Riprap incipient motion for overtopping flows with machine learning models

Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to estimate the unit discharge at the failure circumstance of riprap layers. However, these equations lack general impact due to the limited range of...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 22; no. 4; pp. 749 - 767
Main Authors Najafzadeh, Mohammad, Oliveto, Giuseppe
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to estimate the unit discharge at the failure circumstance of riprap layers. However, these equations lack general impact due to the limited range of experimental variables. To overcome these shortcomings, support vector machine (SVM), multivariate adaptive regression splines (MARS), and random forest (RF) techniques have been applied in this study to estimate the approach densimetric Froude number at the incipient motion of riprap stones. Riprap stone size, streambank slope, uniformity coefficient of riprap layer stone, specific density of stones, and thickness of riprap layer have been considered as controlling variables. Quantitative performances of the artificial intelligence (AI) models have been assessed by many statistical measures including: coefficient of correlation (R), root mean square error (RMSE), mean absolute error (MAE), and scatter index (SI). Statistical performance of AI models indicated that SVM model with radial basis function (RBF) kernel had better performance (SI = 0.37) than MARS (SI = 0.75) and RF (SI = 0.63) techniques. The proposed AI models performed better than existing empirical equations. From a parametric study the results demonstrated that the erosion-critical stone-referred Froude number (Fs,c) is mainly controlled by the streambank slope.
AbstractList Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to estimate the unit discharge at the failure circumstance of riprap layers. However, these equations lack general impact due to the limited range of experimental variables. To overcome these shortcomings, support vector machine (SVM), multivariate adaptive regression splines (MARS), and random forest (RF) techniques have been applied in this study to estimate the approach densimetric Froude number at the incipient motion of riprap stones. Riprap stone size, streambank slope, uniformity coefficient of riprap layer stone, specific density of stones, and thickness of riprap layer have been considered as controlling variables. Quantitative performances of the artificial intelligence (AI) models have been assessed by many statistical measures including: coefficient of correlation (R), root mean square error (RMSE), mean absolute error (MAE), and scatter index (SI). Statistical performance of AI models indicated that SVM model with radial basis function (RBF) kernel had better performance (SI = 0.37) than MARS (SI = 0.75) and RF (SI = 0.63) techniques. The proposed AI models performed better than existing empirical equations. From a parametric study the results demonstrated that the erosion-critical stone-referred Froude number (Fs,c) is mainly controlled by the streambank slope.
Author Najafzadeh, Mohammad
Oliveto, Giuseppe
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Najafzadeh
  fullname: Najafzadeh, Mohammad
  organization: Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran
– sequence: 2
  givenname: Giuseppe
  surname: Oliveto
  fullname: Oliveto, Giuseppe
  organization: School of Engineering, University of Basilicata, Potenza, Italy
BookMark eNp1kN9LwzAQx4NMcJu--hzwuTWXpkn7KMOfDATR55C2ictok5pmjv33tptPgk93cN_PHfdZoJnzTiN0DSSlwPnt5tAEn1JCSQq0PENzYDxPQGRsduxZIoDBBVoMw5YQClkBc_TyZvugemxdbXurXcSdj9Y7bHzA_luH6Pveuk9sWr8f8N7GDe5UvbFO41ar4KZZ5xvdDpfo3Kh20Fe_dYk-Hu7fV0_J-vXxeXW3TuqMiJhURmgQxGSUGy5AcC4YE2VpCkUEB01LBQ1rOG1Uo8uCVJVW1JC8gkzloHm2RDenvX3wXzs9RLn1u-DGk5KyIhsfLlg-ptJTqg5-GII2sg-2U-EggcjJlzz6kpMvOfoaAfYHqG1Uk4sYlG3_w34AYUBy7w
CitedBy_id crossref_primary_10_3390_app13053051
crossref_primary_10_1016_j_jconhyd_2021_103781
crossref_primary_10_1155_2021_5547889
crossref_primary_10_1007_s11356_021_18221_8
crossref_primary_10_1061__ASCE_HE_1943_5584_0002140
crossref_primary_10_1061__ASCE_IR_1943_4774_0001689
crossref_primary_10_1080_17486025_2024_2367439
crossref_primary_10_1016_j_matcom_2021_04_008
crossref_primary_10_1155_2022_8089428
crossref_primary_10_3390_w14152416
crossref_primary_10_1007_s00477_021_02018_9
crossref_primary_10_2166_wpt_2022_098
crossref_primary_10_1080_19942060_2023_2244558
crossref_primary_10_3390_w15112047
crossref_primary_10_1007_s40998_024_00767_1
crossref_primary_10_2166_hydro_2024_292
crossref_primary_10_1016_j_prime_2023_100293
crossref_primary_10_3389_fbuil_2024_1502168
crossref_primary_10_3233_JIFS_232989
crossref_primary_10_2166_hydro_2021_111
crossref_primary_10_1155_2023_8776630
crossref_primary_10_1155_2021_9945218
crossref_primary_10_3233_JIFS_237993
crossref_primary_10_1016_j_oceaneng_2020_108564
crossref_primary_10_1155_2022_7183700
crossref_primary_10_1061__ASCE_PS_1949_1204_0000533
crossref_primary_10_2166_hydro_2023_268
crossref_primary_10_3390_fi15020046
crossref_primary_10_1061__ASCE_IR_1943_4774_0001548
crossref_primary_10_3390_w14182880
crossref_primary_10_3934_geosci_2021016
crossref_primary_10_1155_2021_5524709
crossref_primary_10_1155_2022_6729608
crossref_primary_10_1177_13694332211049996
crossref_primary_10_1007_s40747_020_00259_9
crossref_primary_10_1080_00986445_2021_1974409
crossref_primary_10_1002_htj_22439
crossref_primary_10_2166_hydro_2020_245
crossref_primary_10_2166_hydro_2023_096
crossref_primary_10_1002_agj2_21504
crossref_primary_10_1142_S021812662450035X
crossref_primary_10_1016_j_scitotenv_2023_167369
crossref_primary_10_1155_2021_6028573
crossref_primary_10_3390_w14111729
crossref_primary_10_2166_hydro_2021_047
crossref_primary_10_1155_2021_6633760
crossref_primary_10_2166_hydro_2021_046
crossref_primary_10_1007_s42452_020_04124_9
crossref_primary_10_1016_j_engstruct_2024_119050
crossref_primary_10_2166_wpt_2023_028
crossref_primary_10_3390_w14223636
crossref_primary_10_1061__ASCE_IR_1943_4774_0001610
crossref_primary_10_1007_s00500_020_05413_6
crossref_primary_10_1007_s40808_024_02210_0
crossref_primary_10_1016_j_measurement_2023_113322
crossref_primary_10_1038_s41598_024_67269_2
crossref_primary_10_3390_w16030444
crossref_primary_10_1016_j_ecohyd_2021_04_002
crossref_primary_10_2166_hydro_2024_039
crossref_primary_10_1007_s10661_021_09135_6
crossref_primary_10_1061_JIDEDH_IRENG_10227
crossref_primary_10_1515_geo_2020_0276
crossref_primary_10_1155_2022_5933086
crossref_primary_10_1016_j_jhydrol_2022_127549
crossref_primary_10_3390_w14101581
crossref_primary_10_1155_2021_5520428
Cites_doi 10.2166/hydro.2011.044
10.1016/j.jhydrol.2015.04.032
10.1061/(ASCE)0733-9429(2008)134:8(1035)
10.1023/A:1014596120381
10.1002/hyp.5862
10.2166/hydro.2017.078
10.1061/(ASCE)0733-9429(2004)130:7(622)
10.1061/(ASCE)0733-9429(2008)134:11(1651)
10.1080/15715124.2018.1437738
10.1016/j.catena.2018.04.004
10.1080/23249676.2018.1449675
10.2166/hydro.2004.0016
10.13031/2013.17230
10.2166/hydro.2018.217
10.1061/(ASCE)0733-9429(2001)127:5(412)
10.1007/978-1-4757-2440-0
10.1061/40517(2000)178
10.1023/A:1010933404324
10.2166/hydro.2018.115
10.2166/hydro.2009.041
10.1061/(ASCE)0733-9429(2005)131:10(898)
10.1007/s00521-012-1230-9
10.1061/(ASCE)HY.1943-7900.0000830
10.1007/s10652-007-9041-8
10.1061/(ASCE)0733-9429(1989)115:10(1421)
10.1016/j.eswa.2008.12.035
10.1080/00221686.2017.1323806
10.2166/hydro.2017.010
10.1061/(ASCE)0733-9429(1991)117:8(959)
10.2166/hydro.2000.0004
10.1061/(ASCE)0733-9429(1995)121:6(490)
10.1111/jawr.12074
10.2166/hydro.2018.163
10.1007/s12040-016-0708-8
10.2166/hydro.2006.016b
10.1061/(ASCE)PS.1949-1204.0000347
10.2166/hydro.2018.002
10.2172/6765539
ContentType Journal Article
Copyright Copyright IWA Publishing Jul 2020
Copyright_xml – notice: Copyright IWA Publishing Jul 2020
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.2166/hydro.2020.129
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1465-1734
EndPage 767
ExternalDocumentID 10_2166_hydro_2020_129
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c307t-bf7e170f326f671766744799f8a0761e29a1d4d62dade980bbea2f05b13a51e63
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Mon Jun 30 13:32:26 EDT 2025
Tue Jul 01 04:10:33 EDT 2025
Thu Apr 24 22:55:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-bf7e170f326f671766744799f8a0761e29a1d4d62dade980bbea2f05b13a51e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf
PQID 2483173845
PQPubID 2044529
PageCount 19
ParticipantIDs proquest_journals_2483173845
crossref_primary_10_2166_hydro_2020_129
crossref_citationtrail_10_2166_hydro_2020_129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2020
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/hydro.2020.129-7
key-10.2166/hydro.2020.129-24
key-10.2166/hydro.2020.129-6
key-10.2166/hydro.2020.129-25
key-10.2166/hydro.2020.129-9
key-10.2166/hydro.2020.129-8
key-10.2166/hydro.2020.129-27
key-10.2166/hydro.2020.129-3
key-10.2166/hydro.2020.129-20
key-10.2166/hydro.2020.129-2
key-10.2166/hydro.2020.129-21
Khan (key-10.2166/hydro.2020.129-28) 2011; 5
key-10.2166/hydro.2020.129-5
key-10.2166/hydro.2020.129-22
Olivier (key-10.2166/hydro.2020.129-38) 1967; 36
key-10.2166/hydro.2020.129-4
key-10.2166/hydro.2020.129-1
Walters (key-10.2166/hydro.2020.129-51) 1982
Isbash (key-10.2166/hydro.2020.129-26) 1936
Thornton (key-10.2166/hydro.2020.129-47) 2008
key-10.2166/hydro.2020.129-17
key-10.2166/hydro.2020.129-18
key-10.2166/hydro.2020.129-19
key-10.2166/hydro.2020.129-35
key-10.2166/hydro.2020.129-36
key-10.2166/hydro.2020.129-37
key-10.2166/hydro.2020.129-31
key-10.2166/hydro.2020.129-32
key-10.2166/hydro.2020.129-34
Wittler (key-10.2166/hydro.2020.129-53) 1994
Palt (key-10.2166/hydro.2020.129-39) 2002
Whittaker (key-10.2166/hydro.2020.129-52) 1986
key-10.2166/hydro.2020.129-48
key-10.2166/hydro.2020.129-42
key-10.2166/hydro.2020.129-43
Knauss (key-10.2166/hydro.2020.129-30) 1979
key-10.2166/hydro.2020.129-44
key-10.2166/hydro.2020.129-40
key-10.2166/hydro.2020.129-41
Wittler (key-10.2166/hydro.2020.129-54) 1997
Khan (key-10.2166/hydro.2020.129-29) 2018; 171
key-10.2166/hydro.2020.129-13
key-10.2166/hydro.2020.129-14
key-10.2166/hydro.2020.129-15
key-10.2166/hydro.2020.129-16
Sommer (key-10.2166/hydro.2020.129-45) 1997
key-10.2166/hydro.2020.129-10
Ullmann (key-10.2166/hydro.2020.129-49) 2000
key-10.2166/hydro.2020.129-11
key-10.2166/hydro.2020.129-55
key-10.2166/hydro.2020.129-12
key-10.2166/hydro.2020.129-56
Maynord (key-10.2166/hydro.2020.129-33) 1992
Thornton (key-10.2166/hydro.2020.129-46) 2012
Hartung (key-10.2166/hydro.2020.129-23) 1970
Vapnik (key-10.2166/hydro.2020.129-50) 1995
References_xml – ident: key-10.2166/hydro.2020.129-5
  doi: 10.2166/hydro.2011.044
– volume-title: Construction of Dams by Dumping Stones Into Flowing Water
  year: 1936
  ident: key-10.2166/hydro.2020.129-26
– ident: key-10.2166/hydro.2020.129-34
  doi: 10.1016/j.jhydrol.2015.04.032
– ident: key-10.2166/hydro.2020.129-3
  doi: 10.1061/(ASCE)0733-9429(2008)134:8(1035)
– ident: key-10.2166/hydro.2020.129-27
  doi: 10.1023/A:1014596120381
– volume-title: Überströmbare Deckwerke
  year: 1997
  ident: key-10.2166/hydro.2020.129-45
– ident: key-10.2166/hydro.2020.129-9
  doi: 10.1002/hyp.5862
– ident: key-10.2166/hydro.2020.129-15
  doi: 10.2166/hydro.2017.078
– ident: key-10.2166/hydro.2020.129-16
  doi: 10.1061/(ASCE)0733-9429(2004)130:7(622)
– ident: key-10.2166/hydro.2020.129-18
  doi: 10.1061/(ASCE)0733-9429(2008)134:11(1651)
– ident: key-10.2166/hydro.2020.129-36
  doi: 10.1080/15715124.2018.1437738
– ident: key-10.2166/hydro.2020.129-40
  doi: 10.1016/j.catena.2018.04.004
– volume-title: Riprap Design for Full Spectrum Overtopping Flows
  year: 1997
  ident: key-10.2166/hydro.2020.129-54
– ident: key-10.2166/hydro.2020.129-25
  doi: 10.1080/23249676.2018.1449675
– volume-title: Mechanics of Riprap in Overtopping Flow. PhD thesis
  year: 1994
  ident: key-10.2166/hydro.2020.129-53
– ident: key-10.2166/hydro.2020.129-56
  doi: 10.2166/hydro.2004.0016
– ident: key-10.2166/hydro.2020.129-17
– volume-title: Las Vegas Wash Sloped Rock-Weir Study. Report Prepared for the Southern Nevada Water Authority
  year: 2008
  ident: key-10.2166/hydro.2020.129-47
– ident: key-10.2166/hydro.2020.129-41
  doi: 10.13031/2013.17230
– ident: key-10.2166/hydro.2020.129-14
  doi: 10.2166/hydro.2018.217
– year: 2002
  ident: key-10.2166/hydro.2020.129-39
  article-title: Entwicklung eines Dimensionierungskonzepts für naturnahe raue Rampen anhand von Naturuntersuchungen in Gebirgsflüssen
– year: 1992
  ident: key-10.2166/hydro.2020.129-33
– ident: key-10.2166/hydro.2020.129-32
  doi: 10.1061/(ASCE)0733-9429(2001)127:5(412)
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: key-10.2166/hydro.2020.129-50
  doi: 10.1007/978-1-4757-2440-0
– ident: key-10.2166/hydro.2020.129-20
– year: 2000
  ident: key-10.2166/hydro.2020.129-49
  article-title: Stability of rounded riprap in overtopping flow
  doi: 10.1061/40517(2000)178
– ident: key-10.2166/hydro.2020.129-13
  doi: 10.1023/A:1010933404324
– ident: key-10.2166/hydro.2020.129-31
  doi: 10.2166/hydro.2018.115
– ident: key-10.2166/hydro.2020.129-10
  doi: 10.2166/hydro.2009.041
– ident: key-10.2166/hydro.2020.129-8
  doi: 10.1061/(ASCE)0733-9429(2005)131:10(898)
– ident: key-10.2166/hydro.2020.129-42
  doi: 10.1007/s00521-012-1230-9
– ident: key-10.2166/hydro.2020.129-35
– ident: key-10.2166/hydro.2020.129-48
  doi: 10.1061/(ASCE)HY.1943-7900.0000830
– ident: key-10.2166/hydro.2020.129-44
  doi: 10.1007/s10652-007-9041-8
– ident: key-10.2166/hydro.2020.129-12
  doi: 10.1061/(ASCE)0733-9429(1989)115:10(1421)
– ident: key-10.2166/hydro.2020.129-37
  doi: 10.1016/j.eswa.2008.12.035
– ident: key-10.2166/hydro.2020.129-24
  doi: 10.1080/00221686.2017.1323806
– ident: key-10.2166/hydro.2020.129-55
  doi: 10.2166/hydro.2017.010
– ident: key-10.2166/hydro.2020.129-2
– ident: key-10.2166/hydro.2020.129-1
  doi: 10.1061/(ASCE)0733-9429(1991)117:8(959)
– volume-title: Rock Stability Testing in Overtopping Flow –2012
  year: 2012
  ident: key-10.2166/hydro.2020.129-46
– ident: key-10.2166/hydro.2020.129-11
  doi: 10.2166/hydro.2000.0004
– volume: 171
  start-page: 225
  issue: 5
  year: 2018
  ident: key-10.2166/hydro.2020.129-29
  article-title: Genetic functions-based modelling for pier scour depth prediction in coarse bed streams
  publication-title: P. I. Civil Eng.-Wat. M.
– ident: key-10.2166/hydro.2020.129-19
  doi: 10.1061/(ASCE)0733-9429(1995)121:6(490)
– volume: 36
  start-page: 433
  issue: 3
  year: 1967
  ident: key-10.2166/hydro.2020.129-38
  article-title: Through and overflow rockfill dams-new design techniques
  publication-title: P. I. Civil Eng.
– ident: key-10.2166/hydro.2020.129-4
  doi: 10.1111/jawr.12074
– ident: key-10.2166/hydro.2020.129-7
  doi: 10.2166/hydro.2018.163
– start-page: 587
  year: 1970
  ident: key-10.2166/hydro.2020.129-23
  article-title: Design of overflow rockfill dams
– volume: 5
  start-page: 550
  issue: 11
  year: 2011
  ident: key-10.2166/hydro.2020.129-28
  article-title: Stabilization of angular-shaped riprap under overtopping flows
  publication-title: World Acad. Sci. Eng. Tech.
– ident: key-10.2166/hydro.2020.129-22
  doi: 10.1007/s12040-016-0708-8
– start-page: 143
  year: 1979
  ident: key-10.2166/hydro.2020.129-30
  article-title: Computation of maximum discharge at overflow rockfill dams (a comparison of different model test results)
– volume-title: Blockschwellen, vol. 91, Laboratory for Hydraulics, Hydrology and Glaciology
  year: 1986
  ident: key-10.2166/hydro.2020.129-52
– ident: key-10.2166/hydro.2020.129-21
  doi: 10.2166/hydro.2006.016b
– ident: key-10.2166/hydro.2020.129-43
  doi: 10.1061/(ASCE)PS.1949-1204.0000347
– ident: key-10.2166/hydro.2020.129-6
  doi: 10.2166/hydro.2018.002
– volume-title: Rock Riprap Design Methods and Their Applicability to Long-Term Protection of Uranium Mill Tailings Impoundments
  year: 1982
  ident: key-10.2166/hydro.2020.129-51
  doi: 10.2172/6765539
SSID ssj0021381
Score 2.4578805
Snippet Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 749
SubjectTerms Artificial intelligence
Correlation analysis
Datasets
Empirical equations
Engineering
Froude number
Hydraulics
Incipient motion
Learning algorithms
Machine learning
Mathematical models
Overtopping
Radial basis function
Riprap
Riverbanks
Rivers
Root-mean-square errors
Shear strength
Spline functions
Splines
Statistical analysis
Stone
Stream banks
Support vector machines
Thickness
Uniformity coefficient
Title Riprap incipient motion for overtopping flows with machine learning models
URI https://www.proquest.com/docview/2483173845
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66HdSD6FScTslB8BTWtGmanERlYwwcMhzsVtI22YS5zq0i--_NazN1B70V-sjhpfnej758H0I3OqJK0VSSNBIZYVqkRHFfEC1DW48oT0gDfcinAe-NWH8cjl3DbeXGKjeYWAJ1lqfQI2_7TNhQFwgW3i3eCahGwd9VJ6Gxi-oWgoWoofpDZ_A8_C65aFDKlFo4gKlDRivaRp9y3p6usyXc_vOBYUFuh6VtVC5DTfcIHbocEd9Xm3qMdvS8gQ5-MQc20J4TL5-uT1B_-Lqwj7jsmsP1RlxJ82Cbj2KY0CxyIGGYYDPLP1cYOq_4rZyh1NiJRkxwqYizOkWjbuflsUecRAJJ7eEsSGIiTSPP2CTM8AjIHiPGIimNUNCg0L5UNGMZ9zOVaSm8JNHKN16Y0ECFVPPgDNXm-VyfI6xNYO0s3Ejt24iVSqVSZauRiGuWGSGbiGw8FKeOPxxkLGaxrSPAo3Hp0Rg8GluPNtHtt_2iYs7407K1cXjsTtAq_tnvi_9fX6J9WKgaoW2hWrH80Fc2USiSa_c1fAHXM742
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcgAOqAUqKFB8APVkETuOYx-qClrQ8lpVCCRuqZPYgAS7W3YrtH-qv5GZPHgc6I1bpFg-fBnPK-PvA9jyqXBOFJYXqSm58qbgTkvDvU2wHnGRsYH6kKc93b1QR5fJ5RT8a-_C0Fhl6xMrR10OCuqR70hlMNTFRiXfh384qUbR39VWQqM2i2M_ecCSbfTt8Cd-320pD_bPf3R5oyrAC7TnMc9D6kUaBcxbgk6JHzFVKrU2GEc1vZfWiVKVWpau9NZEee6dDFGSi9glwusY952GGRXrSHZgZm-_9-vsqcQTcSWLiu6HphyVqGkipdB653pS3tNtQ0mMDvZ1GHwdBarQdvABFpqclO3WRvQRpnx_EeZfMBUuwmwjln49WYKjs5shPrKqS0_XKVktBcQw_2U0EToeEOnDFQu3g4cRo04vu6tmNj1rRCquWKXAM1qGi3cB7xN0-oO-XwHmQ4zr0L1ZLzFCFta5wmH1k2qvymDsKvAWoaxo-MpJNuM2w7qFEM0qRDNCNENEV-Hr0_phzdTx5sr1FvCsObGj7Nm-Pv__9SbMds9PT7KTw97xGszRpvX47jp0xvd__QYmKeP8S2MZDH6_tzE-Ak5f-oU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIhU4VOUlXm19oOrJ2rXjxPYBIVpY8VwhVCRuwUlsQILdhV2E9q_113UmD1oO9MYtUiwfJp9n5puM5wPY8lo4J3LLc20KrrzJuUuk4d7GyEdcx9hAdcjTXnJwoY4u48sp-N3chaG2ysYnlo66GORUI29LZTDURUbF7VC3RZztdXeGD5wUpOhPayOnUUHk2E-ekb6Ntg_38Ft_k7K7_-vnAa8VBniO2B7zLGgvdCdgDhMSTbMStVLa2mAc8XsvrROFKhJZuMJb08ky72ToxJmIXCx8EuG-0zCjiRW1YObHfu_s_IXuiaiUSEVXRB2PSlQjI6VIkvbNpHikm4eSpjvY1yHxdUQow1z3E3ys81O2WwFqAaZ8fxHm_5lauAiztXD6zWQJjs5vh_jIyoo9Xa1klSwQw1yYUXfoeEADIK5ZuBs8jxhVfdl92b_pWS1Ycc1KNZ7RMly8i_FWoNUf9P0qMB8iXIeuznqJ0TK3zuUOmZBOvCqCsWvAGwuleT27nCQ07lLkMGTRtLRoShZN0aJr8P1l_bCa2vHmys3G4Gl9ekfpX6yt___1V_iAIExPDnvHGzBHe1advJvQGj8--c-Yr4yzLzUwGFy9Nxb_AKmY_ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riprap+incipient+motion+for+overtopping+flows+with+machine+learning+models&rft.jtitle=Journal+of+hydroinformatics&rft.au=Najafzadeh%2C+Mohammad&rft.au=Oliveto%2C+Giuseppe&rft.date=2020-07-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=22&rft.issue=4&rft.spage=749&rft_id=info:doi/10.2166%2Fhydro.2020.129&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon