Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma
A two-dimensional hybrid code is developed to model the transport of a high-current electron beam in a dense plasma target. The beam electrons are treated as particles and described by particle-in-cell simulation including collisions with the target plasma particles. The background target plasma is...
Saved in:
Published in | Plasma science & technology Vol. 16; no. 11; pp. 1007 - 1012 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/1009-0630/16/11/03 |
Cover
Summary: | A two-dimensional hybrid code is developed to model the transport of a high-current electron beam in a dense plasma target. The beam electrons are treated as particles and described by particle-in-cell simulation including collisions with the target plasma particles. The background target plasma is assumed to be a stationary fluid with temperature variations. The return current and the self-generated electric and magnetic fields are obtained by combining Amp~re's law without the displacement current, the resistive Ohm's law and Faraday's law. The equations are solved in two-dimensional cylindrical geometry with rotational symmetry on a regular grid, with centered spatial differencing and first-order implicit time differencing. The algorithms implemented in the code are described, and a numerical experiment is performed for an electron beam with Maxwellian distribution ejected into a uniform deuterium-tritium plasma target. |
---|---|
Bibliography: | electron beam transport; hybrid simulation; energy deposition A two-dimensional hybrid code is developed to model the transport of a high-current electron beam in a dense plasma target. The beam electrons are treated as particles and described by particle-in-cell simulation including collisions with the target plasma particles. The background target plasma is assumed to be a stationary fluid with temperature variations. The return current and the self-generated electric and magnetic fields are obtained by combining Amp~re's law without the displacement current, the resistive Ohm's law and Faraday's law. The equations are solved in two-dimensional cylindrical geometry with rotational symmetry on a regular grid, with centered spatial differencing and first-order implicit time differencing. The algorithms implemented in the code are described, and a numerical experiment is performed for an electron beam with Maxwellian distribution ejected into a uniform deuterium-tritium plasma target. CAO Lihua , WANG Huan , ZHANG Hua , LIU Zhanjnn , WU Junfeng , LI Baiwen( 1.Institute of Applied Physics and Computational Mathematics, Beijing 100094, China ;2.HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 China) 34-1187/TL ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1009-0630 |
DOI: | 10.1088/1009-0630/16/11/03 |