Riprap incipient motion for overtopping flows with machine learning models
Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to estimate the unit discharge at the failure circumstance of riprap layers. However, these equations lack general impact due to the limited range of...
Saved in:
Published in | Journal of hydroinformatics Vol. 22; no. 4; pp. 749 - 767 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to estimate the unit discharge at the failure circumstance of riprap layers. However, these equations lack general impact due to the limited range of experimental variables. To overcome these shortcomings, support vector machine (SVM), multivariate adaptive regression splines (MARS), and random forest (RF) techniques have been applied in this study to estimate the approach densimetric Froude number at the incipient motion of riprap stones. Riprap stone size, streambank slope, uniformity coefficient of riprap layer stone, specific density of stones, and thickness of riprap layer have been considered as controlling variables. Quantitative performances of the artificial intelligence (AI) models have been assessed by many statistical measures including: coefficient of correlation (R), root mean square error (RMSE), mean absolute error (MAE), and scatter index (SI). Statistical performance of AI models indicated that SVM model with radial basis function (RBF) kernel had better performance (SI = 0.37) than MARS (SI = 0.75) and RF (SI = 0.63) techniques. The proposed AI models performed better than existing empirical equations. From a parametric study the results demonstrated that the erosion-critical stone-referred Froude number (Fs,c) is mainly controlled by the streambank slope. |
---|---|
AbstractList | Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to estimate the unit discharge at the failure circumstance of riprap layers. However, these equations lack general impact due to the limited range of experimental variables. To overcome these shortcomings, support vector machine (SVM), multivariate adaptive regression splines (MARS), and random forest (RF) techniques have been applied in this study to estimate the approach densimetric Froude number at the incipient motion of riprap stones. Riprap stone size, streambank slope, uniformity coefficient of riprap layer stone, specific density of stones, and thickness of riprap layer have been considered as controlling variables. Quantitative performances of the artificial intelligence (AI) models have been assessed by many statistical measures including: coefficient of correlation (R), root mean square error (RMSE), mean absolute error (MAE), and scatter index (SI). Statistical performance of AI models indicated that SVM model with radial basis function (RBF) kernel had better performance (SI = 0.37) than MARS (SI = 0.75) and RF (SI = 0.63) techniques. The proposed AI models performed better than existing empirical equations. From a parametric study the results demonstrated that the erosion-critical stone-referred Froude number (Fs,c) is mainly controlled by the streambank slope. |
Author | Najafzadeh, Mohammad Oliveto, Giuseppe |
Author_xml | – sequence: 1 givenname: Mohammad surname: Najafzadeh fullname: Najafzadeh, Mohammad organization: Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran – sequence: 2 givenname: Giuseppe surname: Oliveto fullname: Oliveto, Giuseppe organization: School of Engineering, University of Basilicata, Potenza, Italy |
BookMark | eNp1kN9LwzAQx4NMcJu--hzwuTWXpkn7KMOfDATR55C2ictok5pmjv33tptPgk93cN_PHfdZoJnzTiN0DSSlwPnt5tAEn1JCSQq0PENzYDxPQGRsduxZIoDBBVoMw5YQClkBc_TyZvugemxdbXurXcSdj9Y7bHzA_luH6Pveuk9sWr8f8N7GDe5UvbFO41ar4KZZ5xvdDpfo3Kh20Fe_dYk-Hu7fV0_J-vXxeXW3TuqMiJhURmgQxGSUGy5AcC4YE2VpCkUEB01LBQ1rOG1Uo8uCVJVW1JC8gkzloHm2RDenvX3wXzs9RLn1u-DGk5KyIhsfLlg-ptJTqg5-GII2sg-2U-EggcjJlzz6kpMvOfoaAfYHqG1Uk4sYlG3_w34AYUBy7w |
CitedBy_id | crossref_primary_10_3390_app13053051 crossref_primary_10_1016_j_jconhyd_2021_103781 crossref_primary_10_1155_2021_5547889 crossref_primary_10_1007_s11356_021_18221_8 crossref_primary_10_1061__ASCE_HE_1943_5584_0002140 crossref_primary_10_1061__ASCE_IR_1943_4774_0001689 crossref_primary_10_1080_17486025_2024_2367439 crossref_primary_10_1016_j_matcom_2021_04_008 crossref_primary_10_1155_2022_8089428 crossref_primary_10_3390_w14152416 crossref_primary_10_1007_s00477_021_02018_9 crossref_primary_10_2166_wpt_2022_098 crossref_primary_10_1080_19942060_2023_2244558 crossref_primary_10_3390_w15112047 crossref_primary_10_1007_s40998_024_00767_1 crossref_primary_10_2166_hydro_2024_292 crossref_primary_10_1016_j_prime_2023_100293 crossref_primary_10_3389_fbuil_2024_1502168 crossref_primary_10_3233_JIFS_232989 crossref_primary_10_2166_hydro_2021_111 crossref_primary_10_1155_2023_8776630 crossref_primary_10_1155_2021_9945218 crossref_primary_10_3233_JIFS_237993 crossref_primary_10_1016_j_oceaneng_2020_108564 crossref_primary_10_1155_2022_7183700 crossref_primary_10_1061__ASCE_PS_1949_1204_0000533 crossref_primary_10_2166_hydro_2023_268 crossref_primary_10_3390_fi15020046 crossref_primary_10_1061__ASCE_IR_1943_4774_0001548 crossref_primary_10_3390_w14182880 crossref_primary_10_3934_geosci_2021016 crossref_primary_10_1155_2021_5524709 crossref_primary_10_1155_2022_6729608 crossref_primary_10_1177_13694332211049996 crossref_primary_10_1007_s40747_020_00259_9 crossref_primary_10_1080_00986445_2021_1974409 crossref_primary_10_1002_htj_22439 crossref_primary_10_2166_hydro_2020_245 crossref_primary_10_2166_hydro_2023_096 crossref_primary_10_1002_agj2_21504 crossref_primary_10_1142_S021812662450035X crossref_primary_10_1016_j_scitotenv_2023_167369 crossref_primary_10_1155_2021_6028573 crossref_primary_10_3390_w14111729 crossref_primary_10_2166_hydro_2021_047 crossref_primary_10_1155_2021_6633760 crossref_primary_10_2166_hydro_2021_046 crossref_primary_10_1007_s42452_020_04124_9 crossref_primary_10_1016_j_engstruct_2024_119050 crossref_primary_10_2166_wpt_2023_028 crossref_primary_10_3390_w14223636 crossref_primary_10_1061__ASCE_IR_1943_4774_0001610 crossref_primary_10_1007_s00500_020_05413_6 crossref_primary_10_1007_s40808_024_02210_0 crossref_primary_10_1016_j_measurement_2023_113322 crossref_primary_10_1038_s41598_024_67269_2 crossref_primary_10_3390_w16030444 crossref_primary_10_1016_j_ecohyd_2021_04_002 crossref_primary_10_2166_hydro_2024_039 crossref_primary_10_1007_s10661_021_09135_6 crossref_primary_10_1061_JIDEDH_IRENG_10227 crossref_primary_10_1515_geo_2020_0276 crossref_primary_10_1155_2022_5933086 crossref_primary_10_1016_j_jhydrol_2022_127549 crossref_primary_10_3390_w14101581 crossref_primary_10_1155_2021_5520428 |
Cites_doi | 10.2166/hydro.2011.044 10.1016/j.jhydrol.2015.04.032 10.1061/(ASCE)0733-9429(2008)134:8(1035) 10.1023/A:1014596120381 10.1002/hyp.5862 10.2166/hydro.2017.078 10.1061/(ASCE)0733-9429(2004)130:7(622) 10.1061/(ASCE)0733-9429(2008)134:11(1651) 10.1080/15715124.2018.1437738 10.1016/j.catena.2018.04.004 10.1080/23249676.2018.1449675 10.2166/hydro.2004.0016 10.13031/2013.17230 10.2166/hydro.2018.217 10.1061/(ASCE)0733-9429(2001)127:5(412) 10.1007/978-1-4757-2440-0 10.1061/40517(2000)178 10.1023/A:1010933404324 10.2166/hydro.2018.115 10.2166/hydro.2009.041 10.1061/(ASCE)0733-9429(2005)131:10(898) 10.1007/s00521-012-1230-9 10.1061/(ASCE)HY.1943-7900.0000830 10.1007/s10652-007-9041-8 10.1061/(ASCE)0733-9429(1989)115:10(1421) 10.1016/j.eswa.2008.12.035 10.1080/00221686.2017.1323806 10.2166/hydro.2017.010 10.1061/(ASCE)0733-9429(1991)117:8(959) 10.2166/hydro.2000.0004 10.1061/(ASCE)0733-9429(1995)121:6(490) 10.1111/jawr.12074 10.2166/hydro.2018.163 10.1007/s12040-016-0708-8 10.2166/hydro.2006.016b 10.1061/(ASCE)PS.1949-1204.0000347 10.2166/hydro.2018.002 10.2172/6765539 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Jul 2020 |
Copyright_xml | – notice: Copyright IWA Publishing Jul 2020 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
DOI | 10.2166/hydro.2020.129 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1465-1734 |
EndPage | 767 |
ExternalDocumentID | 10_2166_hydro_2020_129 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c307t-bf7e170f326f671766744799f8a0761e29a1d4d62dade980bbea2f05b13a51e63 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Mon Jun 30 13:32:26 EDT 2025 Tue Jul 01 04:10:33 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-bf7e170f326f671766744799f8a0761e29a1d4d62dade980bbea2f05b13a51e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/22/4/749/715149/jh0220749.pdf |
PQID | 2483173845 |
PQPubID | 2044529 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2483173845 crossref_primary_10_2166_hydro_2020_129 crossref_citationtrail_10_2166_hydro_2020_129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2020 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | key-10.2166/hydro.2020.129-7 key-10.2166/hydro.2020.129-24 key-10.2166/hydro.2020.129-6 key-10.2166/hydro.2020.129-25 key-10.2166/hydro.2020.129-9 key-10.2166/hydro.2020.129-8 key-10.2166/hydro.2020.129-27 key-10.2166/hydro.2020.129-3 key-10.2166/hydro.2020.129-20 key-10.2166/hydro.2020.129-2 key-10.2166/hydro.2020.129-21 Khan (key-10.2166/hydro.2020.129-28) 2011; 5 key-10.2166/hydro.2020.129-5 key-10.2166/hydro.2020.129-22 Olivier (key-10.2166/hydro.2020.129-38) 1967; 36 key-10.2166/hydro.2020.129-4 key-10.2166/hydro.2020.129-1 Walters (key-10.2166/hydro.2020.129-51) 1982 Isbash (key-10.2166/hydro.2020.129-26) 1936 Thornton (key-10.2166/hydro.2020.129-47) 2008 key-10.2166/hydro.2020.129-17 key-10.2166/hydro.2020.129-18 key-10.2166/hydro.2020.129-19 key-10.2166/hydro.2020.129-35 key-10.2166/hydro.2020.129-36 key-10.2166/hydro.2020.129-37 key-10.2166/hydro.2020.129-31 key-10.2166/hydro.2020.129-32 key-10.2166/hydro.2020.129-34 Wittler (key-10.2166/hydro.2020.129-53) 1994 Palt (key-10.2166/hydro.2020.129-39) 2002 Whittaker (key-10.2166/hydro.2020.129-52) 1986 key-10.2166/hydro.2020.129-48 key-10.2166/hydro.2020.129-42 key-10.2166/hydro.2020.129-43 Knauss (key-10.2166/hydro.2020.129-30) 1979 key-10.2166/hydro.2020.129-44 key-10.2166/hydro.2020.129-40 key-10.2166/hydro.2020.129-41 Wittler (key-10.2166/hydro.2020.129-54) 1997 Khan (key-10.2166/hydro.2020.129-29) 2018; 171 key-10.2166/hydro.2020.129-13 key-10.2166/hydro.2020.129-14 key-10.2166/hydro.2020.129-15 key-10.2166/hydro.2020.129-16 Sommer (key-10.2166/hydro.2020.129-45) 1997 key-10.2166/hydro.2020.129-10 Ullmann (key-10.2166/hydro.2020.129-49) 2000 key-10.2166/hydro.2020.129-11 key-10.2166/hydro.2020.129-55 key-10.2166/hydro.2020.129-12 key-10.2166/hydro.2020.129-56 Maynord (key-10.2166/hydro.2020.129-33) 1992 Thornton (key-10.2166/hydro.2020.129-46) 2012 Hartung (key-10.2166/hydro.2020.129-23) 1970 Vapnik (key-10.2166/hydro.2020.129-50) 1995 |
References_xml | – ident: key-10.2166/hydro.2020.129-5 doi: 10.2166/hydro.2011.044 – volume-title: Construction of Dams by Dumping Stones Into Flowing Water year: 1936 ident: key-10.2166/hydro.2020.129-26 – ident: key-10.2166/hydro.2020.129-34 doi: 10.1016/j.jhydrol.2015.04.032 – ident: key-10.2166/hydro.2020.129-3 doi: 10.1061/(ASCE)0733-9429(2008)134:8(1035) – ident: key-10.2166/hydro.2020.129-27 doi: 10.1023/A:1014596120381 – volume-title: Überströmbare Deckwerke year: 1997 ident: key-10.2166/hydro.2020.129-45 – ident: key-10.2166/hydro.2020.129-9 doi: 10.1002/hyp.5862 – ident: key-10.2166/hydro.2020.129-15 doi: 10.2166/hydro.2017.078 – ident: key-10.2166/hydro.2020.129-16 doi: 10.1061/(ASCE)0733-9429(2004)130:7(622) – ident: key-10.2166/hydro.2020.129-18 doi: 10.1061/(ASCE)0733-9429(2008)134:11(1651) – ident: key-10.2166/hydro.2020.129-36 doi: 10.1080/15715124.2018.1437738 – ident: key-10.2166/hydro.2020.129-40 doi: 10.1016/j.catena.2018.04.004 – volume-title: Riprap Design for Full Spectrum Overtopping Flows year: 1997 ident: key-10.2166/hydro.2020.129-54 – ident: key-10.2166/hydro.2020.129-25 doi: 10.1080/23249676.2018.1449675 – volume-title: Mechanics of Riprap in Overtopping Flow. PhD thesis year: 1994 ident: key-10.2166/hydro.2020.129-53 – ident: key-10.2166/hydro.2020.129-56 doi: 10.2166/hydro.2004.0016 – ident: key-10.2166/hydro.2020.129-17 – volume-title: Las Vegas Wash Sloped Rock-Weir Study. Report Prepared for the Southern Nevada Water Authority year: 2008 ident: key-10.2166/hydro.2020.129-47 – ident: key-10.2166/hydro.2020.129-41 doi: 10.13031/2013.17230 – ident: key-10.2166/hydro.2020.129-14 doi: 10.2166/hydro.2018.217 – year: 2002 ident: key-10.2166/hydro.2020.129-39 article-title: Entwicklung eines Dimensionierungskonzepts für naturnahe raue Rampen anhand von Naturuntersuchungen in Gebirgsflüssen – year: 1992 ident: key-10.2166/hydro.2020.129-33 – ident: key-10.2166/hydro.2020.129-32 doi: 10.1061/(ASCE)0733-9429(2001)127:5(412) – volume-title: The Nature of Statistical Learning Theory year: 1995 ident: key-10.2166/hydro.2020.129-50 doi: 10.1007/978-1-4757-2440-0 – ident: key-10.2166/hydro.2020.129-20 – year: 2000 ident: key-10.2166/hydro.2020.129-49 article-title: Stability of rounded riprap in overtopping flow doi: 10.1061/40517(2000)178 – ident: key-10.2166/hydro.2020.129-13 doi: 10.1023/A:1010933404324 – ident: key-10.2166/hydro.2020.129-31 doi: 10.2166/hydro.2018.115 – ident: key-10.2166/hydro.2020.129-10 doi: 10.2166/hydro.2009.041 – ident: key-10.2166/hydro.2020.129-8 doi: 10.1061/(ASCE)0733-9429(2005)131:10(898) – ident: key-10.2166/hydro.2020.129-42 doi: 10.1007/s00521-012-1230-9 – ident: key-10.2166/hydro.2020.129-35 – ident: key-10.2166/hydro.2020.129-48 doi: 10.1061/(ASCE)HY.1943-7900.0000830 – ident: key-10.2166/hydro.2020.129-44 doi: 10.1007/s10652-007-9041-8 – ident: key-10.2166/hydro.2020.129-12 doi: 10.1061/(ASCE)0733-9429(1989)115:10(1421) – ident: key-10.2166/hydro.2020.129-37 doi: 10.1016/j.eswa.2008.12.035 – ident: key-10.2166/hydro.2020.129-24 doi: 10.1080/00221686.2017.1323806 – ident: key-10.2166/hydro.2020.129-55 doi: 10.2166/hydro.2017.010 – ident: key-10.2166/hydro.2020.129-2 – ident: key-10.2166/hydro.2020.129-1 doi: 10.1061/(ASCE)0733-9429(1991)117:8(959) – volume-title: Rock Stability Testing in Overtopping Flow –2012 year: 2012 ident: key-10.2166/hydro.2020.129-46 – ident: key-10.2166/hydro.2020.129-11 doi: 10.2166/hydro.2000.0004 – volume: 171 start-page: 225 issue: 5 year: 2018 ident: key-10.2166/hydro.2020.129-29 article-title: Genetic functions-based modelling for pier scour depth prediction in coarse bed streams publication-title: P. I. Civil Eng.-Wat. M. – ident: key-10.2166/hydro.2020.129-19 doi: 10.1061/(ASCE)0733-9429(1995)121:6(490) – volume: 36 start-page: 433 issue: 3 year: 1967 ident: key-10.2166/hydro.2020.129-38 article-title: Through and overflow rockfill dams-new design techniques publication-title: P. I. Civil Eng. – ident: key-10.2166/hydro.2020.129-4 doi: 10.1111/jawr.12074 – ident: key-10.2166/hydro.2020.129-7 doi: 10.2166/hydro.2018.163 – start-page: 587 year: 1970 ident: key-10.2166/hydro.2020.129-23 article-title: Design of overflow rockfill dams – volume: 5 start-page: 550 issue: 11 year: 2011 ident: key-10.2166/hydro.2020.129-28 article-title: Stabilization of angular-shaped riprap under overtopping flows publication-title: World Acad. Sci. Eng. Tech. – ident: key-10.2166/hydro.2020.129-22 doi: 10.1007/s12040-016-0708-8 – start-page: 143 year: 1979 ident: key-10.2166/hydro.2020.129-30 article-title: Computation of maximum discharge at overflow rockfill dams (a comparison of different model test results) – volume-title: Blockschwellen, vol. 91, Laboratory for Hydraulics, Hydrology and Glaciology year: 1986 ident: key-10.2166/hydro.2020.129-52 – ident: key-10.2166/hydro.2020.129-21 doi: 10.2166/hydro.2006.016b – ident: key-10.2166/hydro.2020.129-43 doi: 10.1061/(ASCE)PS.1949-1204.0000347 – ident: key-10.2166/hydro.2020.129-6 doi: 10.2166/hydro.2018.002 – volume-title: Rock Riprap Design Methods and Their Applicability to Long-Term Protection of Uranium Mill Tailings Impoundments year: 1982 ident: key-10.2166/hydro.2020.129-51 doi: 10.2172/6765539 |
SSID | ssj0021381 |
Score | 2.4578805 |
Snippet | Riprap stones are frequently applied to protect rivers and channels against erosion processes. Many empirical equations have been proposed in the past to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 749 |
SubjectTerms | Artificial intelligence Correlation analysis Datasets Empirical equations Engineering Froude number Hydraulics Incipient motion Learning algorithms Machine learning Mathematical models Overtopping Radial basis function Riprap Riverbanks Rivers Root-mean-square errors Shear strength Spline functions Splines Statistical analysis Stone Stream banks Support vector machines Thickness Uniformity coefficient |
Title | Riprap incipient motion for overtopping flows with machine learning models |
URI | https://www.proquest.com/docview/2483173845 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66HdSD6FScTslB8BTWtGmanERlYwwcMhzsVtI22YS5zq0i--_NazN1B70V-sjhpfnej758H0I3OqJK0VSSNBIZYVqkRHFfEC1DW48oT0gDfcinAe-NWH8cjl3DbeXGKjeYWAJ1lqfQI2_7TNhQFwgW3i3eCahGwd9VJ6Gxi-oWgoWoofpDZ_A8_C65aFDKlFo4gKlDRivaRp9y3p6usyXc_vOBYUFuh6VtVC5DTfcIHbocEd9Xm3qMdvS8gQ5-MQc20J4TL5-uT1B_-Lqwj7jsmsP1RlxJ82Cbj2KY0CxyIGGYYDPLP1cYOq_4rZyh1NiJRkxwqYizOkWjbuflsUecRAJJ7eEsSGIiTSPP2CTM8AjIHiPGIimNUNCg0L5UNGMZ9zOVaSm8JNHKN16Y0ECFVPPgDNXm-VyfI6xNYO0s3Ejt24iVSqVSZauRiGuWGSGbiGw8FKeOPxxkLGaxrSPAo3Hp0Rg8GluPNtHtt_2iYs7407K1cXjsTtAq_tnvi_9fX6J9WKgaoW2hWrH80Fc2USiSa_c1fAHXM742 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcgAOqAUqKFB8APVkETuOYx-qClrQ8lpVCCRuqZPYgAS7W3YrtH-qv5GZPHgc6I1bpFg-fBnPK-PvA9jyqXBOFJYXqSm58qbgTkvDvU2wHnGRsYH6kKc93b1QR5fJ5RT8a-_C0Fhl6xMrR10OCuqR70hlMNTFRiXfh384qUbR39VWQqM2i2M_ecCSbfTt8Cd-320pD_bPf3R5oyrAC7TnMc9D6kUaBcxbgk6JHzFVKrU2GEc1vZfWiVKVWpau9NZEee6dDFGSi9glwusY952GGRXrSHZgZm-_9-vsqcQTcSWLiu6HphyVqGkipdB653pS3tNtQ0mMDvZ1GHwdBarQdvABFpqclO3WRvQRpnx_EeZfMBUuwmwjln49WYKjs5shPrKqS0_XKVktBcQw_2U0EToeEOnDFQu3g4cRo04vu6tmNj1rRCquWKXAM1qGi3cB7xN0-oO-XwHmQ4zr0L1ZLzFCFta5wmH1k2qvymDsKvAWoaxo-MpJNuM2w7qFEM0qRDNCNENEV-Hr0_phzdTx5sr1FvCsObGj7Nm-Pv__9SbMds9PT7KTw97xGszRpvX47jp0xvd__QYmKeP8S2MZDH6_tzE-Ak5f-oU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIhU4VOUlXm19oOrJ2rXjxPYBIVpY8VwhVCRuwUlsQILdhV2E9q_113UmD1oO9MYtUiwfJp9n5puM5wPY8lo4J3LLc20KrrzJuUuk4d7GyEdcx9hAdcjTXnJwoY4u48sp-N3chaG2ysYnlo66GORUI29LZTDURUbF7VC3RZztdXeGD5wUpOhPayOnUUHk2E-ekb6Ntg_38Ft_k7K7_-vnAa8VBniO2B7zLGgvdCdgDhMSTbMStVLa2mAc8XsvrROFKhJZuMJb08ky72ToxJmIXCx8EuG-0zCjiRW1YObHfu_s_IXuiaiUSEVXRB2PSlQjI6VIkvbNpHikm4eSpjvY1yHxdUQow1z3E3ys81O2WwFqAaZ8fxHm_5lauAiztXD6zWQJjs5vh_jIyoo9Xa1klSwQw1yYUXfoeEADIK5ZuBs8jxhVfdl92b_pWS1Ycc1KNZ7RMly8i_FWoNUf9P0qMB8iXIeuznqJ0TK3zuUOmZBOvCqCsWvAGwuleT27nCQ07lLkMGTRtLRoShZN0aJr8P1l_bCa2vHmys3G4Gl9ekfpX6yt___1V_iAIExPDnvHGzBHe1advJvQGj8--c-Yr4yzLzUwGFy9Nxb_AKmY_ro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riprap+incipient+motion+for+overtopping+flows+with+machine+learning+models&rft.jtitle=Journal+of+hydroinformatics&rft.au=Najafzadeh%2C+Mohammad&rft.au=Oliveto%2C+Giuseppe&rft.date=2020-07-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=22&rft.issue=4&rft.spage=749&rft_id=info:doi/10.2166%2Fhydro.2020.129&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |