Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability
In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of alleli...
Saved in:
Published in | American journal of human genetics Vol. 110; no. 7; pp. 1207 - 1215 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
06.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
[Display omitted]
SNP-based heritability estimates tend to decline and then plateau as the number of cohorts being meta-analyzed in a GWAS increase, and the out-of-sample prediction R2 in "target" cohorts can sometimes exceed its theoretical upper limit. Here, we provide theory to explain these observations that reflect heterogeneity between cohorts in meta-analyses. |
---|---|
AbstractList | In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity. In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity. [Display omitted] SNP-based heritability estimates tend to decline and then plateau as the number of cohorts being meta-analyzed in a GWAS increase, and the out-of-sample prediction R2 in "target" cohorts can sometimes exceed its theoretical upper limit. Here, we provide theory to explain these observations that reflect heterogeneity between cohorts in meta-analyses. |
Author | Hougaard, David M. Domschke, Katharina Weinsheimer, Shantel Marie Strohmaier, Jana Hamilton, Steven P. Mors, Ole Peterson, Roseann E. Wray, Naomi R. Bybjerg-Grauholm, Jonas Witt, Stephanie H. Mihailov, Evelin Smoller, Jordan W. MacIntyre, Donald J. Eley, Thalia C. Maier, Robert M. Herms, Stefan Milaneschi, Yuri Potash, James B. Air, Tracy M. Mattheisen, Manuel Degenhardt, Franziska Horn, Carsten Escott-Price, Valentina Gordon, Scott D. Lind, Penelope A. Martin, Nicholas G. Baune, Bernhard T. Dunn, Erin C. Forstner, Andreas J. Howard, David M. Bo Mortensen, Preben Buttenschøn, Henriette N. Maier, Wolfgang Wellmann, Jürgen Thorgeirsson, Thorgeir E. Shyn, Stanley I. Binder, Elisabeth B. Kohane, Isaac S. Schaefer, Catherine Tiemeier, Henning Revez, Joana A. Ising, Marcus Mehta, Divya Owen, Michael J. Stefansson, Hreinn Werge, Thomas Zhang, Futao Nöthen, Markus M. Schulze, Thomas G. Weissman, Myrna M. Perlis, Roy H. Shi, Jianxin Abdellaoui, Abdel Mbarek, Hamdi Berger, Klaus Sullivan, Patrick F. Schulte, Eva C. Saeed Mirza, Saira Dolan, Conor V. Bry |
Author_xml | – sequence: 1 givenname: Xiaotong orcidid: 0000-0002-8257-546X surname: Wang fullname: Wang, Xiaotong organization: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia – sequence: 3 givenname: Joana A. surname: Revez fullname: Revez, Joana A. organization: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia – sequence: 4 givenname: Guiyan surname: Ni fullname: Ni, Guiyan organization: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia – sequence: 5 givenname: Mark J. surname: Adams fullname: Adams, Mark J. organization: Division of Psychiatry, University of Edinburgh, Edinburgh, UK – sequence: 6 givenname: Andrew M. surname: McIntosh fullname: McIntosh, Andrew M. organization: Division of Psychiatry, University of Edinburgh, Edinburgh, UK – sequence: 8 givenname: Stephan surname: Ripke fullname: Ripke, Stephan – sequence: 10 givenname: Maciej surname: Trzaskowski fullname: Trzaskowski, Maciej – sequence: 11 givenname: Enda M. surname: Byrne fullname: Byrne, Enda M. – sequence: 13 givenname: Mark J. surname: Adams fullname: Adams, Mark J. – sequence: 15 givenname: Tracy M. surname: Air fullname: Air, Tracy M. – sequence: 16 givenname: Till F.M. surname: Andlauer fullname: Andlauer, Till F.M. – sequence: 17 givenname: Silviu-Alin surname: Bacanu fullname: Bacanu, Silviu-Alin – sequence: 22 givenname: Julien surname: Bryois fullname: Bryois, Julien – sequence: 24 givenname: Jonas surname: Bybjerg-Grauholm fullname: Bybjerg-Grauholm, Jonas – sequence: 26 givenname: Enrique surname: Castelao fullname: Castelao, Enrique – sequence: 28 givenname: Toni-Kim surname: Clarke fullname: Clarke, Toni-Kim – sequence: 30 givenname: Lucía surname: Colodro-Conde fullname: Colodro-Conde, Lucía – sequence: 31 givenname: Baptiste surname: Couvy-Duchesne fullname: Couvy-Duchesne, Baptiste – sequence: 32 givenname: Nick surname: Craddock fullname: Craddock, Nick – sequence: 34 givenname: Gail surname: Davies fullname: Davies, Gail – sequence: 36 givenname: Eske M. surname: Derks fullname: Derks, Eske M. – sequence: 37 givenname: Nese surname: Direk fullname: Direk, Nese – sequence: 38 givenname: Conor V. surname: Dolan fullname: Dolan, Conor V. – sequence: 42 givenname: Farnush Farhadi Hassan surname: Kiadeh fullname: Kiadeh, Farnush Farhadi Hassan – sequence: 47 givenname: Héléna A. surname: Gaspar fullname: Gaspar, Héléna A. – sequence: 48 givenname: Michael surname: Gill fullname: Gill, Michael – sequence: 49 givenname: Fernando S. surname: Goes fullname: Goes, Fernando S. – sequence: 50 givenname: Scott D. surname: Gordon fullname: Gordon, Scott D. – sequence: 51 givenname: Jakob surname: Grove fullname: Grove, Jakob – sequence: 52 givenname: Lynsey S. surname: Hall fullname: Hall, Lynsey S. – sequence: 58 givenname: Georg surname: Homuth fullname: Homuth, Georg – sequence: 59 givenname: Carsten surname: Horn fullname: Horn, Carsten – sequence: 65 givenname: Ian surname: Jones fullname: Jones, Ian – sequence: 66 givenname: Lisa A. surname: Jones fullname: Jones, Lisa A. – sequence: 67 givenname: Eric surname: Jorgenson fullname: Jorgenson, Eric – sequence: 70 givenname: Julia surname: Kraft fullname: Kraft, Julia – sequence: 71 givenname: Warren W. surname: Kretzschmar fullname: Kretzschmar, Warren W. – sequence: 73 givenname: Yihan surname: Li fullname: Li, Yihan – sequence: 75 givenname: Donald J. surname: MacIntyre fullname: MacIntyre, Donald J. – sequence: 76 givenname: Dean F. surname: MacKinnon fullname: MacKinnon, Dean F. – sequence: 78 givenname: Wolfgang surname: Maier fullname: Maier, Wolfgang – sequence: 79 givenname: Jonathan surname: Marchini fullname: Marchini, Jonathan – sequence: 80 givenname: Hamdi surname: Mbarek fullname: Mbarek, Hamdi – sequence: 82 givenname: Peter surname: McGuffin fullname: McGuffin, Peter – sequence: 83 givenname: Sarah E. surname: Medland fullname: Medland, Sarah E. – sequence: 84 givenname: Divya surname: Mehta fullname: Mehta, Divya – sequence: 85 givenname: Christel M. surname: Middeldorp fullname: Middeldorp, Christel M. – sequence: 86 givenname: Evelin surname: Mihailov fullname: Mihailov, Evelin – sequence: 89 givenname: Francis M. surname: Mondimore fullname: Mondimore, Francis M. – sequence: 90 givenname: Grant W. surname: Montgomery fullname: Montgomery, Grant W. – sequence: 92 givenname: Niamh surname: Mullins fullname: Mullins, Niamh – sequence: 94 givenname: Bernard surname: Ng fullname: Ng, Bernard – sequence: 95 givenname: Michel G. surname: Nivard fullname: Nivard, Michel G. – sequence: 96 givenname: Dale R. surname: Nyholt fullname: Nyholt, Dale R. – sequence: 98 givenname: Hogni surname: Oskarsson fullname: Oskarsson, Hogni – sequence: 99 givenname: Michael J. surname: Owen fullname: Owen, Michael J. – sequence: 101 givenname: Carsten surname: Bøcker Pedersen fullname: Bøcker Pedersen, Carsten – sequence: 102 givenname: Marianne surname: Giørtz Pedersen fullname: Giørtz Pedersen, Marianne – sequence: 103 givenname: Roseann E. surname: Peterson fullname: Peterson, Roseann E. – sequence: 105 givenname: Giorgio surname: Pistis fullname: Pistis, Giorgio – sequence: 112 givenname: Saira surname: Saeed Mirza fullname: Saeed Mirza, Saira – sequence: 113 givenname: Robert surname: Schoevers fullname: Schoevers, Robert – sequence: 114 givenname: Eva C. surname: Schulte fullname: Schulte, Eva C. – sequence: 115 givenname: Ling surname: Shen fullname: Shen, Ling – sequence: 116 givenname: Jianxin surname: Shi fullname: Shi, Jianxin – sequence: 117 givenname: Stanley I. surname: Shyn fullname: Shyn, Stanley I. – sequence: 119 givenname: Grant C.B. surname: Sinnamon fullname: Sinnamon, Grant C.B. – sequence: 120 givenname: Johannes H. surname: Smit fullname: Smit, Johannes H. – sequence: 122 givenname: Hreinn surname: Stefansson fullname: Stefansson, Hreinn – sequence: 125 givenname: Jana surname: Strohmaier fullname: Strohmaier, Jana – sequence: 134 givenname: Vassily surname: Trubetskoy fullname: Trubetskoy, Vassily – sequence: 135 givenname: André G. surname: Uitterlinden fullname: Uitterlinden, André G. – sequence: 137 givenname: Sandra surname: Van der Auwera fullname: Van der Auwera, Sandra – sequence: 138 givenname: Albert M. surname: van Hemert fullname: van Hemert, Albert M. – sequence: 140 givenname: Peter M. surname: Visscher fullname: Visscher, Peter M. – sequence: 141 givenname: Yunpeng surname: Wang fullname: Wang, Yunpeng – sequence: 143 givenname: Shantel Marie surname: Weinsheimer fullname: Weinsheimer, Shantel Marie – sequence: 144 givenname: Jürgen surname: Wellmann fullname: Wellmann, Jürgen – sequence: 145 givenname: Gonneke surname: Willemsen fullname: Willemsen, Gonneke – sequence: 148 givenname: Hualin S. surname: Xi fullname: Xi, Hualin S. – sequence: 153 givenname: Klaus surname: Berger fullname: Berger, Klaus – sequence: 166 givenname: Kenneth S. surname: Kendler fullname: Kendler, Kenneth S. – sequence: 168 givenname: Glyn surname: Lewis fullname: Lewis, Glyn – sequence: 169 givenname: Qingqin S. surname: Li fullname: Li, Qingqin S. – sequence: 171 givenname: Pamela A.F. surname: Madden fullname: Madden, Pamela A.F. – sequence: 174 givenname: Andrew M. surname: McIntosh fullname: McIntosh, Andrew M. – sequence: 175 givenname: Andres surname: Metspalu fullname: Metspalu, Andres – sequence: 176 givenname: Ole surname: Mors fullname: Mors, Ole – sequence: 180 givenname: Markus M. surname: Nöthen fullname: Nöthen, Markus M. – sequence: 181 givenname: Michael C. surname: O'Donovan fullname: O'Donovan, Michael C. – sequence: 182 givenname: Sara A. surname: Paciga fullname: Paciga, Sara A. – sequence: 183 givenname: Nancy L. surname: Pedersen fullname: Pedersen, Nancy L. – sequence: 186 givenname: David J. surname: Porteous fullname: Porteous, David J. – sequence: 187 givenname: James B. surname: Potash fullname: Potash, James B. – sequence: 189 givenname: Marcella surname: Rietschel fullname: Rietschel, Marcella – sequence: 192 givenname: Jordan W. surname: Smoller fullname: Smoller, Jordan W. – sequence: 193 givenname: Kari surname: Stefansson fullname: Stefansson, Kari – sequence: 194 givenname: Henning surname: Tiemeier fullname: Tiemeier, Henning – sequence: 196 givenname: Henry surname: Völzke fullname: Völzke, Henry – sequence: 197 givenname: Myrna M. surname: Weissman fullname: Weissman, Myrna M. |
BookMark | eNp9kDtPwzAUhS0EEqXwB5g8siT4kdgxYkGIl1RBxWO2HOemdUntYqdA_z2pysDEdO5wviud7wjt--ABoVNKckqoOF_kZjGf5YwwnhOREyL20IiWXGZCkHIfjQghLFNMyUN0lNKCEEorwkcIpqHbzMA7i6NL73gVoXG2d8Ff4K_5BhvfDAkeh3WfhTZLZrnq4E8NPzNsjcfwbQEa_PI4zWqThmsO0fWmdp3rN8fooDVdgpPfHKO325vX6_ts8nT3cH01ySwnss8abgUHaZSULZVVqSoj2u2KQrJC2KowJVe2aHndljUraspqqhSHFoZhlFs-Rme7v6sYPtaQer10yULXGQ9hnTSrOGWqlKoaqmxXtTGkFKHVq-iWJm40JXrrVC_01qneOtVE6MHpAF3uIBhGfDqIOlkH3g4yItheN8H9h_8A3bmBQQ |
CitedBy_id | crossref_primary_10_3233_JAD_230510 crossref_primary_10_3390_jpm14030319 crossref_primary_10_2139_ssrn_4814726 crossref_primary_10_1038_s41562_024_01828_5 crossref_primary_10_1016_j_jaac_2023_12_009 crossref_primary_10_1371_journal_pgen_1011192 |
Cites_doi | 10.1016/j.ajhg.2017.06.005 10.1093/bioinformatics/btq340 10.1093/braincomms/fcac125 10.1007/BF01245622 10.1038/s41588-017-0009-4 10.1038/ng.608 10.1371/annotation/b91ba224-10be-409d-93f4-7423d502cba0 10.1038/s41588-018-0090-3 10.1375/twin.13.6.517 10.1038/s41467-019-12653-0 10.1038/s41588-018-0108-x 10.1038/s41588-020-0594-5 10.1002/jrsm.12 10.1038/s41593-018-0326-7 10.1111/j.1439-0388.2011.00964.x 10.1038/s41588-018-0147-3 10.1038/ng.3211 10.1371/journal.pone.0003395 10.1371/journal.pgen.1006495 10.1038/ng.2711 10.1176/appi.ajp.2017.17030283 10.1038/ng.3390 10.1016/j.biopsych.2021.04.018 10.1038/nrg3457 10.1016/j.ajhg.2010.11.011 10.1038/s41588-022-01016-z |
ContentType | Journal Article |
Copyright | 2023 American Society of Human Genetics |
Copyright_xml | – notice: 2023 American Society of Human Genetics |
CorporateAuthor | Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium |
CorporateAuthor_xml | – name: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.ajhg.2023.06.006 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-6605 |
EndPage | 1215 |
ExternalDocumentID | 10_1016_j_ajhg_2023_06_006 S0002929723002070 |
GroupedDBID | --- --K --Z -~X 0R~ 123 1~5 23M 2WC 4.4 457 4G. 5GY 62- 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAWTL AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACGOD ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK E3Z EBS ECV F5P FCP FDB FEDTE GX1 HVGLF HYE IH2 IHE IXB JIG KQ8 L7B M41 O-L O9- OK1 P2P PQQKQ RCE RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT VQA WH7 WQ6 ZA5 ZCA .55 .GJ 0SF 34R 3O- 41~ 53G 6I. AAIKJ AAMRU AAQXK AAYXX ACKIV ADMUD ADVLN AGCDD AGHFR AI. AKAPO AKRWK C1A CITATION EJD F20 FA8 FGOYB HZ~ MVM NCXOZ NEJ OHT OZT R2- RIG VH1 WOQ X7M XOL ZCG ZGI ZXP 7X8 |
ID | FETCH-LOGICAL-c307t-d3c63e7a977f178598a6f153747246c84a539c4f3bf5b24b12b1993efe29713c3 |
IEDL.DBID | ABVKL |
ISSN | 0002-9297 |
IngestDate | Thu Oct 24 23:25:01 EDT 2024 Thu Sep 26 17:55:38 EDT 2024 Fri Feb 23 02:37:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | meta-analysis out-of-sample prediction R2 polygenic risk prediction SNP-based heritability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-d3c63e7a977f178598a6f153747246c84a539c4f3bf5b24b12b1993efe29713c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8257-546X 0000-0001-7421-3357 |
OpenAccessLink | https://doi.org/10.1016/j.ajhg.2023.06.006 |
PQID | 2831295798 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2831295798 crossref_primary_10_1016_j_ajhg_2023_06_006 elsevier_sciencedirect_doi_10_1016_j_ajhg_2023_06_006 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-06 |
PublicationDateYYYYMMDD | 2023-07-06 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | American journal of human genetics |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dudbridge (bib14) 2013; 9 Sullivan, Agrawal, Bulik, Andreassen, Børglum, Breen, Cichon, Edenberg, Faraone, Gelernter (bib23) 2018; 175 Bulik-Sullivan, Loh, Finucane, Ripke, Yang, Schizophrenia Working Group of the Psychiatric Genomics, Patterson, Daly, Price, Neale (bib6) 2015; 47 Okbay, Wu, Wang, Jayashankar, Bennett, Nehzati, Sidorenko, Kweon, Goldman, Gjorgjieva (bib12) 2022; 54 Escott-Price, Hardy (bib11) 2022; 4 Turley, Walters, Maghzian, Okbay, Lee, Fontana, Nguyen-Viet, Wedow, Zacher, Furlotte (bib26) 2018; 50 Evans, Tahmasbi, Vrieze, Abecasis, Das, Gazal, Bjelland, De Candia, Goddard (bib7) 2018; 50 Yang, Benyamin, McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery (bib4) 2010; 42 Cai, Revez, Adams, Andlauer, Breen, Byrne, Clarke, Forstner, Grabe, Hamilton (bib17) 2020; 52 Yang, Bakshi, Zhu, Hemani, Vinkhuyzen, Lee, Robinson, Perry, Nolte, van Vliet-Ostaptchouk (bib2) 2015; 47 Willer, Li, Abecasis (bib22) 2010; 26 Wray, Ripke, Mattheisen, Trzaskowski, Byrne, Abdellaoui, Adams, Agerbo, Air, Andlauer (bib9) 2018; 50 Daetwyler, Villanueva, Woolliams (bib15) 2008; 3 Goddard, Hayes, Meuwissen (bib18) 2011; 128 Lee, Ripke, Neale, Faraone, Purcell, Perlis, Mowry, Thapar, Goddard (bib8) 2013; 45 Lee, Wedow, Okbay, Kong, Maghzian, Zacher, Nguyen-Viet, Bowers, Sidorenko, Karlsson Linnér (bib10) 2018; 50 Visscher, Yang, Goddard (bib3) 2010; 13 Howard, Adams, Clarke, Hafferty, Gibson, Shirali, Coleman, Hagenaars, Ward, Wigmore (bib21) 2019; 22 de Vlaming, Okbay, Rietveld, Johannesson, Magnusson, Uitterlinden, van Rooij, Hofman, Groenen, Thurik, Koellinger (bib13) 2017; 13 Visscher, Wray, Zhang, Sklar, McCarthy, Brown, Yang (bib1) 2017; 101 Yang, Lee, Goddard, Visscher (bib5) 2011; 88 Lloyd-Jones, Zeng, Sidorenko, Yengo, Moser, Kemper, Wang, Zheng, Magi, Esko (bib25) 2019; 10 Borenstein, Hedges, Higgins, Rothstein (bib16) 2010; 1 Hill, Robertson (bib19) 1968; 38 Ni, Zeng, Revez, Wang, Zheng, Ge, Restuadi, Kiewa, Nyholt, Coleman (bib24) 2021; 90 Wray, Yang, Hayes, Price, Goddard, Visscher (bib20) 2013; 14 Yang (10.1016/j.ajhg.2023.06.006_bib5) 2011; 88 Escott-Price (10.1016/j.ajhg.2023.06.006_bib11) 2022; 4 Yang (10.1016/j.ajhg.2023.06.006_bib2) 2015; 47 Okbay (10.1016/j.ajhg.2023.06.006_bib12) 2022; 54 Visscher (10.1016/j.ajhg.2023.06.006_bib1) 2017; 101 Turley (10.1016/j.ajhg.2023.06.006_bib26) 2018; 50 Hill (10.1016/j.ajhg.2023.06.006_bib19) 1968; 38 Willer (10.1016/j.ajhg.2023.06.006_bib22) 2010; 26 de Vlaming (10.1016/j.ajhg.2023.06.006_bib13) 2017; 13 Borenstein (10.1016/j.ajhg.2023.06.006_bib16) 2010; 1 Cai (10.1016/j.ajhg.2023.06.006_bib17) 2020; 52 Wray (10.1016/j.ajhg.2023.06.006_bib20) 2013; 14 Ni (10.1016/j.ajhg.2023.06.006_bib24) 2021; 90 Lee (10.1016/j.ajhg.2023.06.006_bib10) 2018; 50 Wray (10.1016/j.ajhg.2023.06.006_bib9) 2018; 50 Goddard (10.1016/j.ajhg.2023.06.006_bib18) 2011; 128 Dudbridge (10.1016/j.ajhg.2023.06.006_bib14) 2013; 9 Evans (10.1016/j.ajhg.2023.06.006_bib7) 2018; 50 Yang (10.1016/j.ajhg.2023.06.006_bib4) 2010; 42 Lloyd-Jones (10.1016/j.ajhg.2023.06.006_bib25) 2019; 10 Lee (10.1016/j.ajhg.2023.06.006_bib8) 2013; 45 Daetwyler (10.1016/j.ajhg.2023.06.006_bib15) 2008; 3 Howard (10.1016/j.ajhg.2023.06.006_bib21) 2019; 22 Visscher (10.1016/j.ajhg.2023.06.006_bib3) 2010; 13 Bulik-Sullivan (10.1016/j.ajhg.2023.06.006_bib6) 2015; 47 Sullivan (10.1016/j.ajhg.2023.06.006_bib23) 2018; 175 |
References_xml | – volume: 50 start-page: 668 year: 2018 end-page: 681 ident: bib9 article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression publication-title: Nat. Genet. contributor: fullname: Andlauer – volume: 52 start-page: 437 year: 2020 end-page: 447 ident: bib17 article-title: Minimal phenotyping yields genome-wide association signals of low specificity for major depression publication-title: Nat. Genet. contributor: fullname: Hamilton – volume: 22 start-page: 343 year: 2019 end-page: 352 ident: bib21 article-title: Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions publication-title: Nat. Neurosci. contributor: fullname: Wigmore – volume: 101 start-page: 5 year: 2017 end-page: 22 ident: bib1 article-title: 10 years of GWAS discovery: biology, function, and translation publication-title: Am. J. Hum. Genet. contributor: fullname: Yang – volume: 42 start-page: 565 year: 2010 end-page: 569 ident: bib4 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. contributor: fullname: Montgomery – volume: 47 start-page: 291 year: 2015 end-page: 295 ident: bib6 article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies publication-title: Nat. Genet. contributor: fullname: Neale – volume: 50 start-page: 229 year: 2018 end-page: 237 ident: bib26 article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG publication-title: Nat. Genet. contributor: fullname: Furlotte – volume: 26 start-page: 2190 year: 2010 end-page: 2191 ident: bib22 article-title: METAL: fast and efficient meta-analysis of genomewide association scans publication-title: Bioinformatics contributor: fullname: Abecasis – volume: 90 start-page: 611 year: 2021 end-page: 620 ident: bib24 article-title: A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts publication-title: Biol. Psychiatry contributor: fullname: Coleman – volume: 3 start-page: e3395 year: 2008 ident: bib15 article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach publication-title: PLoS One contributor: fullname: Woolliams – volume: 9 year: 2013 ident: bib14 article-title: Power and predictive accuracy of polygenic risk scores publication-title: PLoS Genet. contributor: fullname: Dudbridge – volume: 13 start-page: 517 year: 2010 end-page: 524 ident: bib3 article-title: A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010) publication-title: Twin Res. Hum. Genet. contributor: fullname: Goddard – volume: 14 start-page: 507 year: 2013 end-page: 515 ident: bib20 article-title: Pitfalls of predicting complex traits from SNPs publication-title: Nat. Rev. Genet. contributor: fullname: Visscher – volume: 45 start-page: 984 year: 2013 end-page: 994 ident: bib8 article-title: Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs publication-title: Nat. Genet. contributor: fullname: Goddard – volume: 13 year: 2017 ident: bib13 article-title: Meta-GWAS Accuracy and Power (MetaGAP) calculator shows that hiding heritability is partially due to imperfect genetic correlations across studies publication-title: PLoS Genet. contributor: fullname: Koellinger – volume: 175 start-page: 15 year: 2018 end-page: 27 ident: bib23 article-title: Psychiatric genomics: an update and an agenda publication-title: Am. J. Psychiatry contributor: fullname: Gelernter – volume: 38 start-page: 226 year: 1968 end-page: 231 ident: bib19 article-title: Linkage disequilibrium in finite populations publication-title: Theor. Appl. Genet. contributor: fullname: Robertson – volume: 50 start-page: 737 year: 2018 end-page: 745 ident: bib7 article-title: Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits publication-title: Nat. Genet. contributor: fullname: Goddard – volume: 1 start-page: 97 year: 2010 end-page: 111 ident: bib16 article-title: A basic introduction to fixed-effect and random-effects models for meta-analysis publication-title: Res. Synth. Methods contributor: fullname: Rothstein – volume: 88 start-page: 76 year: 2011 end-page: 82 ident: bib5 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. contributor: fullname: Visscher – volume: 50 start-page: 1112 year: 2018 end-page: 1121 ident: bib10 article-title: Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals publication-title: Nat. Genet. contributor: fullname: Karlsson Linnér – volume: 54 start-page: 437 year: 2022 end-page: 449 ident: bib12 article-title: Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals publication-title: Nat. Genet. contributor: fullname: Gjorgjieva – volume: 10 start-page: 5086 year: 2019 ident: bib25 article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics publication-title: Nat. Commun. contributor: fullname: Esko – volume: 128 start-page: 409 year: 2011 end-page: 421 ident: bib18 article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection publication-title: J. Anim. Breed. Genet. contributor: fullname: Meuwissen – volume: 47 start-page: 1114 year: 2015 end-page: 1120 ident: bib2 article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index publication-title: Nat. Genet. contributor: fullname: van Vliet-Ostaptchouk – volume: 4 start-page: fcac125 year: 2022 ident: bib11 article-title: Genome-wide association studies for Alzheimer’s disease: bigger is not always better publication-title: Brain Commun. contributor: fullname: Hardy – volume: 101 start-page: 5 year: 2017 ident: 10.1016/j.ajhg.2023.06.006_bib1 article-title: 10 years of GWAS discovery: biology, function, and translation publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.06.005 contributor: fullname: Visscher – volume: 26 start-page: 2190 year: 2010 ident: 10.1016/j.ajhg.2023.06.006_bib22 article-title: METAL: fast and efficient meta-analysis of genomewide association scans publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq340 contributor: fullname: Willer – volume: 4 start-page: fcac125 year: 2022 ident: 10.1016/j.ajhg.2023.06.006_bib11 article-title: Genome-wide association studies for Alzheimer’s disease: bigger is not always better publication-title: Brain Commun. doi: 10.1093/braincomms/fcac125 contributor: fullname: Escott-Price – volume: 38 start-page: 226 year: 1968 ident: 10.1016/j.ajhg.2023.06.006_bib19 article-title: Linkage disequilibrium in finite populations publication-title: Theor. Appl. Genet. doi: 10.1007/BF01245622 contributor: fullname: Hill – volume: 50 start-page: 229 year: 2018 ident: 10.1016/j.ajhg.2023.06.006_bib26 article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG publication-title: Nat. Genet. doi: 10.1038/s41588-017-0009-4 contributor: fullname: Turley – volume: 42 start-page: 565 year: 2010 ident: 10.1016/j.ajhg.2023.06.006_bib4 article-title: Common SNPs explain a large proportion of the heritability for human height publication-title: Nat. Genet. doi: 10.1038/ng.608 contributor: fullname: Yang – volume: 9 year: 2013 ident: 10.1016/j.ajhg.2023.06.006_bib14 article-title: Power and predictive accuracy of polygenic risk scores publication-title: PLoS Genet. doi: 10.1371/annotation/b91ba224-10be-409d-93f4-7423d502cba0 contributor: fullname: Dudbridge – volume: 50 start-page: 668 year: 2018 ident: 10.1016/j.ajhg.2023.06.006_bib9 article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression publication-title: Nat. Genet. doi: 10.1038/s41588-018-0090-3 contributor: fullname: Wray – volume: 13 start-page: 517 year: 2010 ident: 10.1016/j.ajhg.2023.06.006_bib3 article-title: A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010) publication-title: Twin Res. Hum. Genet. doi: 10.1375/twin.13.6.517 contributor: fullname: Visscher – volume: 10 start-page: 5086 year: 2019 ident: 10.1016/j.ajhg.2023.06.006_bib25 article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics publication-title: Nat. Commun. doi: 10.1038/s41467-019-12653-0 contributor: fullname: Lloyd-Jones – volume: 50 start-page: 737 year: 2018 ident: 10.1016/j.ajhg.2023.06.006_bib7 article-title: Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits publication-title: Nat. Genet. doi: 10.1038/s41588-018-0108-x contributor: fullname: Evans – volume: 52 start-page: 437 year: 2020 ident: 10.1016/j.ajhg.2023.06.006_bib17 article-title: Minimal phenotyping yields genome-wide association signals of low specificity for major depression publication-title: Nat. Genet. doi: 10.1038/s41588-020-0594-5 contributor: fullname: Cai – volume: 1 start-page: 97 year: 2010 ident: 10.1016/j.ajhg.2023.06.006_bib16 article-title: A basic introduction to fixed-effect and random-effects models for meta-analysis publication-title: Res. Synth. Methods doi: 10.1002/jrsm.12 contributor: fullname: Borenstein – volume: 22 start-page: 343 year: 2019 ident: 10.1016/j.ajhg.2023.06.006_bib21 article-title: Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0326-7 contributor: fullname: Howard – volume: 128 start-page: 409 year: 2011 ident: 10.1016/j.ajhg.2023.06.006_bib18 article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection publication-title: J. Anim. Breed. Genet. doi: 10.1111/j.1439-0388.2011.00964.x contributor: fullname: Goddard – volume: 50 start-page: 1112 year: 2018 ident: 10.1016/j.ajhg.2023.06.006_bib10 article-title: Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals publication-title: Nat. Genet. doi: 10.1038/s41588-018-0147-3 contributor: fullname: Lee – volume: 47 start-page: 291 year: 2015 ident: 10.1016/j.ajhg.2023.06.006_bib6 article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.3211 contributor: fullname: Bulik-Sullivan – volume: 3 start-page: e3395 year: 2008 ident: 10.1016/j.ajhg.2023.06.006_bib15 article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach publication-title: PLoS One doi: 10.1371/journal.pone.0003395 contributor: fullname: Daetwyler – volume: 13 year: 2017 ident: 10.1016/j.ajhg.2023.06.006_bib13 article-title: Meta-GWAS Accuracy and Power (MetaGAP) calculator shows that hiding heritability is partially due to imperfect genetic correlations across studies publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006495 contributor: fullname: de Vlaming – volume: 45 start-page: 984 year: 2013 ident: 10.1016/j.ajhg.2023.06.006_bib8 article-title: Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs publication-title: Nat. Genet. doi: 10.1038/ng.2711 contributor: fullname: Lee – volume: 175 start-page: 15 year: 2018 ident: 10.1016/j.ajhg.2023.06.006_bib23 article-title: Psychiatric genomics: an update and an agenda publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2017.17030283 contributor: fullname: Sullivan – volume: 47 start-page: 1114 year: 2015 ident: 10.1016/j.ajhg.2023.06.006_bib2 article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index publication-title: Nat. Genet. doi: 10.1038/ng.3390 contributor: fullname: Yang – volume: 90 start-page: 611 year: 2021 ident: 10.1016/j.ajhg.2023.06.006_bib24 article-title: A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2021.04.018 contributor: fullname: Ni – volume: 14 start-page: 507 year: 2013 ident: 10.1016/j.ajhg.2023.06.006_bib20 article-title: Pitfalls of predicting complex traits from SNPs publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3457 contributor: fullname: Wray – volume: 88 start-page: 76 year: 2011 ident: 10.1016/j.ajhg.2023.06.006_bib5 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 contributor: fullname: Yang – volume: 54 start-page: 437 year: 2022 ident: 10.1016/j.ajhg.2023.06.006_bib12 article-title: Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals publication-title: Nat. Genet. doi: 10.1038/s41588-022-01016-z contributor: fullname: Okbay |
SSID | ssj0011803 |
Score | 2.4913507 |
Snippet | In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1207 |
SubjectTerms | meta-analysis out-of-sample prediction R2 polygenic risk prediction SNP-based heritability |
Title | Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability |
URI | https://dx.doi.org/10.1016/j.ajhg.2023.06.006 https://search.proquest.com/docview/2831295798 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvgiXnFeRgTfpNqmTS--TXF4HcMbewtplrgNaYd2aP-95_QiKuKDLy0NTSlfknO-k5wLIfsBFm_wlW1JFbtgoMAlMpJZtmEa7BGmVFHu7abnnz94lwM-aJDTOhYG3Sor2V_K9EJaVy1HFZpH0_EYY3xtBso9ABINnCcAu32eAfuF1TnfOXm8uv48THBC261ZMHaoYmdKNy85GT0dYg3xIo0nFj76XT_9kNSF-ukuk6WKN9JO-WsrpKGTVbJQVpLM14jup885zIWxougsTqcveACDoB_Tt1FOZTKEu05oOsus1FivErMCf3mN3jIKKFP9jvqM3vX6Fiq4IcX4wKxM5p2vk4fu2f3puVVVULAUrN3MGrrKd3UggeQZJwh5FErfgIwDG4LBCIWe5G6kPOPGhsfMix0Wo0OfNhpgclzlbpBmkiZ6k1DbALWTGjMOci_gKsTSVRJaDB_K2A9a5KDGTUzLRBmi9iCbCERZIMqicKPzW4TX0Ipvwy1Akv_Zb68eBwHrAA83ZKLT2asAmgTUhQdRuPXPb2-TRXwqfHH9HdLMXmZ6FxhHFrerGdUmcxeDk3axJfQBXKnUvw |
link.rule.ids | 315,783,787,3513,27581,27936,27937,45675,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIvoiXnFeI_gmdV3b9OKbDsem2xi6wd5CmiVuQ9qxdej-vef0Iirigy8tpGkpX5JzvsO5EXLpYfMGV5qGkKENBgpcAi0sw9SWAnvEkjJt99bpus2B8zBkwxKpF7kwGFaZy_5MpqfSOh-p5mhWZ5MJ5viaFih3D0g0cB4P7PY1TLvEbd4a3n26Emq-aRccGKfnmTNZkJeYjl-usYN4WsQT2x79rp1-yOlU-TS2yVbOGult9mM7pKSiXbKe9ZFc7RHVi19XsBMmkmKoOJ3N0f2CkN_Qt_GKimgEdxXReJkYsTYWAmsCf5lGnywKGFP1jtqMPnd7Bqq3EcXswCQr5b3aJ4PGfb_eNPL-CYaEk5sYI1u6tvIEUDxd83wW-MLVIOHAgrBgfXxHMDuQjrZDzULLCWtWiOF8SiuAqWZL-4CUozhSh4SaGoidUFhvkDkekz42rhIwotlIhK5XIVcFbnyWlcngRfzYlCPKHFHmaRCdWyGsgJZ_W2wOcvzP9y6KdeBwCtC1ISIVLxccSBIQF-YF_tE_v31ONpr9Tpu3W93HY7KJT9KoXPeElJP5Up0C90jCs3RvfQA9ZtR_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polygenic+risk+prediction%3A+why+and+when+out-of-sample+prediction+R2+can+exceed+SNP-based+heritability&rft.jtitle=American+journal+of+human+genetics&rft.au=Wang%2C+Xiaotong&rft.au=Walker%2C+Alicia&rft.au=Revez%2C+Joana+A&rft.au=Ni%2C+Guiyan&rft.date=2023-07-06&rft.eissn=1537-6605&rft.volume=110&rft.issue=7&rft.spage=1207&rft.epage=1215&rft_id=info:doi/10.1016%2Fj.ajhg.2023.06.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon |