Combustion dynamics analysis of a pressurized airblast swirl burner using proper orthogonal decomposition
Jet fuel-fired combustors in aero gas turbine engines have switched to lean burn to decrease nitric oxide emissions in recent years as a result of strict emission regulations. Lean operating conditions, however, exhibit a heightened sensitivity to thermoacoustic instabilities and such burners requir...
Saved in:
Published in | International journal of spray and combustion dynamics Vol. 16; no. 1-2; pp. 16 - 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.06.2024
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1756-8277 1756-8285 |
DOI | 10.1177/17568277231207252 |
Cover
Abstract | Jet fuel-fired combustors in aero gas turbine engines have switched to lean burn to decrease nitric oxide emissions in recent years as a result of strict emission regulations. Lean operating conditions, however, exhibit a heightened sensitivity to thermoacoustic instabilities and such burners require careful consideration in design and operation. Similar to natural gas-fired combustors, they exhibit thermoacoustic instabilities, but the characteristics are more complex and less well-studied. This paper presents a numerical investigation of an airblast jet fuel swirl burner operating with preheated air at lean pressurized conditions. In order to understand the acoustic characteristics of the in-house designed burner (Magister UT burner), detached eddy simulations are performed at relevant aero engine conditions. Simulation results are then analyzed by means of our internally developed parallel modal analysis package, PARAMOUNT, to perform proper orthogonal decomposition (POD) on large datasets. The resulting modes are inspected to highlight flow features of interest and their associated acoustic frequencies at unforced conditions. Single frequency acoustic forcing is employed to study the acoustic response of the burner to perturbations at similar frequencies to its precessing vortex core. We show that parallel computation of POD modes is a viable tool to investigate the main flow features of swirl burners and is suitable for highlighting the important acoustic frequencies without the need to employ fully compressible computational fluid dynamics solvers. Additionally, the analysis method reveals the ways in which various flow structures correlate with each other and how external perturbations modify them. |
---|---|
AbstractList | Jet fuel-fired combustors in aero gas turbine engines have switched to lean burn to decrease nitric oxide emissions in recent years as a result of strict emission regulations. Lean operating conditions, however, exhibit a heightened sensitivity to thermoacoustic instabilities and such burners require careful consideration in design and operation. Similar to natural gas-fired combustors, they exhibit thermoacoustic instabilities, but the characteristics are more complex and less well-studied. This paper presents a numerical investigation of an airblast jet fuel swirl burner operating with preheated air at lean pressurized conditions. In order to understand the acoustic characteristics of the in-house designed burner (Magister UT burner), detached eddy simulations are performed at relevant aero engine conditions. Simulation results are then analyzed by means of our internally developed parallel modal analysis package, PARAMOUNT, to perform proper orthogonal decomposition (POD) on large datasets. The resulting modes are inspected to highlight flow features of interest and their associated acoustic frequencies at unforced conditions. Single frequency acoustic forcing is employed to study the acoustic response of the burner to perturbations at similar frequencies to its precessing vortex core. We show that parallel computation of POD modes is a viable tool to investigate the main flow features of swirl burners and is suitable for highlighting the important acoustic frequencies without the need to employ fully compressible computational fluid dynamics solvers. Additionally, the analysis method reveals the ways in which various flow structures correlate with each other and how external perturbations modify them. |
