Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures
Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heter...
Saved in:
Published in | Nanoscale Vol. 9; no. 27; pp. 9723 - 9731 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation. |
---|---|
AbstractList | Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation. Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation.Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation. |
Author | Dana, Jayanta Ghosh, Hirendra N. Maity, Partha |
Author_xml | – sequence: 1 givenname: Jayanta surname: Dana fullname: Dana, Jayanta organization: Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Instutute, Mumbai-400085, India – sequence: 2 givenname: Partha orcidid: 0000-0002-0293-7118 surname: Maity fullname: Maity, Partha organization: Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Instutute, Mumbai-400085, India – sequence: 3 givenname: Hirendra N. orcidid: 0000-0002-2227-5422 surname: Ghosh fullname: Ghosh, Hirendra N. organization: Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Instutute, Mumbai-400085, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28675235$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9LxDAMx4uceD_0xT9A9ijCNGu3bnvzGOoJh4Le--i6jJts7dl2DyL-71bvTkGEkITk8w0kmZKR0goJOY3gMgKWXxXpwxNQyujigEwoxBAyltLRT87jMZla-wLAc8bZERnTjKcJZcmE9AvtQuxQOqNV4IxQtkETNEb3gVtjYLFvpVb1IJ02Qa170XpMf_d6dKLb17wV9TNee_c-Hz4CJZQO1-jQaOuMlw8G7TE5bERn8WQXZ2R1e7MqFuHy8e6-mC9DySB1oRC0BillwpGlLIvTrJJVk9NcJJiLSlS84k2dJxIwQ4iEAIA4jXheQ0ZZzWbkfDt2Y_TrgNaVfWsldp1QqAdbRnmUZFkMnHn0bIcOVY91uTFtL8xbub-QB2ALSL-INdiUsnXCtVr5Y7VdGUH59YTy9wlecvFHsp_6D_wJOU6ISg |
CitedBy_id | crossref_primary_10_1021_acsanm_8b00097 crossref_primary_10_1021_acs_chemrev_2c00770 crossref_primary_10_1002_advs_202100640 crossref_primary_10_1016_j_jallcom_2022_165836 crossref_primary_10_1021_acsomega_8b00276 crossref_primary_10_1021_acs_jpcc_9b09042 crossref_primary_10_1021_acscatal_1c03754 crossref_primary_10_1039_C9TC00759H crossref_primary_10_1142_S1793292018500546 crossref_primary_10_1016_j_cej_2024_156366 crossref_primary_10_1021_acs_jpclett_9b03774 crossref_primary_10_1002_pssr_202100066 crossref_primary_10_1021_acs_jpcc_7b08448 crossref_primary_10_1039_C8NR00715B crossref_primary_10_1002_cnma_201900025 crossref_primary_10_1021_acs_jpcc_3c00856 crossref_primary_10_1039_C7NR07830G crossref_primary_10_1007_s10854_019_02326_5 crossref_primary_10_1016_j_ceramint_2018_11_222 crossref_primary_10_1016_j_optmat_2023_113940 crossref_primary_10_1021_acs_nanolett_8b02169 crossref_primary_10_1039_C7TA09953C crossref_primary_10_1021_acs_nanolett_7b04210 crossref_primary_10_1021_acsenergylett_1c00366 crossref_primary_10_1002_chem_201801853 crossref_primary_10_1002_adfm_202101103 crossref_primary_10_1021_acs_jpcc_8b09261 crossref_primary_10_1039_C8NR05144E crossref_primary_10_1021_acsami_3c12620 crossref_primary_10_3390_nano10040715 crossref_primary_10_1002_chem_201705127 crossref_primary_10_1016_j_jmrt_2020_04_076 crossref_primary_10_1021_acs_jpclett_2c01623 crossref_primary_10_1021_jacs_2c03235 crossref_primary_10_1021_acs_chemrev_2c00676 |
Cites_doi | 10.1021/ja503508g 10.1021/nn402022z 10.1021/ja802890f 10.1039/C6NR03610D 10.1021/ja411017b 10.1021/ja303306u 10.1021/nn302089h 10.1021/ja413254g 10.1021/nl200409x 10.1063/1.3480613 10.1021/nn302810y 10.1021/acs.jpcc.5b09904 10.1021/acs.jpcc.5b03603 10.1103/PhysRevLett.95.056805 10.1021/jz401985k 10.1021/ja502076b 10.1021/jz5006863 10.1021/ja076134v 10.1021/nn404264w 10.1021/cm402131n 10.1021/jz300248p 10.1021/acs.jpclett.5b00113 10.1039/C4SC02994A 10.1021/jz1006675 10.1021/ja111102u 10.1002/adma.200800044 10.1021/jp112129k 10.1021/jz900022z 10.1021/nl201388c 10.1021/ja305603t 10.1021/jacs.5b01946 10.1021/ja5023893 10.1021/nn200645h 10.1126/science.1097830 10.1021/ja904493c 10.1021/ja017002j 10.1002/adfm.201504035 10.1021/ja800104w 10.1021/nn203457a 10.1126/science.aac5443 10.1002/smll.201101317 10.1021/acs.jpcc.5b06055 10.1126/science.1185509 10.1021/nn305080c 10.1021/nl402730m 10.1021/nl400113t 10.1021/ar500411s 10.1021/jacs.5b02026 10.1021/acs.jpcc.5b08913 10.1039/C6SC00192K 10.1016/S0009-2614(02)01863-8 10.1021/nl400367m |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1039/C7NR02232H |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 9731 |
ExternalDocumentID | 28675235 10_1039_C7NR02232H |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7X8 |
ID | FETCH-LOGICAL-c307t-aa2d0ccc56e3738478bcbf929a5e9abab6b6fd95c0e8e01aa00047169d0823d3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 07:08:28 EDT 2025 Wed Feb 19 02:41:36 EST 2025 Tue Jul 01 00:33:46 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-aa2d0ccc56e3738478bcbf929a5e9abab6b6fd95c0e8e01aa00047169d0823d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2227-5422 0000-0002-0293-7118 |
PMID | 28675235 |
PQID | 1915884063 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1915884063 pubmed_primary_28675235 crossref_citationtrail_10_1039_C7NR02232H crossref_primary_10_1039_C7NR02232H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2017 |
References | Shaviv (C7NR02232H-(cit29)/*[position()=1]) 2011; 5 Cushing (C7NR02232H-(cit22)/*[position()=1]) 2012; 134 Acharya (C7NR02232H-(cit5)/*[position()=1]) 2011; 11 Sippel (C7NR02232H-(cit41)/*[position()=1]) 2013; 13 Nishijima (C7NR02232H-(cit3)/*[position()=1]) 2010; 1 Yu (C7NR02232H-(cit16)/*[position()=1]) 2014; 136 Banin (C7NR02232H-(cit20)/*[position()=1]) 2014; 26 Yang (C7NR02232H-(cit28)/*[position()=1]) 2003; 370 Mukherjee (C7NR02232H-(cit42)/*[position()=1]) 2014; 136 Todescato (C7NR02232H-(cit51)/*[position()=1]) 2013; 7 Maiti (C7NR02232H-(cit53)/*[position()=1]) 2016; 120 Khon (C7NR02232H-(cit31)/*[position()=1]) 2011; 11 Habas (C7NR02232H-(cit19)/*[position()=1]) 2008; 130 Maity (C7NR02232H-(cit47)/*[position()=1]) 2015; 119 El-Ballouli (C7NR02232H-(cit45)/*[position()=1]) 2014; 136 Berr (C7NR02232H-(cit11)/*[position()=1]) 2010; 97 Mokari (C7NR02232H-(cit1)/*[position()=1]) 2004; 304 O'Connor (C7NR02232H-(cit33)/*[position()=1]) 2012; 6 Jia (C7NR02232H-(cit49)/*[position()=1]) 2016; 7 Wu (C7NR02232H-(cit7)/*[position()=1]) 2012; 134 El-Ballouli (C7NR02232H-(cit44)/*[position()=1]) 2015; 25 Williams (C7NR02232H-(cit40)/*[position()=1]) 2013; 7 Chauhan (C7NR02232H-(cit50)/*[position()=1]) 2016; 8 Dreaden (C7NR02232H-(cit32)/*[position()=1]) 2011; 115 Wu (C7NR02232H-(cit9)/*[position()=1]) 2015; 6 Li (C7NR02232H-(cit6)/*[position()=1]) 2014; 136 Tisdale (C7NR02232H-(cit39)/*[position()=1]) 2010; 328 Mongin (C7NR02232H-(cit8)/*[position()=1]) 2012; 6 Soni (C7NR02232H-(cit18)/*[position()=1]) 2014; 5 Kobayashi (C7NR02232H-(cit26)/*[position()=1]) 2012; 3 Berr (C7NR02232H-(cit12)/*[position()=1]) 2012; 8 Dutta (C7NR02232H-(cit13)/*[position()=1]) 2015; 6 Lambright (C7NR02232H-(cit30)/*[position()=1]) 2014; 8 Gao (C7NR02232H-(cit23)/*[position()=1]) 2012; 6 Steiner (C7NR02232H-(cit25)/*[position()=1]) 2005; 95 Wu (C7NR02232H-(cit34)/*[position()=1]) 2013; 13 Pandey (C7NR02232H-(cit38)/*[position()=1]) 2010; 1 Wu (C7NR02232H-(cit35)/*[position()=1]) 2015; 349 Song (C7NR02232H-(cit4)/*[position()=1]) 2015; 48 Furube (C7NR02232H-(cit37)/*[position()=1]) 2007; 129 Yu (C7NR02232H-(cit10)/*[position()=1]) 2013; 4 Dana (C7NR02232H-(cit36)/*[position()=1]) 2015; 119 Wu (C7NR02232H-(cit15)/*[position()=1]) 2014; 136 Dong (C7NR02232H-(cit43)/*[position()=1]) 2015; 137 Lee (C7NR02232H-(cit27)/*[position()=1]) 2008; 130 Elmalem (C7NR02232H-(cit21)/*[position()=1]) 2008; 20 Qu (C7NR02232H-(cit46)/*[position()=1]) 2002; 124 Li (C7NR02232H-(cit24)/*[position()=1]) 2011; 133 Deka (C7NR02232H-(cit17)/*[position()=1]) 2009; 131 Ben Shahar (C7NR02232H-(cit48)/*[position()=1]) 2017; 7 Khao (C7NR02232H-(cit2)/*[position()=1]) 2015; 137 Kim (C7NR02232H-(cit14)/*[position()=1]) 2013; 13 Maity (C7NR02232H-(cit52)/*[position()=1]) 2015; 119 |
References_xml | – volume: 136 start-page: 8438 year: 2014 ident: C7NR02232H-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503508g – volume: 7 start-page: 6649 year: 2013 ident: C7NR02232H-(cit51)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn402022z – volume: 130 start-page: 9673 year: 2008 ident: C7NR02232H-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802890f – volume: 8 start-page: 15802 year: 2016 ident: C7NR02232H-(cit50)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR03610D – volume: 7 start-page: 1 year: 2017 ident: C7NR02232H-(cit48)/*[position()=1] publication-title: Nat. Commun. – volume: 136 start-page: 64 year: 2014 ident: C7NR02232H-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411017b – volume: 134 start-page: 10337 year: 2012 ident: C7NR02232H-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303306u – volume: 6 start-page: 7034 year: 2012 ident: C7NR02232H-(cit8)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn302089h – volume: 136 start-page: 6952 year: 2014 ident: C7NR02232H-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja413254g – volume: 11 start-page: 1792 year: 2011 ident: C7NR02232H-(cit31)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl200409x – volume: 97 start-page: 093108 year: 2010 ident: C7NR02232H-(cit11)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3480613 – volume: 6 start-page: 8156 year: 2012 ident: C7NR02232H-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn302810y – volume: 120 start-page: 1918 year: 2016 ident: C7NR02232H-(cit53)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09904 – volume: 119 start-page: 10785 year: 2015 ident: C7NR02232H-(cit52)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03603 – volume: 95 start-page: 056805 year: 2005 ident: C7NR02232H-(cit25)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.056805 – volume: 4 start-page: 3596 year: 2013 ident: C7NR02232H-(cit10)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401985k – volume: 136 start-page: 9236 year: 2014 ident: C7NR02232H-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502076b – volume: 5 start-page: 1909 year: 2014 ident: C7NR02232H-(cit18)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5006863 – volume: 129 start-page: 14852 year: 2007 ident: C7NR02232H-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076134v – volume: 8 start-page: 352 year: 2014 ident: C7NR02232H-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn404264w – volume: 26 start-page: 97 year: 2014 ident: C7NR02232H-(cit20)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm402131n – volume: 3 start-page: 1111 year: 2012 ident: C7NR02232H-(cit26)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300248p – volume: 6 start-page: 936 year: 2015 ident: C7NR02232H-(cit13)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00113 – volume: 6 start-page: 1049 year: 2015 ident: C7NR02232H-(cit9)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC02994A – volume: 1 start-page: 2031 year: 2010 ident: C7NR02232H-(cit3)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1006675 – volume: 133 start-page: 5660 year: 2011 ident: C7NR02232H-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111102u – volume: 20 start-page: 4312 year: 2008 ident: C7NR02232H-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200800044 – volume: 115 start-page: 5578 year: 2011 ident: C7NR02232H-(cit32)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp112129k – volume: 1 start-page: 45 year: 2010 ident: C7NR02232H-(cit38)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900022z – volume: 11 start-page: 2919 year: 2011 ident: C7NR02232H-(cit5)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl201388c – volume: 134 start-page: 15033 year: 2012 ident: C7NR02232H-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305603t – volume: 137 start-page: 5602 year: 2015 ident: C7NR02232H-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01946 – volume: 136 start-page: 7708 year: 2014 ident: C7NR02232H-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5023893 – volume: 5 start-page: 4712 year: 2011 ident: C7NR02232H-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn200645h – volume: 304 start-page: 1787 year: 2004 ident: C7NR02232H-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1097830 – volume: 131 start-page: 12817 year: 2009 ident: C7NR02232H-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904493c – volume: 124 start-page: 2049 year: 2002 ident: C7NR02232H-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017002j – volume: 25 start-page: 7435 year: 2015 ident: C7NR02232H-(cit44)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504035 – volume: 130 start-page: 3294 year: 2008 ident: C7NR02232H-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800104w – volume: 6 start-page: 234 year: 2012 ident: C7NR02232H-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn203457a – volume: 349 start-page: 632 year: 2015 ident: C7NR02232H-(cit35)/*[position()=1] publication-title: Science doi: 10.1126/science.aac5443 – volume: 8 start-page: 291 year: 2012 ident: C7NR02232H-(cit12)/*[position()=1] publication-title: Small doi: 10.1002/smll.201101317 – volume: 119 start-page: 22181 year: 2015 ident: C7NR02232H-(cit36)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06055 – volume: 328 start-page: 1543 year: 2010 ident: C7NR02232H-(cit39)/*[position()=1] publication-title: Science doi: 10.1126/science.1185509 – volume: 7 start-page: 1388 year: 2013 ident: C7NR02232H-(cit40)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn305080c – volume: 13 start-page: 5255 year: 2013 ident: C7NR02232H-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl402730m – volume: 13 start-page: 1655 year: 2013 ident: C7NR02232H-(cit41)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400113t – volume: 48 start-page: 491 year: 2015 ident: C7NR02232H-(cit4)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500411s – volume: 137 start-page: 5549 year: 2015 ident: C7NR02232H-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02026 – volume: 119 start-page: 26202 year: 2015 ident: C7NR02232H-(cit47)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08913 – volume: 7 start-page: 4125 year: 2016 ident: C7NR02232H-(cit49)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC00192K – volume: 370 start-page: 1 year: 2003 ident: C7NR02232H-(cit28)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01863-8 – volume: 13 start-page: 1352 year: 2013 ident: C7NR02232H-(cit14)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400367m |
SSID | ssj0069363 |
Score | 2.3154225 |
Snippet | Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct... Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 9723 |
Title | Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28675235 https://www.proquest.com/docview/1915884063 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiDsdFxlBH9CUkcbNxW90AxZATAiK2FtkO46KtMZTmjwA4r9zTuxkKeokQKrcynZT1d_R8Wf7nM-EPAsFqsAVwNxEOPNgPsZk5Zx5BZeSJUUsmWqjfE-i9Mvs3Wl4Ohq9HUQtNbU8UD-25pX8D6pQB7hiluw_INs_FCrgM-ALJSAM5V9hnJra6-6xwcsegILq6iJjZI2B76ZERVdT7edmJTCo0XLNlcYsSFeHmX_5Zz2Z-fA2iQ_nzSR-tV-K0nhLDJcxVmW2qVzAoSOz4JnNGjDubQNMyIXefgfAeof_QbirBz7Cf1j21cdLs243ddJvGJhbCXcs5PYgbLLlgW69VIAhiYzFGy6VDyzHpv47_4h3nG113D5D3VMVlxWQChYsh51g0M9XLYRBAuubwOqb_CGT3TVdIbsBrBjAR-_O3x8ef-2m5YiziHX6tIy_uPgp1IN2X94kJ5esOFrmsbhBrrslA51b_G-SkS5vkWsDIcnbZDW0BNpZAkVLoIA23bAEalGntWnbWkvo6uCFlvASip_z5hfdagN3yOLN68VR6rmLNDwFLrz2hAhyXykVRhqFrGZxIpUsgBiLUHMhhYxkVOQ8VL5OtD8VApk-yijleA6bs7tkpzSlvk-onwcSKL7UCUYCaJjoMbGZJ8yXEpi0HJPn3QBmyonM410nZ1kb7MB4dhSffGrHPR2Tp33fcyutsrXXkw6HDDwfHmeJUptmnU35FLOsgWOPyT0LUP-cDtC9S1sekKtoyXY37SHZgTHUj4Bf1vKxs5zf_qF-Hg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot-electron+transfer+from+the+semiconductor+domain+to+the+metal+domain+in+CdSe%40CdS%7BAu%7D+nano-heterostructures&rft.jtitle=Nanoscale&rft.au=Dana%2C+Jayanta&rft.au=Maity%2C+Partha&rft.au=Ghosh%2C+Hirendra+N&rft.date=2017&rft.eissn=2040-3372&rft.volume=9&rft.issue=27&rft.spage=9723&rft_id=info:doi/10.1039%2Fc7nr02232h&rft_id=info%3Apmid%2F28675235&rft.externalDocID=28675235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |