Solution of inverse anomalous diffusion problems using empirical and phenomenological models

In recent years, the anomalous diffusion phenomenon has attracted attention from the scientific community due to the number of applications and development of experimental procedures to observe this phenomenon. From a mathematical point of view, anomalous diffusion can be described by empirical (alg...

Full description

Saved in:
Bibliographic Details
Published inHeat and mass transfer Vol. 55; no. 11; pp. 3053 - 3063
Main Authors Lima, William Júnio, Lobato, Fran Sérgio, de Oliveira Arouca, Fábio
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the anomalous diffusion phenomenon has attracted attention from the scientific community due to the number of applications and development of experimental procedures to observe this phenomenon. From a mathematical point of view, anomalous diffusion can be described by empirical (algebraic models) and phenomenological models (differential models with integer or fractional order). Considering the empirical models, one of the ways to observe the presence of anomalous diffusion is to check if the particle concentration profiles collapse around the reference profile, defined in terms of a new independent variable that depends on spatial and temporal variables. This new variable (scale factor) is used to characterize the diffusion type (classical or anomalous). For phenomenological models, diffusivity is usually considered as a function of particle concentration to characterize anomalous diffusion. For both cases, an inverse problem needs to be formulated and solved to obtain the parameters for each methodology. In this context, the present contribution aims to formulate and solve two inverse anomalous diffusion problems related to empirical and phenomenological models. For this purpose, two experimental data sets and Differential Evolution (DE) are considered. The results obtained demonstrate that the DE strategy was able to find good estimates for the scale factor and for the parameters related to the phenomenological model.
ISSN:0947-7411
1432-1181
DOI:10.1007/s00231-019-02642-w