Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures

Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heter...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 9; no. 27; pp. 9723 - 9731
Main Authors Dana, Jayanta, Maity, Partha, Ghosh, Hirendra N.
Format Journal Article
LanguageEnglish
Published England 2017
Online AccessGet full text

Cover

Loading…
Abstract Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation.
AbstractList Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation.
Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation.Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct relevance in photocatalysis and solar energy conversion. To understand the mechanism of charge separation processes, hybrid CdSe@CdS{Au} nano-heterostructures containing Au nanoparticles (NPs) with different sizes were synthesized, and the ultrafast charge-transfer dynamics were monitored using femtosecond transient absorption spectroscopy. Steady-state optical absorption studies suggest the formation of charge-transfer complexes between core shell nanocrystals (NCs) and Au NPs. Steady-state and time-resolved luminescence spectroscopy suggest electron transfer from the photo-excited CdSe@CdS core shell QDs NCs to the Au NPs within the heterostructure. The ultrafast interfacial electron-transfer dynamics in the heterostructures were monitored by femtosecond transient absorption spectroscopy. The results revealed that both hot and thermalized electrons are transferred from the core shell QDs to the metal NPs with time constants of 150 and 300 fs, respectively. Hot-electron transfer from QDs to Au NPs was found to take place predominantly in the heterostructures depending on the sizes of the metal NPs. The photo-degradation of rhodamin B in the presence of the CdSe@CdS{Au} heterostructures under visible-light radiation suggests that the hot electrons in the heterostructures play a major role in photocatalytic degradation.
Author Dana, Jayanta
Ghosh, Hirendra N.
Maity, Partha
Author_xml – sequence: 1
  givenname: Jayanta
  surname: Dana
  fullname: Dana, Jayanta
  organization: Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Instutute, Mumbai-400085, India
– sequence: 2
  givenname: Partha
  orcidid: 0000-0002-0293-7118
  surname: Maity
  fullname: Maity, Partha
  organization: Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Instutute, Mumbai-400085, India
– sequence: 3
  givenname: Hirendra N.
  orcidid: 0000-0002-2227-5422
  surname: Ghosh
  fullname: Ghosh, Hirendra N.
  organization: Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Instutute, Mumbai-400085, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28675235$$D View this record in MEDLINE/PubMed
BookMark eNptkd9LxDAMx4uceD_0xT9A9ijCNGu3bnvzGOoJh4Le--i6jJts7dl2DyL-71bvTkGEkITk8w0kmZKR0goJOY3gMgKWXxXpwxNQyujigEwoxBAyltLRT87jMZla-wLAc8bZERnTjKcJZcmE9AvtQuxQOqNV4IxQtkETNEb3gVtjYLFvpVb1IJ02Qa170XpMf_d6dKLb17wV9TNee_c-Hz4CJZQO1-jQaOuMlw8G7TE5bERn8WQXZ2R1e7MqFuHy8e6-mC9DySB1oRC0BillwpGlLIvTrJJVk9NcJJiLSlS84k2dJxIwQ4iEAIA4jXheQ0ZZzWbkfDt2Y_TrgNaVfWsldp1QqAdbRnmUZFkMnHn0bIcOVY91uTFtL8xbub-QB2ALSL-INdiUsnXCtVr5Y7VdGUH59YTy9wlecvFHsp_6D_wJOU6ISg
CitedBy_id crossref_primary_10_1021_acsanm_8b00097
crossref_primary_10_1021_acs_chemrev_2c00770
crossref_primary_10_1002_advs_202100640
crossref_primary_10_1016_j_jallcom_2022_165836
crossref_primary_10_1021_acsomega_8b00276
crossref_primary_10_1021_acs_jpcc_9b09042
crossref_primary_10_1021_acscatal_1c03754
crossref_primary_10_1039_C9TC00759H
crossref_primary_10_1142_S1793292018500546
crossref_primary_10_1016_j_cej_2024_156366
crossref_primary_10_1021_acs_jpclett_9b03774
crossref_primary_10_1002_pssr_202100066
crossref_primary_10_1021_acs_jpcc_7b08448
crossref_primary_10_1039_C8NR00715B
crossref_primary_10_1002_cnma_201900025
crossref_primary_10_1021_acs_jpcc_3c00856
crossref_primary_10_1039_C7NR07830G
crossref_primary_10_1007_s10854_019_02326_5
crossref_primary_10_1016_j_ceramint_2018_11_222
crossref_primary_10_1016_j_optmat_2023_113940
crossref_primary_10_1021_acs_nanolett_8b02169
crossref_primary_10_1039_C7TA09953C
crossref_primary_10_1021_acs_nanolett_7b04210
crossref_primary_10_1021_acsenergylett_1c00366
crossref_primary_10_1002_chem_201801853
crossref_primary_10_1002_adfm_202101103
crossref_primary_10_1021_acs_jpcc_8b09261
crossref_primary_10_1039_C8NR05144E
crossref_primary_10_1021_acsami_3c12620
crossref_primary_10_3390_nano10040715
crossref_primary_10_1002_chem_201705127
crossref_primary_10_1016_j_jmrt_2020_04_076
crossref_primary_10_1021_acs_jpclett_2c01623
crossref_primary_10_1021_jacs_2c03235
crossref_primary_10_1021_acs_chemrev_2c00676
Cites_doi 10.1021/ja503508g
10.1021/nn402022z
10.1021/ja802890f
10.1039/C6NR03610D
10.1021/ja411017b
10.1021/ja303306u
10.1021/nn302089h
10.1021/ja413254g
10.1021/nl200409x
10.1063/1.3480613
10.1021/nn302810y
10.1021/acs.jpcc.5b09904
10.1021/acs.jpcc.5b03603
10.1103/PhysRevLett.95.056805
10.1021/jz401985k
10.1021/ja502076b
10.1021/jz5006863
10.1021/ja076134v
10.1021/nn404264w
10.1021/cm402131n
10.1021/jz300248p
10.1021/acs.jpclett.5b00113
10.1039/C4SC02994A
10.1021/jz1006675
10.1021/ja111102u
10.1002/adma.200800044
10.1021/jp112129k
10.1021/jz900022z
10.1021/nl201388c
10.1021/ja305603t
10.1021/jacs.5b01946
10.1021/ja5023893
10.1021/nn200645h
10.1126/science.1097830
10.1021/ja904493c
10.1021/ja017002j
10.1002/adfm.201504035
10.1021/ja800104w
10.1021/nn203457a
10.1126/science.aac5443
10.1002/smll.201101317
10.1021/acs.jpcc.5b06055
10.1126/science.1185509
10.1021/nn305080c
10.1021/nl402730m
10.1021/nl400113t
10.1021/ar500411s
10.1021/jacs.5b02026
10.1021/acs.jpcc.5b08913
10.1039/C6SC00192K
10.1016/S0009-2614(02)01863-8
10.1021/nl400367m
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1039/C7NR02232H
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 9731
ExternalDocumentID 28675235
10_1039_C7NR02232H
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7X8
ID FETCH-LOGICAL-c307t-aa2d0ccc56e3738478bcbf929a5e9abab6b6fd95c0e8e01aa00047169d0823d3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 07:08:28 EDT 2025
Wed Feb 19 02:41:36 EST 2025
Tue Jul 01 00:33:46 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-aa2d0ccc56e3738478bcbf929a5e9abab6b6fd95c0e8e01aa00047169d0823d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2227-5422
0000-0002-0293-7118
PMID 28675235
PQID 1915884063
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1915884063
pubmed_primary_28675235
crossref_citationtrail_10_1039_C7NR02232H
crossref_primary_10_1039_C7NR02232H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2017
References Shaviv (C7NR02232H-(cit29)/*[position()=1]) 2011; 5
Cushing (C7NR02232H-(cit22)/*[position()=1]) 2012; 134
Acharya (C7NR02232H-(cit5)/*[position()=1]) 2011; 11
Sippel (C7NR02232H-(cit41)/*[position()=1]) 2013; 13
Nishijima (C7NR02232H-(cit3)/*[position()=1]) 2010; 1
Yu (C7NR02232H-(cit16)/*[position()=1]) 2014; 136
Banin (C7NR02232H-(cit20)/*[position()=1]) 2014; 26
Yang (C7NR02232H-(cit28)/*[position()=1]) 2003; 370
Mukherjee (C7NR02232H-(cit42)/*[position()=1]) 2014; 136
Todescato (C7NR02232H-(cit51)/*[position()=1]) 2013; 7
Maiti (C7NR02232H-(cit53)/*[position()=1]) 2016; 120
Khon (C7NR02232H-(cit31)/*[position()=1]) 2011; 11
Habas (C7NR02232H-(cit19)/*[position()=1]) 2008; 130
Maity (C7NR02232H-(cit47)/*[position()=1]) 2015; 119
El-Ballouli (C7NR02232H-(cit45)/*[position()=1]) 2014; 136
Berr (C7NR02232H-(cit11)/*[position()=1]) 2010; 97
Mokari (C7NR02232H-(cit1)/*[position()=1]) 2004; 304
O'Connor (C7NR02232H-(cit33)/*[position()=1]) 2012; 6
Jia (C7NR02232H-(cit49)/*[position()=1]) 2016; 7
Wu (C7NR02232H-(cit7)/*[position()=1]) 2012; 134
El-Ballouli (C7NR02232H-(cit44)/*[position()=1]) 2015; 25
Williams (C7NR02232H-(cit40)/*[position()=1]) 2013; 7
Chauhan (C7NR02232H-(cit50)/*[position()=1]) 2016; 8
Dreaden (C7NR02232H-(cit32)/*[position()=1]) 2011; 115
Wu (C7NR02232H-(cit9)/*[position()=1]) 2015; 6
Li (C7NR02232H-(cit6)/*[position()=1]) 2014; 136
Tisdale (C7NR02232H-(cit39)/*[position()=1]) 2010; 328
Mongin (C7NR02232H-(cit8)/*[position()=1]) 2012; 6
Soni (C7NR02232H-(cit18)/*[position()=1]) 2014; 5
Kobayashi (C7NR02232H-(cit26)/*[position()=1]) 2012; 3
Berr (C7NR02232H-(cit12)/*[position()=1]) 2012; 8
Dutta (C7NR02232H-(cit13)/*[position()=1]) 2015; 6
Lambright (C7NR02232H-(cit30)/*[position()=1]) 2014; 8
Gao (C7NR02232H-(cit23)/*[position()=1]) 2012; 6
Steiner (C7NR02232H-(cit25)/*[position()=1]) 2005; 95
Wu (C7NR02232H-(cit34)/*[position()=1]) 2013; 13
Pandey (C7NR02232H-(cit38)/*[position()=1]) 2010; 1
Wu (C7NR02232H-(cit35)/*[position()=1]) 2015; 349
Song (C7NR02232H-(cit4)/*[position()=1]) 2015; 48
Furube (C7NR02232H-(cit37)/*[position()=1]) 2007; 129
Yu (C7NR02232H-(cit10)/*[position()=1]) 2013; 4
Dana (C7NR02232H-(cit36)/*[position()=1]) 2015; 119
Wu (C7NR02232H-(cit15)/*[position()=1]) 2014; 136
Dong (C7NR02232H-(cit43)/*[position()=1]) 2015; 137
Lee (C7NR02232H-(cit27)/*[position()=1]) 2008; 130
Elmalem (C7NR02232H-(cit21)/*[position()=1]) 2008; 20
Qu (C7NR02232H-(cit46)/*[position()=1]) 2002; 124
Li (C7NR02232H-(cit24)/*[position()=1]) 2011; 133
Deka (C7NR02232H-(cit17)/*[position()=1]) 2009; 131
Ben Shahar (C7NR02232H-(cit48)/*[position()=1]) 2017; 7
Khao (C7NR02232H-(cit2)/*[position()=1]) 2015; 137
Kim (C7NR02232H-(cit14)/*[position()=1]) 2013; 13
Maity (C7NR02232H-(cit52)/*[position()=1]) 2015; 119
References_xml – volume: 136
  start-page: 8438
  year: 2014
  ident: C7NR02232H-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503508g
– volume: 7
  start-page: 6649
  year: 2013
  ident: C7NR02232H-(cit51)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn402022z
– volume: 130
  start-page: 9673
  year: 2008
  ident: C7NR02232H-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802890f
– volume: 8
  start-page: 15802
  year: 2016
  ident: C7NR02232H-(cit50)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR03610D
– volume: 7
  start-page: 1
  year: 2017
  ident: C7NR02232H-(cit48)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 136
  start-page: 64
  year: 2014
  ident: C7NR02232H-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411017b
– volume: 134
  start-page: 10337
  year: 2012
  ident: C7NR02232H-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303306u
– volume: 6
  start-page: 7034
  year: 2012
  ident: C7NR02232H-(cit8)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302089h
– volume: 136
  start-page: 6952
  year: 2014
  ident: C7NR02232H-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja413254g
– volume: 11
  start-page: 1792
  year: 2011
  ident: C7NR02232H-(cit31)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl200409x
– volume: 97
  start-page: 093108
  year: 2010
  ident: C7NR02232H-(cit11)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3480613
– volume: 6
  start-page: 8156
  year: 2012
  ident: C7NR02232H-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn302810y
– volume: 120
  start-page: 1918
  year: 2016
  ident: C7NR02232H-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09904
– volume: 119
  start-page: 10785
  year: 2015
  ident: C7NR02232H-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03603
– volume: 95
  start-page: 056805
  year: 2005
  ident: C7NR02232H-(cit25)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.056805
– volume: 4
  start-page: 3596
  year: 2013
  ident: C7NR02232H-(cit10)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401985k
– volume: 136
  start-page: 9236
  year: 2014
  ident: C7NR02232H-(cit16)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502076b
– volume: 5
  start-page: 1909
  year: 2014
  ident: C7NR02232H-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5006863
– volume: 129
  start-page: 14852
  year: 2007
  ident: C7NR02232H-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076134v
– volume: 8
  start-page: 352
  year: 2014
  ident: C7NR02232H-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn404264w
– volume: 26
  start-page: 97
  year: 2014
  ident: C7NR02232H-(cit20)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm402131n
– volume: 3
  start-page: 1111
  year: 2012
  ident: C7NR02232H-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300248p
– volume: 6
  start-page: 936
  year: 2015
  ident: C7NR02232H-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00113
– volume: 6
  start-page: 1049
  year: 2015
  ident: C7NR02232H-(cit9)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02994A
– volume: 1
  start-page: 2031
  year: 2010
  ident: C7NR02232H-(cit3)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1006675
– volume: 133
  start-page: 5660
  year: 2011
  ident: C7NR02232H-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111102u
– volume: 20
  start-page: 4312
  year: 2008
  ident: C7NR02232H-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800044
– volume: 115
  start-page: 5578
  year: 2011
  ident: C7NR02232H-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp112129k
– volume: 1
  start-page: 45
  year: 2010
  ident: C7NR02232H-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900022z
– volume: 11
  start-page: 2919
  year: 2011
  ident: C7NR02232H-(cit5)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl201388c
– volume: 134
  start-page: 15033
  year: 2012
  ident: C7NR02232H-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305603t
– volume: 137
  start-page: 5602
  year: 2015
  ident: C7NR02232H-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01946
– volume: 136
  start-page: 7708
  year: 2014
  ident: C7NR02232H-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5023893
– volume: 5
  start-page: 4712
  year: 2011
  ident: C7NR02232H-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn200645h
– volume: 304
  start-page: 1787
  year: 2004
  ident: C7NR02232H-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1097830
– volume: 131
  start-page: 12817
  year: 2009
  ident: C7NR02232H-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904493c
– volume: 124
  start-page: 2049
  year: 2002
  ident: C7NR02232H-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017002j
– volume: 25
  start-page: 7435
  year: 2015
  ident: C7NR02232H-(cit44)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504035
– volume: 130
  start-page: 3294
  year: 2008
  ident: C7NR02232H-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800104w
– volume: 6
  start-page: 234
  year: 2012
  ident: C7NR02232H-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn203457a
– volume: 349
  start-page: 632
  year: 2015
  ident: C7NR02232H-(cit35)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aac5443
– volume: 8
  start-page: 291
  year: 2012
  ident: C7NR02232H-(cit12)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201101317
– volume: 119
  start-page: 22181
  year: 2015
  ident: C7NR02232H-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06055
– volume: 328
  start-page: 1543
  year: 2010
  ident: C7NR02232H-(cit39)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1185509
– volume: 7
  start-page: 1388
  year: 2013
  ident: C7NR02232H-(cit40)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn305080c
– volume: 13
  start-page: 5255
  year: 2013
  ident: C7NR02232H-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl402730m
– volume: 13
  start-page: 1655
  year: 2013
  ident: C7NR02232H-(cit41)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400113t
– volume: 48
  start-page: 491
  year: 2015
  ident: C7NR02232H-(cit4)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500411s
– volume: 137
  start-page: 5549
  year: 2015
  ident: C7NR02232H-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02026
– volume: 119
  start-page: 26202
  year: 2015
  ident: C7NR02232H-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08913
– volume: 7
  start-page: 4125
  year: 2016
  ident: C7NR02232H-(cit49)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00192K
– volume: 370
  start-page: 1
  year: 2003
  ident: C7NR02232H-(cit28)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01863-8
– volume: 13
  start-page: 1352
  year: 2013
  ident: C7NR02232H-(cit14)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400367m
SSID ssj0069363
Score 2.3154225
Snippet Semiconductor–metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct...
Semiconductor-metal hybrid nanostructures are recognized as great materials due to their high level of light-induced charge separation, which has direct...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 9723
Title Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures
URI https://www.ncbi.nlm.nih.gov/pubmed/28675235
https://www.proquest.com/docview/1915884063
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiDsdFxlBH9CUkcbNxW90AxZATAiK2FtkO46KtMZTmjwA4r9zTuxkKeokQKrcynZT1d_R8Wf7nM-EPAsFqsAVwNxEOPNgPsZk5Zx5BZeSJUUsmWqjfE-i9Mvs3Wl4Ohq9HUQtNbU8UD-25pX8D6pQB7hiluw_INs_FCrgM-ALJSAM5V9hnJra6-6xwcsegILq6iJjZI2B76ZERVdT7edmJTCo0XLNlcYsSFeHmX_5Zz2Z-fA2iQ_nzSR-tV-K0nhLDJcxVmW2qVzAoSOz4JnNGjDubQNMyIXefgfAeof_QbirBz7Cf1j21cdLs243ddJvGJhbCXcs5PYgbLLlgW69VIAhiYzFGy6VDyzHpv47_4h3nG113D5D3VMVlxWQChYsh51g0M9XLYRBAuubwOqb_CGT3TVdIbsBrBjAR-_O3x8ef-2m5YiziHX6tIy_uPgp1IN2X94kJ5esOFrmsbhBrrslA51b_G-SkS5vkWsDIcnbZDW0BNpZAkVLoIA23bAEalGntWnbWkvo6uCFlvASip_z5hfdagN3yOLN68VR6rmLNDwFLrz2hAhyXykVRhqFrGZxIpUsgBiLUHMhhYxkVOQ8VL5OtD8VApk-yijleA6bs7tkpzSlvk-onwcSKL7UCUYCaJjoMbGZJ8yXEpi0HJPn3QBmyonM410nZ1kb7MB4dhSffGrHPR2Tp33fcyutsrXXkw6HDDwfHmeJUptmnU35FLOsgWOPyT0LUP-cDtC9S1sekKtoyXY37SHZgTHUj4Bf1vKxs5zf_qF-Hg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot-electron+transfer+from+the+semiconductor+domain+to+the+metal+domain+in+CdSe%40CdS%7BAu%7D+nano-heterostructures&rft.jtitle=Nanoscale&rft.au=Dana%2C+Jayanta&rft.au=Maity%2C+Partha&rft.au=Ghosh%2C+Hirendra+N&rft.date=2017&rft.eissn=2040-3372&rft.volume=9&rft.issue=27&rft.spage=9723&rft_id=info:doi/10.1039%2Fc7nr02232h&rft_id=info%3Apmid%2F28675235&rft.externalDocID=28675235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon