Ensemble learning approach for detecting breast invasive ductal carcinoma from histopathological images

Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-obser...

Full description

Saved in:
Bibliographic Details
Published inPathology, research and practice Vol. 272; p. 156041
Main Authors Shekhar Das, Himanish, Borah, Kasmika, Bora, Kangkana
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes.
AbstractList Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes.
Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes.Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and timely diagnosis for effective treatment. Though considered the gold standard, traditional histopathological diagnosis is subject to inter-observer and intra-observer variability, potentially impacting patient outcomes. This study proposed an ensemble learning approach for classifying invasive ductal carcinoma to address these challenges. The proposed method combines the strengths of multiple deep-learning models to enhance diagnostic accuracy and robustness. We employed a diverse set of pre-trained convolutional neural networks, viz, ResNet50, Xception, MobileNetV2, VGG16, and VGG19, each trained on histopathological images of breast histology slides. These five different deep learning models were compared in this work, and the resulting inference results are also shown. Ensemble and a fine-tuning approach to transfer learning were also used to extract the best results. These models were evaluated using evaluation metrics like accuracy to see which one does the job best. The proposed weighted average ensemble algorithm achieved 97.27 % accuracy. Among all models, the ResNet50 model outperforms the other models in identifying invasive ductal carcinoma. Therefore, ResNet50 is the preferred model when accuracy is the top concern for a particular resolution image, and the weighted average ensemble approach enhances the performance of the proposed work. Our results indicate that the proposed ensemble approach decreases variability in diagnoses and advancements in accuracy. This method holds promise for enhancing the precision of breast cancer diagnostics, potentially leading to better patient management and outcomes.
ArticleNumber 156041
Author Bora, Kangkana
Shekhar Das, Himanish
Borah, Kasmika
Author_xml – sequence: 1
  givenname: Himanish
  surname: Shekhar Das
  fullname: Shekhar Das, Himanish
  email: himanish.das@cottonuniversity.ac.in
– sequence: 2
  givenname: Kasmika
  surname: Borah
  fullname: Borah, Kasmika
– sequence: 3
  givenname: Kangkana
  surname: Bora
  fullname: Bora, Kangkana
  email: kangkana.bora@cottonuniversity.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40460639$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS1URFvgA9ggL9mkjOM4D7FCVXlISGxgbTnOpHWV2MFOK_H3uGphyWpGo3NHc-fOycQ6i4TcMFgwYPn9djH4YZFCKhZM5JCxMzJjOSsTyDmbkBnwLEuA83JK5iFsAaCI0AWZZpDlkalmZL2yAfu6Q9qh8tbYNVXD4J3SG9o6TxscUY-Hce1RhZEau1fB7JE2Oz2qjmrltbGuV7T1rqcbE0Y3qHHjOrc2OgKmV2sMV-S8VV3A61O9JJ9Pq4_lS_L2_vy6fHxLNIdiTLBCrhtRCw1FXecCW-BNVUFalYwVJbJW1QJSLFLgsc_SSqdYclVgi1kpan5J7o57o4evHYZR9iZo7Dpl0e2C5CkTooCC8YjentBd3WMjBx9P9d_y9zkRYEdAexeCx_YPYSAPAchtnAzyEIA8BhA1D0cNRpN7g14GbdBqbIyPj5SNM_-ofwCrho7G
Cites_doi 10.1002/cncr.35188
10.4103/0973-1482.126448
10.1016/B978-012119792-6/50130-3
10.1007/978-981-16-2641-8_8
10.1016/j.compbiomed.2013.08.003
10.1145/3700906.3700937
10.1109/IMSA58542.2023.10217501
10.1109/TBME.2015.2496264
10.3390/s22020669
10.1007/s00521-023-08484-2
10.1038/s41598-023-30480-8
10.3389/fgene.2022.1097207
10.1007/978-981-15-6329-4_39
10.1109/IJCNN.2016.7727519
10.3390/math10214126
10.1016/j.eswa.2018.09.049
10.1016/j.compbiomed.2021.104253
10.1007/s00138-012-0459-8
10.1109/TCBB.2022.3174091
10.1007/s00268-010-0683-1
10.7326/M15-0964
10.1007/s11704-019-8208-z
10.1109/RBME.2009.2034865
10.1109/ICMTMA.2019.00157
10.1016/j.jnlest.2022.100161
10.3390/diagnostics14192253
10.1109/TMI.2013.2275151
10.1016/j.amjsurg.2003.12.039
10.1109/ICPR.2016.7900002
10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright 2025 Elsevier GmbH
Copyright © 2025 Elsevier GmbH. All rights reserved.
Copyright_xml – notice: 2025 Elsevier GmbH
– notice: Copyright © 2025 Elsevier GmbH. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.prp.2025.156041
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1618-0631
ExternalDocumentID 40460639
10_1016_j_prp_2025_156041
S0344033825002341
Genre Journal Article
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
123
1B1
1~.
1~5
29O
3O-
4.4
457
4CK
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
88I
8AF
8FE
8FH
8FI
8FJ
8G5
8P~
8R4
8R5
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AAKPP
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABLJU
ABMAC
ABMZM
ABUDA
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADKUU
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKOJK
BLC
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LK8
M1P
M2O
M2P
M2Q
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PADUT
PC.
PEA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PUEGO
Q2X
Q38
R2-
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SJFOW
SSH
SSU
SSZ
T5I
T5J
T5K
UDS
UKHRP
X7M
ZGI
ZXP
~G-
AAYXX
AGRNS
ALIPV
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c307t-e9e3cd5b5c07bb65ef03d9902981178e1fab502e72031fa429c2e83a7efe485b3
IEDL.DBID .~1
ISSN 0344-0338
1618-0631
IngestDate Fri Jul 11 17:09:28 EDT 2025
Tue Jul 22 01:41:52 EDT 2025
Thu Jul 31 00:43:25 EDT 2025
Sat Aug 30 17:12:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ensemble Learning
Breast cancer
Histopathology
Deep Learning
Image classification
Language English
License Copyright © 2025 Elsevier GmbH. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-e9e3cd5b5c07bb65ef03d9902981178e1fab502e72031fa429c2e83a7efe485b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40460639
PQID 3215570713
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3215570713
pubmed_primary_40460639
crossref_primary_10_1016_j_prp_2025_156041
elsevier_sciencedirect_doi_10_1016_j_prp_2025_156041
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Pathology, research and practice
PublicationTitleAlternate Pathol Res Pract
PublicationYear 2025
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Arzanova, Mayrovitz (bib2) 2022 Aug 6
Dong, Yu, Cao, Shi, Ma (bib30) 2020 Apr; 14
Kowal, Filipczuk, Obuchowicz, Korbicz, Monczak (bib13) 2013; 43
Yasemın (bib11) 2024; 14
Garg, Singh (bib12) 2023 Mar-Apr; 20
George, Anna, Evanthia, Vassilios (bib5) 2013 Oct 1; 9
Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016.
Bora, Mahanta, Borah, Chyrmang, Barua, Mallik, Das, Zhao (bib26) 2022 Nov 4; 10
Elmore, Nelson, Pepe, Longton, Tosteson, Geller, Onega, Carney, Jackson, Allison, Weaver (bib8) 2016 May 17; 164
Zhang, Zhang, Coenen, Lu (bib15) 2012; 24
Olimov, Subramanian, Ugli (bib29) 2023; 13
Nadeen, Amgad., Mariam, Ahmed., Haidy, Haitham., Moamen, Zaher., Ammar, Mohammed. (2023). 1. A Robust Ensemble Deep Learning Approach for Breast Cancer Diagnosis. doi: 10.1109/imsa58542.2023.10217501.
Das, Das, Neog, Mallik, Bora, Zhao (bib27) 2023 Jan 4; 13
Sayın İ., Soydaş M.A., Mert Y.E., Yarkataş A., Ergun B., Yeh S.S., Üvet H. Comparative Analysis of Deep Learning Architectures for Breast Cancer Diagnosis Using the BreaKHis Dataset. arXiv preprint arXiv:2309.01007. 2023 Sep 2.
Li, Li, Sisk, Ye, Wallace, Speier, Arnold (bib22) 2021 Apr; 131
Rai R., Sisodia D.S. Real-time data augmentation based transfer learning model for breast cancer diagnosis using histopathological images. In Advances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018 2021 (pp. 473-488). Springer Singapore.
Mukesh, Likhita, Yamini (bib25) 2023 Jul 14
Filipczuk, Fevens, Krzyzak, Monczak (bib14) 2013; 32
Bengio, Courville, Vincent (bib16) 2013; 35
Rana, Bhushan (bib36) 2023 Jul; 35
Leong, Shen, Liu, Agarwal, Tajima, Paik, Sandelin, Derossis, Cody, Foulkes (bib1) 2010 Oct; 34
Sudharshan, Petitjean, Spanhol, Oliveira, Heutte, Honeine (bib6) 2019 Mar 1; 117
Salama, Aly (bib23) 2022 Sep 1; 20
Ju Y., Wang X., Chen X. Research on OMR recognition based on convolutional neural network tensorflow platform. In 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 2019 Apr 28 (pp. 688-691). IEEE.
Spanhol, Oliveira, Petitjean, Heutte (bib17) 2016; 63
Agarwal P., Yadav A., Mathur P. Breast cancer prediction on breakhis dataset using deep cnn and transfer learning model. InData Engineering for Smart Systems: Proceedings of SSIC 2021 2022 (pp. 77-88). Springer Singapore.
Gurcan, Boucheron, Can, Madabhushi, Rajpoot, Yener (bib21) 2009; 2
Sampat, Markey, Bovik (bib9) 2005; 2.1
Sathishkumar, Sankarapillai, Mathew, Nair, Gangane, Khuraijam, Barmon, Pandya, Majumdar, Deshmane, Zomawia (bib3) 2024 May 15; 130
Komenaka, El-Tamer, Troxel, Hamele-Bena, Joseph, Horowitz, Ditkoff, Schnabel (bib4) 2004 Apr 1; 187
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
Khan, Aslam, Anwar, Alsaif, Chrouf, Alzahrani, Alamoudi, Kamaleldin, Awary (bib24) 2022 Jan 16; 22
Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016.
Wang W., Li Y., Yan X., Xiao M., Gao M. Breast cancer image classification method based on deep transfer learning. In Proceedings of the International Conference on Image Processing, Machine Learning and Pattern Recognition 2024 Sep 13 (pp. 190-197).
Tseng, Matsuyama, MacDonald-Dickinson (bib7) 2023 Apr; 64
Dietterich (bib28) 2002 Mar; 2
10.1016/j.prp.2025.156041_bib34
Spanhol (10.1016/j.prp.2025.156041_bib17) 2016; 63
10.1016/j.prp.2025.156041_bib33
10.1016/j.prp.2025.156041_bib35
Arzanova (10.1016/j.prp.2025.156041_bib2) 2022
10.1016/j.prp.2025.156041_bib10
10.1016/j.prp.2025.156041_bib32
Leong (10.1016/j.prp.2025.156041_bib1) 2010; 34
10.1016/j.prp.2025.156041_bib31
10.1016/j.prp.2025.156041_bib19
Sathishkumar (10.1016/j.prp.2025.156041_bib3) 2024; 130
Das (10.1016/j.prp.2025.156041_bib27) 2023; 13
Kowal (10.1016/j.prp.2025.156041_bib13) 2013; 43
10.1016/j.prp.2025.156041_bib18
Zhang (10.1016/j.prp.2025.156041_bib15) 2012; 24
Elmore (10.1016/j.prp.2025.156041_bib8) 2016; 164
Dong (10.1016/j.prp.2025.156041_bib30) 2020; 14
Li (10.1016/j.prp.2025.156041_bib22) 2021; 131
Rana (10.1016/j.prp.2025.156041_bib36) 2023; 35
Komenaka (10.1016/j.prp.2025.156041_bib4) 2004; 187
Sampat (10.1016/j.prp.2025.156041_bib9) 2005; 2.1
George (10.1016/j.prp.2025.156041_bib5) 2013; 9
10.1016/j.prp.2025.156041_bib20
Gurcan (10.1016/j.prp.2025.156041_bib21) 2009; 2
Bora (10.1016/j.prp.2025.156041_bib26) 2022; 10
Dietterich (10.1016/j.prp.2025.156041_bib28) 2002; 2
Khan (10.1016/j.prp.2025.156041_bib24) 2022; 22
Bengio (10.1016/j.prp.2025.156041_bib16) 2013; 35
Sudharshan (10.1016/j.prp.2025.156041_bib6) 2019; 117
Tseng (10.1016/j.prp.2025.156041_bib7) 2023; 64
Yasemın (10.1016/j.prp.2025.156041_bib11) 2024; 14
Olimov (10.1016/j.prp.2025.156041_bib29) 2023; 13
Garg (10.1016/j.prp.2025.156041_bib12) 2023; 20
Filipczuk (10.1016/j.prp.2025.156041_bib14) 2013; 32
Salama (10.1016/j.prp.2025.156041_bib23) 2022; 20
Mukesh (10.1016/j.prp.2025.156041_bib25) 2023
References_xml – volume: 43
  start-page: 1563
  year: 2013
  end-page: 1572
  ident: bib13
  article-title: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images
  publication-title: Comput. Biol. Med.
– reference: Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016.
– start-page: 1
  year: 2022 Aug 6
  end-page: 9
  ident: bib2
  article-title: The Epidemiology of Breast Cancer
– reference: Ju Y., Wang X., Chen X. Research on OMR recognition based on convolutional neural network tensorflow platform. In 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 2019 Apr 28 (pp. 688-691). IEEE.
– volume: 117
  start-page: 103
  year: 2019 Mar 1
  end-page: 111
  ident: bib6
  article-title: Multiple instance learning for histopathological breast cancer image classification
  publication-title: Expert Syst. Appl.
– reference: Nadeen, Amgad., Mariam, Ahmed., Haidy, Haitham., Moamen, Zaher., Ammar, Mohammed. (2023). 1. A Robust Ensemble Deep Learning Approach for Breast Cancer Diagnosis. doi: 10.1109/imsa58542.2023.10217501.
– volume: 63
  start-page: 1455
  year: 2016
  end-page: 1462
  ident: bib17
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 564
  year: 2013 Oct 1
  end-page: 570
  ident: bib5
  article-title: Encapsulated papillary carcinoma of the breast: an overview
  publication-title: J. Cancer Res. Ther.
– volume: 131
  year: 2021 Apr
  ident: bib22
  article-title: A multi-resolution model for histopathology image classification and localization with multiple instance learning
  publication-title: Comput. Biol. Med
– volume: 35
  start-page: 14243
  year: 2023 Jul
  end-page: 14257
  ident: bib36
  article-title: Classifying breast cancer using transfer learning models based on histopathological images
  publication-title: Neural Comput. Appl.
– volume: 64
  start-page: 389
  year: 2023 Apr
  end-page: 391
  ident: bib7
  article-title: Histology: the gold standard for diagnosis?
  publication-title: Can. Vet. J.
– volume: 2.1
  start-page: 1195
  year: 2005
  end-page: 1217
  ident: bib9
  article-title: Computer-aided detection and diagnosis in mammography
  publication-title: Handb. Image Video Process.
– volume: 24
  start-page: 1405
  year: 2012
  end-page: 1420
  ident: bib15
  article-title: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles
  publication-title: Mach. Vis. Appl.
– reference: Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8 December 2016.
– volume: 34
  start-page: 2308
  year: 2010 Oct
  end-page: 2324
  ident: bib1
  article-title: Is breast cancer the same disease in Asian and Western countries?
  publication-title: World J. Surg.
– volume: 2
  start-page: 147
  year: 2009
  end-page: 171
  ident: bib21
  article-title: Histopathological image analysis: a review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib16
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
– reference: Rai R., Sisodia D.S. Real-time data augmentation based transfer learning model for breast cancer diagnosis using histopathological images. In Advances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018 2021 (pp. 473-488). Springer Singapore.
– reference: Agarwal P., Yadav A., Mathur P. Breast cancer prediction on breakhis dataset using deep cnn and transfer learning model. InData Engineering for Smart Systems: Proceedings of SSIC 2021 2022 (pp. 77-88). Springer Singapore.
– volume: 13
  start-page: 1097207
  year: 2023 Jan 4
  ident: bib27
  article-title: Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach
  publication-title: Front. Genet.
– volume: 14
  start-page: 241
  year: 2020 Apr
  end-page: 258
  ident: bib30
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
– volume: 10
  start-page: 4126
  year: 2022 Nov 4
  ident: bib26
  article-title: Machine learning based approach for automated cervical dysplasia detection using multi-resolution transform domain features
  publication-title: Mathematics
– start-page: 161
  year: 2023 Jul 14
  end-page: 172
  ident: bib25
  article-title: Performance Analysis of InceptionV3, VGG16, and Resnet50 Models for Crevices Recognition on Surfaces
  publication-title: International Conference on Data Science and Applications
– volume: 130
  start-page: 1816
  year: 2024 May 15
  end-page: 1825
  ident: bib3
  article-title: Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme
  publication-title: Cancer
– volume: 32
  start-page: 2169
  year: 2013
  end-page: 2178
  ident: bib14
  article-title: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies
  publication-title: IEEE Trans. Med. Imaging
– reference: Wang W., Li Y., Yan X., Xiao M., Gao M. Breast cancer image classification method based on deep transfer learning. In Proceedings of the International Conference on Image Processing, Machine Learning and Pattern Recognition 2024 Sep 13 (pp. 190-197).
– volume: 20
  start-page: 1529
  year: 2023 Mar-Apr
  end-page: 1539
  ident: bib12
  article-title: Transfer learning based lightweight ensemble model for imbalanced breast cancer classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
– volume: 22
  start-page: 669
  year: 2022 Jan 16
  ident: bib24
  article-title: Using a deep learning model to explore the impact of clinical data on COVID-19 diagnosis using chest X-ray
  publication-title: Sensors
– volume: 2
  start-page: 110
  year: 2002 Mar
  end-page: 125
  ident: bib28
  article-title: Ensemble learning
  publication-title: Handb. Brain Theory Neural Netw.
– volume: 14
  start-page: 2253
  year: 2024
  ident: bib11
  article-title: Equilibrium optimization-based ensemble CNN framework for breast cancer multiclass classification using histopathological image
  publication-title: Diagnostics
– volume: 20
  year: 2022 Sep 1
  ident: bib23
  article-title: Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images
  publication-title: J. Electron. Sci. Technol.
– reference: Sayın İ., Soydaş M.A., Mert Y.E., Yarkataş A., Ergun B., Yeh S.S., Üvet H. Comparative Analysis of Deep Learning Architectures for Breast Cancer Diagnosis Using the BreaKHis Dataset. arXiv preprint arXiv:2309.01007. 2023 Sep 2.
– volume: 13
  start-page: 3595
  year: 2023
  ident: bib29
  article-title: Consecutive multiscale feature learning-based image classification model
  publication-title: Sci. Rep.
– volume: 187
  start-page: 528
  year: 2004 Apr 1
  end-page: 532
  ident: bib4
  article-title: Pure mucinous carcinoma of the breast
  publication-title: Am. J. Surg.
– volume: 164
  start-page: 649
  year: 2016 May 17
  end-page: 655
  ident: bib8
  article-title: Variability in pathologists' interpretations of individual breast biopsy slides: a population perspective
  publication-title: Ann. Intern. Med.
– volume: 2
  start-page: 110
  issue: 1
  year: 2002
  ident: 10.1016/j.prp.2025.156041_bib28
  article-title: Ensemble learning
  publication-title: Handb. Brain Theory Neural Netw.
– ident: 10.1016/j.prp.2025.156041_bib19
– volume: 130
  start-page: 1816
  issue: 10
  year: 2024
  ident: 10.1016/j.prp.2025.156041_bib3
  article-title: Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme
  publication-title: Cancer
  doi: 10.1002/cncr.35188
– volume: 9
  start-page: 564
  issue: 4
  year: 2013
  ident: 10.1016/j.prp.2025.156041_bib5
  article-title: Encapsulated papillary carcinoma of the breast: an overview
  publication-title: J. Cancer Res. Ther.
  doi: 10.4103/0973-1482.126448
– volume: 2.1
  start-page: 1195
  year: 2005
  ident: 10.1016/j.prp.2025.156041_bib9
  article-title: Computer-aided detection and diagnosis in mammography
  publication-title: Handb. Image Video Process.
  doi: 10.1016/B978-012119792-6/50130-3
– ident: 10.1016/j.prp.2025.156041_bib32
  doi: 10.1007/978-981-16-2641-8_8
– volume: 43
  start-page: 1563
  year: 2013
  ident: 10.1016/j.prp.2025.156041_bib13
  article-title: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.08.003
– ident: 10.1016/j.prp.2025.156041_bib33
  doi: 10.1145/3700906.3700937
– ident: 10.1016/j.prp.2025.156041_bib10
  doi: 10.1109/IMSA58542.2023.10217501
– volume: 63
  start-page: 1455
  year: 2016
  ident: 10.1016/j.prp.2025.156041_bib17
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 22
  start-page: 669
  issue: 2
  year: 2022
  ident: 10.1016/j.prp.2025.156041_bib24
  article-title: Using a deep learning model to explore the impact of clinical data on COVID-19 diagnosis using chest X-ray
  publication-title: Sensors
  doi: 10.3390/s22020669
– volume: 35
  start-page: 14243
  issue: 19
  year: 2023
  ident: 10.1016/j.prp.2025.156041_bib36
  article-title: Classifying breast cancer using transfer learning models based on histopathological images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08484-2
– ident: 10.1016/j.prp.2025.156041_bib34
– volume: 13
  start-page: 3595
  year: 2023
  ident: 10.1016/j.prp.2025.156041_bib29
  article-title: Consecutive multiscale feature learning-based image classification model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30480-8
– volume: 13
  start-page: 1097207
  year: 2023
  ident: 10.1016/j.prp.2025.156041_bib27
  article-title: Breast cancer detection: shallow convolutional neural network against deep convolutional neural networks based approach
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.1097207
– ident: 10.1016/j.prp.2025.156041_bib35
  doi: 10.1007/978-981-15-6329-4_39
– ident: 10.1016/j.prp.2025.156041_bib18
  doi: 10.1109/IJCNN.2016.7727519
– start-page: 1
  year: 2022
  ident: 10.1016/j.prp.2025.156041_bib2
– volume: 10
  start-page: 4126
  issue: 21
  year: 2022
  ident: 10.1016/j.prp.2025.156041_bib26
  article-title: Machine learning based approach for automated cervical dysplasia detection using multi-resolution transform domain features
  publication-title: Mathematics
  doi: 10.3390/math10214126
– volume: 117
  start-page: 103
  year: 2019
  ident: 10.1016/j.prp.2025.156041_bib6
  article-title: Multiple instance learning for histopathological breast cancer image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.049
– volume: 131
  year: 2021
  ident: 10.1016/j.prp.2025.156041_bib22
  article-title: A multi-resolution model for histopathology image classification and localization with multiple instance learning
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2021.104253
– volume: 24
  start-page: 1405
  year: 2012
  ident: 10.1016/j.prp.2025.156041_bib15
  article-title: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-012-0459-8
– volume: 20
  start-page: 1529
  issue: 2
  year: 2023
  ident: 10.1016/j.prp.2025.156041_bib12
  article-title: Transfer learning based lightweight ensemble model for imbalanced breast cancer classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2022.3174091
– volume: 34
  start-page: 2308
  year: 2010
  ident: 10.1016/j.prp.2025.156041_bib1
  article-title: Is breast cancer the same disease in Asian and Western countries?
  publication-title: World J. Surg.
  doi: 10.1007/s00268-010-0683-1
– volume: 164
  start-page: 649
  issue: 10
  year: 2016
  ident: 10.1016/j.prp.2025.156041_bib8
  article-title: Variability in pathologists' interpretations of individual breast biopsy slides: a population perspective
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M15-0964
– volume: 14
  start-page: 241
  year: 2020
  ident: 10.1016/j.prp.2025.156041_bib30
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 2
  start-page: 147
  year: 2009
  ident: 10.1016/j.prp.2025.156041_bib21
  article-title: Histopathological image analysis: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2009.2034865
– ident: 10.1016/j.prp.2025.156041_bib31
  doi: 10.1109/ICMTMA.2019.00157
– start-page: 161
  year: 2023
  ident: 10.1016/j.prp.2025.156041_bib25
  article-title: Performance Analysis of InceptionV3, VGG16, and Resnet50 Models for Crevices Recognition on Surfaces
– volume: 20
  issue: 3
  year: 2022
  ident: 10.1016/j.prp.2025.156041_bib23
  article-title: Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images
  publication-title: J. Electron. Sci. Technol.
  doi: 10.1016/j.jnlest.2022.100161
– volume: 14
  start-page: 2253
  issue: 19
  year: 2024
  ident: 10.1016/j.prp.2025.156041_bib11
  article-title: Equilibrium optimization-based ensemble CNN framework for breast cancer multiclass classification using histopathological image
  publication-title: Diagnostics
  doi: 10.3390/diagnostics14192253
– volume: 32
  start-page: 2169
  year: 2013
  ident: 10.1016/j.prp.2025.156041_bib14
  article-title: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2275151
– volume: 187
  start-page: 528
  issue: 4
  year: 2004
  ident: 10.1016/j.prp.2025.156041_bib4
  article-title: Pure mucinous carcinoma of the breast
  publication-title: Am. J. Surg.
  doi: 10.1016/j.amjsurg.2003.12.039
– ident: 10.1016/j.prp.2025.156041_bib20
  doi: 10.1109/ICPR.2016.7900002
– volume: 64
  start-page: 389
  issue: 4
  year: 2023
  ident: 10.1016/j.prp.2025.156041_bib7
  article-title: Histology: the gold standard for diagnosis?
  publication-title: Can. Vet. J.
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.prp.2025.156041_bib16
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
SSID ssj0007041
Score 2.3989704
Snippet Invasive ductal carcinoma is a type of breast cancer that is one of the most frequent and aggressive forms of breast malignancy, necessitating accurate and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 156041
SubjectTerms Algorithms
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - pathology
Carcinoma, Ductal, Breast - diagnosis
Carcinoma, Ductal, Breast - pathology
Deep Learning
Ensemble Learning
Female
Histopathology
Humans
Image classification
Image Interpretation, Computer-Assisted - methods
Neural Networks, Computer
Title Ensemble learning approach for detecting breast invasive ductal carcinoma from histopathological images
URI https://dx.doi.org/10.1016/j.prp.2025.156041
https://www.ncbi.nlm.nih.gov/pubmed/40460639
https://www.proquest.com/docview/3215570713
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IJsaL8Vv8IDXxZDIoW8vYkRAMauCiJNyatWvJjAwiw6N_u-9tq8YDHrxtTbc1r-17v-793nuE3Fqs3YBu9TjxMSQnSjylIjjzsNC3kUq61uKvgfGkO5ryx5mY1cjAxcIgrbLS_aVOL7R11dKupNlepWn7GZPVMThhgREHw1MEr3Me4ipvff7QPEJWVK_Ezh72dp7NguO1KlJW-qKF8cS8s802bcOehQ26PyD7FXik_XJ8h6RmsiOyO67c48dkPszWZqHeDK2KQcypyxlOAZzSxKDLAJsVctFzmmYfMfLXKWZ9hTdrrCyULRcxxbATWiQjxprFTkPSdAH6Z31CpvfDl8HIqyopeBr2cO6ZyAQ6EUpoFirVFcayIAE75EcYZ9ozHRsrwXyDPlm4BhulfdML4tBYw3tCBaekni0zc04ojxmzobWAKzjsd64SLQI_UUxrrFYeN8idk6FclQkzpGOSvULLSqLAZSnwBuFOyvLXrEtQ6H89duNmRMJuQBdHnJnlZi0DQDAixJN3g5yVU_U9Co4-YABkF__76CXZw7uS_HdF6vn7xlwDIMlVs1hxTbLTf3gaTb4AK-3fjg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwEB0hkNpequ6lqyv1VCnFJDEhR4RAUJZLQeJmxYmNUpWACvT7O5MFqQd66C1y4sQax2-ePRvAs6HaDWRWDyKbQnL8yFLKxz0P92zjq6hhDB0NjMaN3tR9m4lZCdpFLAy5VebYn2F6itZ5Sy2XZm0Vx7V3SlbHcYeFShwVDwWvVyg7lShDpdUf9MY7QPZ4WsCSnreoQ2HcTN28VmnWSlu8UkixW9-nnvbRz1QNdU_gOOePrJUN8RRKOjmDg1FuIT-HeSdZ64X61CyvBzFnRdpwhvyURZqsBtSsyB19w-LkOyAXdkaJX_HNIRUXSpaLgFHkCUvzEVPZ4gIkWbxACFpfwLTbmbR7Vl5MwQpxGW8s7WsnjIQSIfeUaghtuBOhKrJ9CjVt6roJlOC2JrMsXqOaCm3ddAJPG-02hXIuoZwsE30NzA04N54xSC1cXPKuikLh2JHiYUgFy4MqvBQylKssZ4YsnMk-sGUlSeAyE3gV3ELK8tfES8T0v7o9FTMicUGQlSNI9HK7lg6SGOHR5rsKV9lU7UbhkhkYOdnN_z76CIe9yWgoh_3x4BaO6E7mC3gH5c3XVt8jP9moh_z_-wHenOI_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+learning+approach+for+detecting+breast+invasive+ductal+carcinoma+from+histopathological+images&rft.jtitle=Pathology%2C+research+and+practice&rft.au=Shekhar+Das%2C+Himanish&rft.au=Borah%2C+Kasmika&rft.au=Bora%2C+Kangkana&rft.date=2025-08-01&rft.issn=0344-0338&rft.volume=272&rft.spage=156041&rft_id=info:doi/10.1016%2Fj.prp.2025.156041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_prp_2025_156041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0344-0338&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0344-0338&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0344-0338&client=summon