Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability

In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of alleli...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 110; no. 7; pp. 1207 - 1215
Main Authors Wang, Xiaotong, Revez, Joana A., Ni, Guiyan, Adams, Mark J., McIntosh, Andrew M., Ripke, Stephan, Trzaskowski, Maciej, Byrne, Enda M., Air, Tracy M., Andlauer, Till F.M., Bacanu, Silviu-Alin, Bryois, Julien, Bybjerg-Grauholm, Jonas, Castelao, Enrique, Clarke, Toni-Kim, Colodro-Conde, Lucía, Couvy-Duchesne, Baptiste, Craddock, Nick, Davies, Gail, Derks, Eske M., Direk, Nese, Dolan, Conor V., Kiadeh, Farnush Farhadi Hassan, Gaspar, Héléna A., Gill, Michael, Goes, Fernando S., Gordon, Scott D., Grove, Jakob, Hall, Lynsey S., Homuth, Georg, Horn, Carsten, Jones, Ian, Jones, Lisa A., Jorgenson, Eric, Kraft, Julia, Kretzschmar, Warren W., Li, Yihan, MacIntyre, Donald J., MacKinnon, Dean F., Maier, Wolfgang, Marchini, Jonathan, Mbarek, Hamdi, McGuffin, Peter, Medland, Sarah E., Mehta, Divya, Middeldorp, Christel M., Mihailov, Evelin, Mondimore, Francis M., Montgomery, Grant W., Mullins, Niamh, Ng, Bernard, Nivard, Michel G., Nyholt, Dale R., Oskarsson, Hogni, Owen, Michael J., Bøcker Pedersen, Carsten, Giørtz Pedersen, Marianne, Peterson, Roseann E., Pistis, Giorgio, Saeed Mirza, Saira, Schoevers, Robert, Schulte, Eva C., Shen, Ling, Shi, Jianxin, Shyn, Stanley I., Sinnamon, Grant C.B., Smit, Johannes H., Stefansson, Hreinn, Strohmaier, Jana, Trubetskoy, Vassily, Uitterlinden, André G., Van der Auwera, Sandra, van Hemert, Albert M., Visscher, Peter M., Wang, Yunpeng, Weinsheimer, Shantel Marie, Wellmann, Jürgen, Willemsen, Gonneke, Xi, Hualin S., Berger, Klaus, Kendler, Kenneth S., Lewis, Glyn, Li, Qingqin S., Madden, Pamela A.F., Metspalu, Andres, Mors, Ole, Nöthen, Markus M., O'Donovan, Michael C., Paciga, Sara A., Pedersen, Nancy L., Porteous, David J., Potash, James B., Rietschel, Marcella, Smoller, Jordan W., Stefansson, Kari, Tiemeier, Henning, Völzke, Henry, Weissman, Myrna M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 06.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity. [Display omitted] SNP-based heritability estimates tend to decline and then plateau as the number of cohorts being meta-analyzed in a GWAS increase, and the out-of-sample prediction R2 in "target" cohorts can sometimes exceed its theoretical upper limit. Here, we provide theory to explain these observations that reflect heterogeneity between cohorts in meta-analyses.
AbstractList In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity.
In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity. [Display omitted] SNP-based heritability estimates tend to decline and then plateau as the number of cohorts being meta-analyzed in a GWAS increase, and the out-of-sample prediction R2 in "target" cohorts can sometimes exceed its theoretical upper limit. Here, we provide theory to explain these observations that reflect heterogeneity between cohorts in meta-analyses.
Author Hougaard, David M.
Domschke, Katharina
Weinsheimer, Shantel Marie
Strohmaier, Jana
Hamilton, Steven P.
Mors, Ole
Peterson, Roseann E.
Wray, Naomi R.
Bybjerg-Grauholm, Jonas
Witt, Stephanie H.
Mihailov, Evelin
Smoller, Jordan W.
MacIntyre, Donald J.
Eley, Thalia C.
Maier, Robert M.
Herms, Stefan
Milaneschi, Yuri
Potash, James B.
Air, Tracy M.
Mattheisen, Manuel
Degenhardt, Franziska
Horn, Carsten
Escott-Price, Valentina
Gordon, Scott D.
Lind, Penelope A.
Martin, Nicholas G.
Baune, Bernhard T.
Dunn, Erin C.
Forstner, Andreas J.
Howard, David M.
Bo Mortensen, Preben
Buttenschøn, Henriette N.
Maier, Wolfgang
Wellmann, Jürgen
Thorgeirsson, Thorgeir E.
Shyn, Stanley I.
Binder, Elisabeth B.
Kohane, Isaac S.
Schaefer, Catherine
Tiemeier, Henning
Revez, Joana A.
Ising, Marcus
Mehta, Divya
Owen, Michael J.
Stefansson, Hreinn
Werge, Thomas
Zhang, Futao
Nöthen, Markus M.
Schulze, Thomas G.
Weissman, Myrna M.
Perlis, Roy H.
Shi, Jianxin
Abdellaoui, Abdel
Mbarek, Hamdi
Berger, Klaus
Sullivan, Patrick F.
Schulte, Eva C.
Saeed Mirza, Saira
Dolan, Conor V.
Bry
Author_xml – sequence: 1
  givenname: Xiaotong
  orcidid: 0000-0002-8257-546X
  surname: Wang
  fullname: Wang, Xiaotong
  organization: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
– sequence: 3
  givenname: Joana A.
  surname: Revez
  fullname: Revez, Joana A.
  organization: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
– sequence: 4
  givenname: Guiyan
  surname: Ni
  fullname: Ni, Guiyan
  organization: Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
– sequence: 5
  givenname: Mark J.
  surname: Adams
  fullname: Adams, Mark J.
  organization: Division of Psychiatry, University of Edinburgh, Edinburgh, UK
– sequence: 6
  givenname: Andrew M.
  surname: McIntosh
  fullname: McIntosh, Andrew M.
  organization: Division of Psychiatry, University of Edinburgh, Edinburgh, UK
– sequence: 8
  givenname: Stephan
  surname: Ripke
  fullname: Ripke, Stephan
– sequence: 10
  givenname: Maciej
  surname: Trzaskowski
  fullname: Trzaskowski, Maciej
– sequence: 11
  givenname: Enda M.
  surname: Byrne
  fullname: Byrne, Enda M.
– sequence: 13
  givenname: Mark J.
  surname: Adams
  fullname: Adams, Mark J.
– sequence: 15
  givenname: Tracy M.
  surname: Air
  fullname: Air, Tracy M.
– sequence: 16
  givenname: Till F.M.
  surname: Andlauer
  fullname: Andlauer, Till F.M.
– sequence: 17
  givenname: Silviu-Alin
  surname: Bacanu
  fullname: Bacanu, Silviu-Alin
– sequence: 22
  givenname: Julien
  surname: Bryois
  fullname: Bryois, Julien
– sequence: 24
  givenname: Jonas
  surname: Bybjerg-Grauholm
  fullname: Bybjerg-Grauholm, Jonas
– sequence: 26
  givenname: Enrique
  surname: Castelao
  fullname: Castelao, Enrique
– sequence: 28
  givenname: Toni-Kim
  surname: Clarke
  fullname: Clarke, Toni-Kim
– sequence: 30
  givenname: Lucía
  surname: Colodro-Conde
  fullname: Colodro-Conde, Lucía
– sequence: 31
  givenname: Baptiste
  surname: Couvy-Duchesne
  fullname: Couvy-Duchesne, Baptiste
– sequence: 32
  givenname: Nick
  surname: Craddock
  fullname: Craddock, Nick
– sequence: 34
  givenname: Gail
  surname: Davies
  fullname: Davies, Gail
– sequence: 36
  givenname: Eske M.
  surname: Derks
  fullname: Derks, Eske M.
– sequence: 37
  givenname: Nese
  surname: Direk
  fullname: Direk, Nese
– sequence: 38
  givenname: Conor V.
  surname: Dolan
  fullname: Dolan, Conor V.
– sequence: 42
  givenname: Farnush Farhadi Hassan
  surname: Kiadeh
  fullname: Kiadeh, Farnush Farhadi Hassan
– sequence: 47
  givenname: Héléna A.
  surname: Gaspar
  fullname: Gaspar, Héléna A.
– sequence: 48
  givenname: Michael
  surname: Gill
  fullname: Gill, Michael
– sequence: 49
  givenname: Fernando S.
  surname: Goes
  fullname: Goes, Fernando S.
– sequence: 50
  givenname: Scott D.
  surname: Gordon
  fullname: Gordon, Scott D.
– sequence: 51
  givenname: Jakob
  surname: Grove
  fullname: Grove, Jakob
– sequence: 52
  givenname: Lynsey S.
  surname: Hall
  fullname: Hall, Lynsey S.
– sequence: 58
  givenname: Georg
  surname: Homuth
  fullname: Homuth, Georg
– sequence: 59
  givenname: Carsten
  surname: Horn
  fullname: Horn, Carsten
– sequence: 65
  givenname: Ian
  surname: Jones
  fullname: Jones, Ian
– sequence: 66
  givenname: Lisa A.
  surname: Jones
  fullname: Jones, Lisa A.
– sequence: 67
  givenname: Eric
  surname: Jorgenson
  fullname: Jorgenson, Eric
– sequence: 70
  givenname: Julia
  surname: Kraft
  fullname: Kraft, Julia
– sequence: 71
  givenname: Warren W.
  surname: Kretzschmar
  fullname: Kretzschmar, Warren W.
– sequence: 73
  givenname: Yihan
  surname: Li
  fullname: Li, Yihan
– sequence: 75
  givenname: Donald J.
  surname: MacIntyre
  fullname: MacIntyre, Donald J.
– sequence: 76
  givenname: Dean F.
  surname: MacKinnon
  fullname: MacKinnon, Dean F.
– sequence: 78
  givenname: Wolfgang
  surname: Maier
  fullname: Maier, Wolfgang
– sequence: 79
  givenname: Jonathan
  surname: Marchini
  fullname: Marchini, Jonathan
– sequence: 80
  givenname: Hamdi
  surname: Mbarek
  fullname: Mbarek, Hamdi
– sequence: 82
  givenname: Peter
  surname: McGuffin
  fullname: McGuffin, Peter
– sequence: 83
  givenname: Sarah E.
  surname: Medland
  fullname: Medland, Sarah E.
– sequence: 84
  givenname: Divya
  surname: Mehta
  fullname: Mehta, Divya
– sequence: 85
  givenname: Christel M.
  surname: Middeldorp
  fullname: Middeldorp, Christel M.
– sequence: 86
  givenname: Evelin
  surname: Mihailov
  fullname: Mihailov, Evelin
– sequence: 89
  givenname: Francis M.
  surname: Mondimore
  fullname: Mondimore, Francis M.
– sequence: 90
  givenname: Grant W.
  surname: Montgomery
  fullname: Montgomery, Grant W.
– sequence: 92
  givenname: Niamh
  surname: Mullins
  fullname: Mullins, Niamh
– sequence: 94
  givenname: Bernard
  surname: Ng
  fullname: Ng, Bernard
– sequence: 95
  givenname: Michel G.
  surname: Nivard
  fullname: Nivard, Michel G.
– sequence: 96
  givenname: Dale R.
  surname: Nyholt
  fullname: Nyholt, Dale R.
– sequence: 98
  givenname: Hogni
  surname: Oskarsson
  fullname: Oskarsson, Hogni
– sequence: 99
  givenname: Michael J.
  surname: Owen
  fullname: Owen, Michael J.
– sequence: 101
  givenname: Carsten
  surname: Bøcker Pedersen
  fullname: Bøcker Pedersen, Carsten
– sequence: 102
  givenname: Marianne
  surname: Giørtz Pedersen
  fullname: Giørtz Pedersen, Marianne
– sequence: 103
  givenname: Roseann E.
  surname: Peterson
  fullname: Peterson, Roseann E.
– sequence: 105
  givenname: Giorgio
  surname: Pistis
  fullname: Pistis, Giorgio
– sequence: 112
  givenname: Saira
  surname: Saeed Mirza
  fullname: Saeed Mirza, Saira
– sequence: 113
  givenname: Robert
  surname: Schoevers
  fullname: Schoevers, Robert
– sequence: 114
  givenname: Eva C.
  surname: Schulte
  fullname: Schulte, Eva C.
– sequence: 115
  givenname: Ling
  surname: Shen
  fullname: Shen, Ling
– sequence: 116
  givenname: Jianxin
  surname: Shi
  fullname: Shi, Jianxin
– sequence: 117
  givenname: Stanley I.
  surname: Shyn
  fullname: Shyn, Stanley I.
– sequence: 119
  givenname: Grant C.B.
  surname: Sinnamon
  fullname: Sinnamon, Grant C.B.
– sequence: 120
  givenname: Johannes H.
  surname: Smit
  fullname: Smit, Johannes H.
– sequence: 122
  givenname: Hreinn
  surname: Stefansson
  fullname: Stefansson, Hreinn
– sequence: 125
  givenname: Jana
  surname: Strohmaier
  fullname: Strohmaier, Jana
– sequence: 134
  givenname: Vassily
  surname: Trubetskoy
  fullname: Trubetskoy, Vassily
– sequence: 135
  givenname: André G.
  surname: Uitterlinden
  fullname: Uitterlinden, André G.
– sequence: 137
  givenname: Sandra
  surname: Van der Auwera
  fullname: Van der Auwera, Sandra
– sequence: 138
  givenname: Albert M.
  surname: van Hemert
  fullname: van Hemert, Albert M.
– sequence: 140
  givenname: Peter M.
  surname: Visscher
  fullname: Visscher, Peter M.
– sequence: 141
  givenname: Yunpeng
  surname: Wang
  fullname: Wang, Yunpeng
– sequence: 143
  givenname: Shantel Marie
  surname: Weinsheimer
  fullname: Weinsheimer, Shantel Marie
– sequence: 144
  givenname: Jürgen
  surname: Wellmann
  fullname: Wellmann, Jürgen
– sequence: 145
  givenname: Gonneke
  surname: Willemsen
  fullname: Willemsen, Gonneke
– sequence: 148
  givenname: Hualin S.
  surname: Xi
  fullname: Xi, Hualin S.
– sequence: 153
  givenname: Klaus
  surname: Berger
  fullname: Berger, Klaus
– sequence: 166
  givenname: Kenneth S.
  surname: Kendler
  fullname: Kendler, Kenneth S.
– sequence: 168
  givenname: Glyn
  surname: Lewis
  fullname: Lewis, Glyn
– sequence: 169
  givenname: Qingqin S.
  surname: Li
  fullname: Li, Qingqin S.
– sequence: 171
  givenname: Pamela A.F.
  surname: Madden
  fullname: Madden, Pamela A.F.
– sequence: 174
  givenname: Andrew M.
  surname: McIntosh
  fullname: McIntosh, Andrew M.
– sequence: 175
  givenname: Andres
  surname: Metspalu
  fullname: Metspalu, Andres
– sequence: 176
  givenname: Ole
  surname: Mors
  fullname: Mors, Ole
– sequence: 180
  givenname: Markus M.
  surname: Nöthen
  fullname: Nöthen, Markus M.
– sequence: 181
  givenname: Michael C.
  surname: O'Donovan
  fullname: O'Donovan, Michael C.
– sequence: 182
  givenname: Sara A.
  surname: Paciga
  fullname: Paciga, Sara A.
– sequence: 183
  givenname: Nancy L.
  surname: Pedersen
  fullname: Pedersen, Nancy L.
– sequence: 186
  givenname: David J.
  surname: Porteous
  fullname: Porteous, David J.
– sequence: 187
  givenname: James B.
  surname: Potash
  fullname: Potash, James B.
– sequence: 189
  givenname: Marcella
  surname: Rietschel
  fullname: Rietschel, Marcella
– sequence: 192
  givenname: Jordan W.
  surname: Smoller
  fullname: Smoller, Jordan W.
– sequence: 193
  givenname: Kari
  surname: Stefansson
  fullname: Stefansson, Kari
– sequence: 194
  givenname: Henning
  surname: Tiemeier
  fullname: Tiemeier, Henning
– sequence: 196
  givenname: Henry
  surname: Völzke
  fullname: Völzke, Henry
– sequence: 197
  givenname: Myrna M.
  surname: Weissman
  fullname: Weissman, Myrna M.
BookMark eNp9kDtPwzAUhS0EEqXwB5g8siT4kdgxYkGIl1RBxWO2HOemdUntYqdA_z2pysDEdO5wviud7wjt--ABoVNKckqoOF_kZjGf5YwwnhOREyL20IiWXGZCkHIfjQghLFNMyUN0lNKCEEorwkcIpqHbzMA7i6NL73gVoXG2d8Ff4K_5BhvfDAkeh3WfhTZLZrnq4E8NPzNsjcfwbQEa_PI4zWqThmsO0fWmdp3rN8fooDVdgpPfHKO325vX6_ts8nT3cH01ySwnss8abgUHaZSULZVVqSoj2u2KQrJC2KowJVe2aHndljUraspqqhSHFoZhlFs-Rme7v6sYPtaQer10yULXGQ9hnTSrOGWqlKoaqmxXtTGkFKHVq-iWJm40JXrrVC_01qneOtVE6MHpAF3uIBhGfDqIOlkH3g4yItheN8H9h_8A3bmBQQ
CitedBy_id crossref_primary_10_3233_JAD_230510
crossref_primary_10_3390_jpm14030319
crossref_primary_10_2139_ssrn_4814726
crossref_primary_10_1038_s41562_024_01828_5
crossref_primary_10_1016_j_jaac_2023_12_009
crossref_primary_10_1371_journal_pgen_1011192
Cites_doi 10.1016/j.ajhg.2017.06.005
10.1093/bioinformatics/btq340
10.1093/braincomms/fcac125
10.1007/BF01245622
10.1038/s41588-017-0009-4
10.1038/ng.608
10.1371/annotation/b91ba224-10be-409d-93f4-7423d502cba0
10.1038/s41588-018-0090-3
10.1375/twin.13.6.517
10.1038/s41467-019-12653-0
10.1038/s41588-018-0108-x
10.1038/s41588-020-0594-5
10.1002/jrsm.12
10.1038/s41593-018-0326-7
10.1111/j.1439-0388.2011.00964.x
10.1038/s41588-018-0147-3
10.1038/ng.3211
10.1371/journal.pone.0003395
10.1371/journal.pgen.1006495
10.1038/ng.2711
10.1176/appi.ajp.2017.17030283
10.1038/ng.3390
10.1016/j.biopsych.2021.04.018
10.1038/nrg3457
10.1016/j.ajhg.2010.11.011
10.1038/s41588-022-01016-z
ContentType Journal Article
Copyright 2023 American Society of Human Genetics
Copyright_xml – notice: 2023 American Society of Human Genetics
CorporateAuthor Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
CorporateAuthor_xml – name: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.ajhg.2023.06.006
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
EndPage 1215
ExternalDocumentID 10_1016_j_ajhg_2023_06_006
S0002929723002070
GroupedDBID ---
--K
--Z
-~X
0R~
123
1~5
23M
2WC
4.4
457
4G.
5GY
62-
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAWTL
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
E3Z
EBS
ECV
F5P
FCP
FDB
FEDTE
GX1
HVGLF
HYE
IH2
IHE
IXB
JIG
KQ8
L7B
M41
O-L
O9-
OK1
P2P
PQQKQ
RCE
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
VQA
WH7
WQ6
ZA5
ZCA
.55
.GJ
0SF
34R
3O-
41~
53G
6I.
AAIKJ
AAMRU
AAQXK
AAYXX
ACKIV
ADMUD
ADVLN
AGCDD
AGHFR
AI.
AKAPO
AKRWK
C1A
CITATION
EJD
F20
FA8
FGOYB
HZ~
MVM
NCXOZ
NEJ
OHT
OZT
R2-
RIG
VH1
WOQ
X7M
XOL
ZCG
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c307t-d3c63e7a977f178598a6f153747246c84a539c4f3bf5b24b12b1993efe29713c3
IEDL.DBID ABVKL
ISSN 0002-9297
IngestDate Thu Oct 24 23:25:01 EDT 2024
Thu Sep 26 17:55:38 EDT 2024
Fri Feb 23 02:37:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords meta-analysis
out-of-sample prediction R2
polygenic risk prediction
SNP-based heritability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-d3c63e7a977f178598a6f153747246c84a539c4f3bf5b24b12b1993efe29713c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8257-546X
0000-0001-7421-3357
OpenAccessLink https://doi.org/10.1016/j.ajhg.2023.06.006
PQID 2831295798
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2831295798
crossref_primary_10_1016_j_ajhg_2023_06_006
elsevier_sciencedirect_doi_10_1016_j_ajhg_2023_06_006
PublicationCentury 2000
PublicationDate 2023-07-06
PublicationDateYYYYMMDD 2023-07-06
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-06
  day: 06
PublicationDecade 2020
PublicationTitle American journal of human genetics
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dudbridge (bib14) 2013; 9
Sullivan, Agrawal, Bulik, Andreassen, Børglum, Breen, Cichon, Edenberg, Faraone, Gelernter (bib23) 2018; 175
Bulik-Sullivan, Loh, Finucane, Ripke, Yang, Schizophrenia Working Group of the Psychiatric Genomics, Patterson, Daly, Price, Neale (bib6) 2015; 47
Okbay, Wu, Wang, Jayashankar, Bennett, Nehzati, Sidorenko, Kweon, Goldman, Gjorgjieva (bib12) 2022; 54
Escott-Price, Hardy (bib11) 2022; 4
Turley, Walters, Maghzian, Okbay, Lee, Fontana, Nguyen-Viet, Wedow, Zacher, Furlotte (bib26) 2018; 50
Evans, Tahmasbi, Vrieze, Abecasis, Das, Gazal, Bjelland, De Candia, Goddard (bib7) 2018; 50
Yang, Benyamin, McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery (bib4) 2010; 42
Cai, Revez, Adams, Andlauer, Breen, Byrne, Clarke, Forstner, Grabe, Hamilton (bib17) 2020; 52
Yang, Bakshi, Zhu, Hemani, Vinkhuyzen, Lee, Robinson, Perry, Nolte, van Vliet-Ostaptchouk (bib2) 2015; 47
Willer, Li, Abecasis (bib22) 2010; 26
Wray, Ripke, Mattheisen, Trzaskowski, Byrne, Abdellaoui, Adams, Agerbo, Air, Andlauer (bib9) 2018; 50
Daetwyler, Villanueva, Woolliams (bib15) 2008; 3
Goddard, Hayes, Meuwissen (bib18) 2011; 128
Lee, Ripke, Neale, Faraone, Purcell, Perlis, Mowry, Thapar, Goddard (bib8) 2013; 45
Lee, Wedow, Okbay, Kong, Maghzian, Zacher, Nguyen-Viet, Bowers, Sidorenko, Karlsson Linnér (bib10) 2018; 50
Visscher, Yang, Goddard (bib3) 2010; 13
Howard, Adams, Clarke, Hafferty, Gibson, Shirali, Coleman, Hagenaars, Ward, Wigmore (bib21) 2019; 22
de Vlaming, Okbay, Rietveld, Johannesson, Magnusson, Uitterlinden, van Rooij, Hofman, Groenen, Thurik, Koellinger (bib13) 2017; 13
Visscher, Wray, Zhang, Sklar, McCarthy, Brown, Yang (bib1) 2017; 101
Yang, Lee, Goddard, Visscher (bib5) 2011; 88
Lloyd-Jones, Zeng, Sidorenko, Yengo, Moser, Kemper, Wang, Zheng, Magi, Esko (bib25) 2019; 10
Borenstein, Hedges, Higgins, Rothstein (bib16) 2010; 1
Hill, Robertson (bib19) 1968; 38
Ni, Zeng, Revez, Wang, Zheng, Ge, Restuadi, Kiewa, Nyholt, Coleman (bib24) 2021; 90
Wray, Yang, Hayes, Price, Goddard, Visscher (bib20) 2013; 14
Yang (10.1016/j.ajhg.2023.06.006_bib5) 2011; 88
Escott-Price (10.1016/j.ajhg.2023.06.006_bib11) 2022; 4
Yang (10.1016/j.ajhg.2023.06.006_bib2) 2015; 47
Okbay (10.1016/j.ajhg.2023.06.006_bib12) 2022; 54
Visscher (10.1016/j.ajhg.2023.06.006_bib1) 2017; 101
Turley (10.1016/j.ajhg.2023.06.006_bib26) 2018; 50
Hill (10.1016/j.ajhg.2023.06.006_bib19) 1968; 38
Willer (10.1016/j.ajhg.2023.06.006_bib22) 2010; 26
de Vlaming (10.1016/j.ajhg.2023.06.006_bib13) 2017; 13
Borenstein (10.1016/j.ajhg.2023.06.006_bib16) 2010; 1
Cai (10.1016/j.ajhg.2023.06.006_bib17) 2020; 52
Wray (10.1016/j.ajhg.2023.06.006_bib20) 2013; 14
Ni (10.1016/j.ajhg.2023.06.006_bib24) 2021; 90
Lee (10.1016/j.ajhg.2023.06.006_bib10) 2018; 50
Wray (10.1016/j.ajhg.2023.06.006_bib9) 2018; 50
Goddard (10.1016/j.ajhg.2023.06.006_bib18) 2011; 128
Dudbridge (10.1016/j.ajhg.2023.06.006_bib14) 2013; 9
Evans (10.1016/j.ajhg.2023.06.006_bib7) 2018; 50
Yang (10.1016/j.ajhg.2023.06.006_bib4) 2010; 42
Lloyd-Jones (10.1016/j.ajhg.2023.06.006_bib25) 2019; 10
Lee (10.1016/j.ajhg.2023.06.006_bib8) 2013; 45
Daetwyler (10.1016/j.ajhg.2023.06.006_bib15) 2008; 3
Howard (10.1016/j.ajhg.2023.06.006_bib21) 2019; 22
Visscher (10.1016/j.ajhg.2023.06.006_bib3) 2010; 13
Bulik-Sullivan (10.1016/j.ajhg.2023.06.006_bib6) 2015; 47
Sullivan (10.1016/j.ajhg.2023.06.006_bib23) 2018; 175
References_xml – volume: 50
  start-page: 668
  year: 2018
  end-page: 681
  ident: bib9
  article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
  publication-title: Nat. Genet.
  contributor:
    fullname: Andlauer
– volume: 52
  start-page: 437
  year: 2020
  end-page: 447
  ident: bib17
  article-title: Minimal phenotyping yields genome-wide association signals of low specificity for major depression
  publication-title: Nat. Genet.
  contributor:
    fullname: Hamilton
– volume: 22
  start-page: 343
  year: 2019
  end-page: 352
  ident: bib21
  article-title: Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions
  publication-title: Nat. Neurosci.
  contributor:
    fullname: Wigmore
– volume: 101
  start-page: 5
  year: 2017
  end-page: 22
  ident: bib1
  article-title: 10 years of GWAS discovery: biology, function, and translation
  publication-title: Am. J. Hum. Genet.
  contributor:
    fullname: Yang
– volume: 42
  start-page: 565
  year: 2010
  end-page: 569
  ident: bib4
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  contributor:
    fullname: Montgomery
– volume: 47
  start-page: 291
  year: 2015
  end-page: 295
  ident: bib6
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  contributor:
    fullname: Neale
– volume: 50
  start-page: 229
  year: 2018
  end-page: 237
  ident: bib26
  article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG
  publication-title: Nat. Genet.
  contributor:
    fullname: Furlotte
– volume: 26
  start-page: 2190
  year: 2010
  end-page: 2191
  ident: bib22
  article-title: METAL: fast and efficient meta-analysis of genomewide association scans
  publication-title: Bioinformatics
  contributor:
    fullname: Abecasis
– volume: 90
  start-page: 611
  year: 2021
  end-page: 620
  ident: bib24
  article-title: A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts
  publication-title: Biol. Psychiatry
  contributor:
    fullname: Coleman
– volume: 3
  start-page: e3395
  year: 2008
  ident: bib15
  article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach
  publication-title: PLoS One
  contributor:
    fullname: Woolliams
– volume: 9
  year: 2013
  ident: bib14
  article-title: Power and predictive accuracy of polygenic risk scores
  publication-title: PLoS Genet.
  contributor:
    fullname: Dudbridge
– volume: 13
  start-page: 517
  year: 2010
  end-page: 524
  ident: bib3
  article-title: A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010)
  publication-title: Twin Res. Hum. Genet.
  contributor:
    fullname: Goddard
– volume: 14
  start-page: 507
  year: 2013
  end-page: 515
  ident: bib20
  article-title: Pitfalls of predicting complex traits from SNPs
  publication-title: Nat. Rev. Genet.
  contributor:
    fullname: Visscher
– volume: 45
  start-page: 984
  year: 2013
  end-page: 994
  ident: bib8
  article-title: Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs
  publication-title: Nat. Genet.
  contributor:
    fullname: Goddard
– volume: 13
  year: 2017
  ident: bib13
  article-title: Meta-GWAS Accuracy and Power (MetaGAP) calculator shows that hiding heritability is partially due to imperfect genetic correlations across studies
  publication-title: PLoS Genet.
  contributor:
    fullname: Koellinger
– volume: 175
  start-page: 15
  year: 2018
  end-page: 27
  ident: bib23
  article-title: Psychiatric genomics: an update and an agenda
  publication-title: Am. J. Psychiatry
  contributor:
    fullname: Gelernter
– volume: 38
  start-page: 226
  year: 1968
  end-page: 231
  ident: bib19
  article-title: Linkage disequilibrium in finite populations
  publication-title: Theor. Appl. Genet.
  contributor:
    fullname: Robertson
– volume: 50
  start-page: 737
  year: 2018
  end-page: 745
  ident: bib7
  article-title: Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits
  publication-title: Nat. Genet.
  contributor:
    fullname: Goddard
– volume: 1
  start-page: 97
  year: 2010
  end-page: 111
  ident: bib16
  article-title: A basic introduction to fixed-effect and random-effects models for meta-analysis
  publication-title: Res. Synth. Methods
  contributor:
    fullname: Rothstein
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: bib5
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
  contributor:
    fullname: Visscher
– volume: 50
  start-page: 1112
  year: 2018
  end-page: 1121
  ident: bib10
  article-title: Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals
  publication-title: Nat. Genet.
  contributor:
    fullname: Karlsson Linnér
– volume: 54
  start-page: 437
  year: 2022
  end-page: 449
  ident: bib12
  article-title: Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals
  publication-title: Nat. Genet.
  contributor:
    fullname: Gjorgjieva
– volume: 10
  start-page: 5086
  year: 2019
  ident: bib25
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
  contributor:
    fullname: Esko
– volume: 128
  start-page: 409
  year: 2011
  end-page: 421
  ident: bib18
  article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection
  publication-title: J. Anim. Breed. Genet.
  contributor:
    fullname: Meuwissen
– volume: 47
  start-page: 1114
  year: 2015
  end-page: 1120
  ident: bib2
  article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index
  publication-title: Nat. Genet.
  contributor:
    fullname: van Vliet-Ostaptchouk
– volume: 4
  start-page: fcac125
  year: 2022
  ident: bib11
  article-title: Genome-wide association studies for Alzheimer’s disease: bigger is not always better
  publication-title: Brain Commun.
  contributor:
    fullname: Hardy
– volume: 101
  start-page: 5
  year: 2017
  ident: 10.1016/j.ajhg.2023.06.006_bib1
  article-title: 10 years of GWAS discovery: biology, function, and translation
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.06.005
  contributor:
    fullname: Visscher
– volume: 26
  start-page: 2190
  year: 2010
  ident: 10.1016/j.ajhg.2023.06.006_bib22
  article-title: METAL: fast and efficient meta-analysis of genomewide association scans
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
  contributor:
    fullname: Willer
– volume: 4
  start-page: fcac125
  year: 2022
  ident: 10.1016/j.ajhg.2023.06.006_bib11
  article-title: Genome-wide association studies for Alzheimer’s disease: bigger is not always better
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcac125
  contributor:
    fullname: Escott-Price
– volume: 38
  start-page: 226
  year: 1968
  ident: 10.1016/j.ajhg.2023.06.006_bib19
  article-title: Linkage disequilibrium in finite populations
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF01245622
  contributor:
    fullname: Hill
– volume: 50
  start-page: 229
  year: 2018
  ident: 10.1016/j.ajhg.2023.06.006_bib26
  article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0009-4
  contributor:
    fullname: Turley
– volume: 42
  start-page: 565
  year: 2010
  ident: 10.1016/j.ajhg.2023.06.006_bib4
  article-title: Common SNPs explain a large proportion of the heritability for human height
  publication-title: Nat. Genet.
  doi: 10.1038/ng.608
  contributor:
    fullname: Yang
– volume: 9
  year: 2013
  ident: 10.1016/j.ajhg.2023.06.006_bib14
  article-title: Power and predictive accuracy of polygenic risk scores
  publication-title: PLoS Genet.
  doi: 10.1371/annotation/b91ba224-10be-409d-93f4-7423d502cba0
  contributor:
    fullname: Dudbridge
– volume: 50
  start-page: 668
  year: 2018
  ident: 10.1016/j.ajhg.2023.06.006_bib9
  article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0090-3
  contributor:
    fullname: Wray
– volume: 13
  start-page: 517
  year: 2010
  ident: 10.1016/j.ajhg.2023.06.006_bib3
  article-title: A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010)
  publication-title: Twin Res. Hum. Genet.
  doi: 10.1375/twin.13.6.517
  contributor:
    fullname: Visscher
– volume: 10
  start-page: 5086
  year: 2019
  ident: 10.1016/j.ajhg.2023.06.006_bib25
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
  contributor:
    fullname: Lloyd-Jones
– volume: 50
  start-page: 737
  year: 2018
  ident: 10.1016/j.ajhg.2023.06.006_bib7
  article-title: Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0108-x
  contributor:
    fullname: Evans
– volume: 52
  start-page: 437
  year: 2020
  ident: 10.1016/j.ajhg.2023.06.006_bib17
  article-title: Minimal phenotyping yields genome-wide association signals of low specificity for major depression
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0594-5
  contributor:
    fullname: Cai
– volume: 1
  start-page: 97
  year: 2010
  ident: 10.1016/j.ajhg.2023.06.006_bib16
  article-title: A basic introduction to fixed-effect and random-effects models for meta-analysis
  publication-title: Res. Synth. Methods
  doi: 10.1002/jrsm.12
  contributor:
    fullname: Borenstein
– volume: 22
  start-page: 343
  year: 2019
  ident: 10.1016/j.ajhg.2023.06.006_bib21
  article-title: Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0326-7
  contributor:
    fullname: Howard
– volume: 128
  start-page: 409
  year: 2011
  ident: 10.1016/j.ajhg.2023.06.006_bib18
  article-title: Using the genomic relationship matrix to predict the accuracy of genomic selection
  publication-title: J. Anim. Breed. Genet.
  doi: 10.1111/j.1439-0388.2011.00964.x
  contributor:
    fullname: Goddard
– volume: 50
  start-page: 1112
  year: 2018
  ident: 10.1016/j.ajhg.2023.06.006_bib10
  article-title: Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0147-3
  contributor:
    fullname: Lee
– volume: 47
  start-page: 291
  year: 2015
  ident: 10.1016/j.ajhg.2023.06.006_bib6
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
  contributor:
    fullname: Bulik-Sullivan
– volume: 3
  start-page: e3395
  year: 2008
  ident: 10.1016/j.ajhg.2023.06.006_bib15
  article-title: Accuracy of predicting the genetic risk of disease using a genome-wide approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003395
  contributor:
    fullname: Daetwyler
– volume: 13
  year: 2017
  ident: 10.1016/j.ajhg.2023.06.006_bib13
  article-title: Meta-GWAS Accuracy and Power (MetaGAP) calculator shows that hiding heritability is partially due to imperfect genetic correlations across studies
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006495
  contributor:
    fullname: de Vlaming
– volume: 45
  start-page: 984
  year: 2013
  ident: 10.1016/j.ajhg.2023.06.006_bib8
  article-title: Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2711
  contributor:
    fullname: Lee
– volume: 175
  start-page: 15
  year: 2018
  ident: 10.1016/j.ajhg.2023.06.006_bib23
  article-title: Psychiatric genomics: an update and an agenda
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2017.17030283
  contributor:
    fullname: Sullivan
– volume: 47
  start-page: 1114
  year: 2015
  ident: 10.1016/j.ajhg.2023.06.006_bib2
  article-title: Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3390
  contributor:
    fullname: Yang
– volume: 90
  start-page: 611
  year: 2021
  ident: 10.1016/j.ajhg.2023.06.006_bib24
  article-title: A comparison of ten polygenic score methods for psychiatric disorders applied across multiple cohorts
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2021.04.018
  contributor:
    fullname: Ni
– volume: 14
  start-page: 507
  year: 2013
  ident: 10.1016/j.ajhg.2023.06.006_bib20
  article-title: Pitfalls of predicting complex traits from SNPs
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3457
  contributor:
    fullname: Wray
– volume: 88
  start-page: 76
  year: 2011
  ident: 10.1016/j.ajhg.2023.06.006_bib5
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.011
  contributor:
    fullname: Yang
– volume: 54
  start-page: 437
  year: 2022
  ident: 10.1016/j.ajhg.2023.06.006_bib12
  article-title: Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-022-01016-z
  contributor:
    fullname: Okbay
SSID ssj0011803
Score 2.4913507
Snippet In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1207
SubjectTerms meta-analysis
out-of-sample prediction R2
polygenic risk prediction
SNP-based heritability
Title Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability
URI https://dx.doi.org/10.1016/j.ajhg.2023.06.006
https://search.proquest.com/docview/2831295798
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvgiXnFeRgTfpNqmTS--TXF4HcMbewtplrgNaYd2aP-95_QiKuKDLy0NTSlfknO-k5wLIfsBFm_wlW1JFbtgoMAlMpJZtmEa7BGmVFHu7abnnz94lwM-aJDTOhYG3Sor2V_K9EJaVy1HFZpH0_EYY3xtBso9ABINnCcAu32eAfuF1TnfOXm8uv48THBC261ZMHaoYmdKNy85GT0dYg3xIo0nFj76XT_9kNSF-ukuk6WKN9JO-WsrpKGTVbJQVpLM14jup885zIWxougsTqcveACDoB_Tt1FOZTKEu05oOsus1FivErMCf3mN3jIKKFP9jvqM3vX6Fiq4IcX4wKxM5p2vk4fu2f3puVVVULAUrN3MGrrKd3UggeQZJwh5FErfgIwDG4LBCIWe5G6kPOPGhsfMix0Wo0OfNhpgclzlbpBmkiZ6k1DbALWTGjMOci_gKsTSVRJaDB_K2A9a5KDGTUzLRBmi9iCbCERZIMqicKPzW4TX0Ipvwy1Akv_Zb68eBwHrAA83ZKLT2asAmgTUhQdRuPXPb2-TRXwqfHH9HdLMXmZ6FxhHFrerGdUmcxeDk3axJfQBXKnUvw
link.rule.ids 315,783,787,3513,27581,27936,27937,45675,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIvoiXnFeI_gmdV3b9OKbDsem2xi6wd5CmiVuQ9qxdej-vef0Iirigy8tpGkpX5JzvsO5EXLpYfMGV5qGkKENBgpcAi0sw9SWAnvEkjJt99bpus2B8zBkwxKpF7kwGFaZy_5MpqfSOh-p5mhWZ5MJ5viaFih3D0g0cB4P7PY1TLvEbd4a3n26Emq-aRccGKfnmTNZkJeYjl-usYN4WsQT2x79rp1-yOlU-TS2yVbOGult9mM7pKSiXbKe9ZFc7RHVi19XsBMmkmKoOJ3N0f2CkN_Qt_GKimgEdxXReJkYsTYWAmsCf5lGnywKGFP1jtqMPnd7Bqq3EcXswCQr5b3aJ4PGfb_eNPL-CYaEk5sYI1u6tvIEUDxd83wW-MLVIOHAgrBgfXxHMDuQjrZDzULLCWtWiOF8SiuAqWZL-4CUozhSh4SaGoidUFhvkDkekz42rhIwotlIhK5XIVcFbnyWlcngRfzYlCPKHFHmaRCdWyGsgJZ_W2wOcvzP9y6KdeBwCtC1ISIVLxccSBIQF-YF_tE_v31ONpr9Tpu3W93HY7KJT9KoXPeElJP5Up0C90jCs3RvfQA9ZtR_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polygenic+risk+prediction%3A+why+and+when+out-of-sample+prediction+R2+can+exceed+SNP-based+heritability&rft.jtitle=American+journal+of+human+genetics&rft.au=Wang%2C+Xiaotong&rft.au=Walker%2C+Alicia&rft.au=Revez%2C+Joana+A&rft.au=Ni%2C+Guiyan&rft.date=2023-07-06&rft.eissn=1537-6605&rft.volume=110&rft.issue=7&rft.spage=1207&rft.epage=1215&rft_id=info:doi/10.1016%2Fj.ajhg.2023.06.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon