023 ident: 10.1016/j.prp.2025.156041_bib27 article-title: Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach publication-title: Front. Genet. doi: 10.3389/fgene.2022.1097207 – ident: 10.1016/j.prp.2025.156041_bib35 doi: 10.1007/978-981-15-6329-4_39 – ident: 10.1016/j.prp.2025.156041_bib18 doi: 10.1109/IJCNN.2016.7727519 – start-page: 1 year: 2022 ident: 10.1016/j.prp.2025.156041_bib2 – volume: 10 start-page: 4126 issue: 21 year: 2022 ident: 10.1016/j.prp.2025.156041_bib26 article-title: Machine learning based approach for automated cervical dysplasia detection using multi-resolution transform domain features publication-title: Mathematics doi: 10.3390/math10214126 – volume: 117 start-page: 103 year: 2019 ident: 10.1016/j.prp.2025.156041_bib6 article-title: Multiple instance learning for histopathological breast cancer image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.049 – volume: 131 year: 2021 ident: 10.1016/j.prp.2025.156041_bib22 article-title: A multi-resolution model for histopathology image classification and localization with multiple instance learning publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2021.104253 – volume: 24 start-page: 1405 year: 2012 ident: 10.1016/j.prp.2025.156041_bib15 article-title: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-012-0459-8 – volume: 20 start-page: 1529 issue: 2 year: 2023 ident: 10.1016/j.prp.2025.156041_bib12 article-title: Transfer learning based lightweight ensemble model for imbalanced breast cancer classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2022.3174091 – volume: 34 start-page: 2308 year: 2010 ident: 10.1016/j.prp.2025.156041_bib1 article-title: Is breast cancer the same disease in Asian and Western countries? publication-title: World J. Surg. doi: 10.1007/s00268-010-0683-1 – volume: 164 start-page: 649 issue: 10 year: 2016 ident: 10.1016/j.prp.2025.156041_bib8 article-title: Variability in pathologists' interpretations of individual breast biopsy slides: a population perspective publication-title: Ann. Intern. Med. doi: 10.7326/M15-0964 – volume: 14 start-page: 241 year: 2020 ident: 10.1016/j.prp.2025.156041_bib30 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8208-z – volume: 2 start-page: 147 year: 2009 ident: 10.1016/j.prp.2025.156041_bib21 article-title: Histopathological image analysis: a review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2009.2034865 – ident: 10.1016/j.prp.2025.156041_bib31 doi: 10.1109/ICMTMA.2019.00157 – start-page: 161 year: 2023 ident: 10.1016/j.prp.2025.156041_bib25 article-title: Performance Analysis of InceptionV3, VGG16, and Resnet50 Models for Crevices Recognition on Surfaces – volume: 20 issue: 3 year: 2022 ident: 10.1016/j.prp.2025.156041_bib23 article-title: Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images publication-title: J. Electron. Sci. Technol. doi: 10.1016/j.jnlest.2022.100161 – volume: 14 start-page: 2253 issue: 19 year: 2024 ident: 10.1016/j.prp.2025.156041_bib11 article-title: Equilibrium optimization-based ensemble CNN framework for breast cancer multiclass classification using histopathological image publication-title: Diagnostics doi: 10.3390/diagnostics14192253 – volume: 32 start-page: 2169 year: 2013 ident: 10.1016/j.prp.2025.156041_bib14 article-title: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2275151 – volume: 187 start-page: 528 issue: 4 year: 2004 ident: 10.1016/j.prp.2025.156041_bib4 article-title: Pure mucinous carcinoma of the breast publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2003.12.039 – ident: 10.1016/j.prp.2025.156041_bib20 doi: 10.1109/ICPR.2016.7900002 – volume: 64 start-page: 389 issue: 4 year: 2023 ident: 10.1016/j.prp.2025.156041_bib7 article-title: Histology: the gold standard for diagnosis? publication-title: Can. Vet. J. – volume: 35 start-page: 1798 year: 2013 ident: 10.1016/j.prp.2025.156041_bib16 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 |
SSID | ssj0007041 |
Score | 2.3989704 |
Snippet | Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 156041 |
SubjectTerms | Algorithms Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - pathology Carcinoma, Ductal, Breast - diagnosis Carcinoma, Ductal, Breast - pathology Deep Learning Ensemble Learning Female Histopathology Humans Image classification Image Interpretation, Computer-Assisted - methods Neural Networks, Computer |
Title | Ensemble learning approach for detecting breast invasive ductal carcinoma from histopathological images |
URI | https://dx.doi.org/10.1016/j.prp.2025.156041 https://www.ncbi.nlm.nih.gov/pubmed/40460639 https://www.proquest.com/docview/3215570713 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IJsaL8Vv8IDXxZDIoW8vYkRAMauCiJNyatWvJjAwiw6N_u-9tq8YDHrxtTbc1r-17v-793nuE3Fqs3YBu9TjxMSQnSjylIjjzsNC3kUq61uKvgfGkO5ryx5mY1cjAxcIgrbLS_aVOL7R11dKupNlepWn7GZPVMThhgREHw1MEr3Me4ipvff7QPEJWVK_Ezh72dp7NguO1KlJW-qKF8cS8s802bcOehQ26PyD7FXik_XJ8h6RmsiOyO67c48dkPszWZqHeDK2KQcypyxlOAZzSxKDLAJsVctFzmmYfMfLXKWZ9hTdrrCyULRcxxbATWiQjxprFTkPSdAH6Z31CpvfDl8HIqyopeBr2cO6ZyAQ6EUpoFirVFcayIAE75EcYZ9ozHRsrwXyDPlm4BhulfdML4tBYw3tCBaekni0zc04ojxmzobWAKzjsd64SLQI_UUxrrFYeN8idk6FclQkzpGOSvULLSqLAZSnwBuFOyvLXrEtQ6H89duNmRMJuQBdHnJnlZi0DQDAixJN3g5yVU_U9Co4-YABkF__76CXZw7uS_HdF6vn7xlwDIMlVs1hxTbLTf3gaTb4AK-3fjg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwEB0hkNpequ6lqyv1VCnFJDEhR4RAUJZLQeJmxYmNUpWACvT7O5MFqQd66C1y4sQax2-ePRvAs6HaDWRWDyKbQnL8yFLKxz0P92zjq6hhDB0NjMaN3tR9m4lZCdpFLAy5VebYn2F6itZ5Sy2XZm0Vx7V3SlbHcYeFShwVDwWvVyg7lShDpdUf9MY7QPZ4WsCSnreoQ2HcTN28VmnWSlu8UkixW9-nnvbRz1QNdU_gOOePrJUN8RRKOjmDg1FuIT-HeSdZ64X61CyvBzFnRdpwhvyURZqsBtSsyB19w-LkOyAXdkaJX_HNIRUXSpaLgFHkCUvzEVPZ4gIkWbxACFpfwLTbmbR7Vl5MwQpxGW8s7WsnjIQSIfeUaghtuBOhKrJ9CjVt6roJlOC2JrMsXqOaCm3ddAJPG-02hXIuoZwsE30NzA04N54xSC1cXPKuikLh2JHiYUgFy4MqvBQylKssZ4YsnMk-sGUlSeAyE3gV3ELK8tfES8T0v7o9FTMicUGQlSNI9HK7lg6SGOHR5rsKV9lU7UbhkhkYOdnN_z76CIe9yWgoh_3x4BaO6E7mC3gH5c3XVt8jP9moh_z_-wHenOI_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+approach+for+detecting+breast+invasive+ductal+carcinoma+from+histopathological+images&rft.jtitle=Pathology%2C+research+and+practice&rft.au=Shekhar+Das%2C+Himanish&rft.au=Borah%2C+Kasmika&rft.au=Bora%2C+Kangkana&rft.date=2025-08-01&rft.issn=0344-0338&rft.volume=272&rft.spage=156041&rft_id=info:doi/10.1016%2Fj.prp.2025.156041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prp_2025_156041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0344-0338&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0344-0338&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0344-0338&client=summon |