Author | Zarzalis, Nikolaos Kok, Jim B.W. Christou, Thomas Ghasemi, Alireza Stelzner, Björn |
Author_xml | – sequence: 1 givenname: Alireza orcidid: 0000-0002-8177-5662 surname: Ghasemi fullname: Ghasemi, Alireza email: alireza.ghasemi@utwente.nl – sequence: 2 givenname: Thomas orcidid: 0000-0003-0690-8389 surname: Christou fullname: Christou, Thomas – sequence: 3 givenname: Jim B.W. surname: Kok fullname: Kok, Jim B.W. – sequence: 4 givenname: Björn surname: Stelzner fullname: Stelzner, Björn – sequence: 5 givenname: Nikolaos surname: Zarzalis fullname: Zarzalis, Nikolaos |
BookMark | eNp1kEtLAzEUhYNUsNb-AHcB11PzaJLJUoovKLjR9ZBJMjUyMxlzZ5D6602p6EJc3QfnfPdwz9Gsj71H6JKSFaVKXVMlZMmUYpwyophgJ2h-2BUlK8Xsp1fqDC0BQk0ELzlXhM9R2MSunmAMscdu35suWMCmN-0eAuDYYIOH5AGmFD69wyakujUwYvgIqcX1lHqf8ASh32VdHPIQ0_gadzEjsPM2dkOEcMBfoNPGtOCX33WBXu5unzcPxfbp_nFzsy0sJ2osDHeOrUtmNNdlwzWzWpNaWmc9F8oqobWVjTeqplI6YaRmzGviuNeeWyr5Al0duTnP--RhrN5ijplPVpyspSCy5DSr6FFlUwRIvqmGFDqT9hUl1eGp1Z-nZs_q6AGz87_U_w1fU956ww |
Cites_doi | 10.3390/su11072065 10.1201/9781420086058 10.1177/1756827721991776 10.1007/978-3-540-44419-0_30 10.1016/j.fuel.2020.119124 10.1016/j.pecs.2005.10.002 10.3390/aerospace8030060 10.1017/CBO9780511919701 10.1063/5.0057521 10.5957/JOSR.09180049 10.1115/1.4034261 10.1016/j.pecs.2010.06.004 10.1017/jfm.2019.212 10.1115/1.4007013 10.1007/978-3-642-00296-0 10.1115/1.4045338 10.1115/1.2818178 10.2514/2.6197 10.1007/s11431-020-1725-1 10.1016/j.combustflame.2021.111730 10.1016/j.proci.2016.05.007 10.1017/CBO9781139059961 10.1016/j.pecs.2005.11.001 10.2514/1.J058809 10.1016/j.ast.2021.106622 10.1017/jfm.2019.200 10.1021/acs.iecr.1c03357 10.1063/5.0097430 10.1016/j.ijmultiphaseflow.2020.103229 10.1016/j.egypro.2015.07.433 10.1137/21M1401243 10.1115/1.4002021 10.1109/UrgentHPC51945.2020.00011 10.1007/978-1-4842-2199-0 10.1137/1.9780898719604 10.3390/en12142835 10.1016/j.cad.2022.103403 10.1016/0010-2180(82)90127-4 10.1038/018319a0 10.1016/j.combustflame.2015.02.015 10.1016/S0010-2180(02)00419-4 10.1016/j.ces.2015.07.048 10.1002/ceat.202000318 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1177/17568277231207252 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1756-8285 |
EndPage | 32 |
ExternalDocumentID | 10_1177_17568277231207252 10.1177_17568277231207252 |
GrantInformation_xml | – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 766264 funderid: https://doi.org/10.13039/100010665 |
GroupedDBID | .2N 0R~ 1~K 29J 31X 31Z 4.4 54M 5VS AACTG AAGLT AAJPV AAOTM AAQXI AASGM AATAA AATBZ AATZT ABAWP ABBQA ABCJG ABDBF ABIDT ABJNI ABLUO ABPNF ABQXT ABUJY ACGFS ACJER ACLZU ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADBBV ADDLC ADEBD ADNON ADRRZ ADVBO AEDFJ AENEX AEPTA AESZF AEWDL AEWHI AFKRA AFKRG AFMOU AFQAA AFRWT AGKLV AGWFA AHDMH AIDUJ AJUZI ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV AUTPY AUVAJ AYAKG B8Z B94 BBRGL BCNDV BDDNI BENPR BPACV CCPQU CKLRP DH. DO- DV7 EBS EJD FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 IL9 IPNFZ J8X K.F KQ8 MET MV1 O9- OK1 PHGZM PHGZT PIMPY Q83 RIG ROL SASJQ SAUOL SC5 SCNPE SFC SFK SFT SGV SGZ SPP SPV STM AAYXX AJGYC CITATION 7TB 8FD 8FE 8FG AAPII ABJCF ABUWG AJHME AJVBE ARAPS AZQEC BGLVJ DWQXO FR3 H8D HCIFZ L6V L7M M7S P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PUEGO |
ID | FETCH-LOGICAL-c307t-a3dd2482a9398f392c990b6cdce357c7599c6fea7b166d5a6922e90d3e9e3c163 |
IEDL.DBID | AFRWT |
ISSN | 1756-8277 |
IngestDate | Sat Sep 06 07:31:33 EDT 2025 Tue Jul 01 05:21:43 EDT 2025 Tue Jun 17 22:27:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | proper orthogonal decomposition detached eddy simulation Airblast swirl burner turbulent reacting flows thermoacoustics |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-a3dd2482a9398f392c990b6cdce357c7599c6fea7b166d5a6922e90d3e9e3c163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8177-5662 0000-0003-0690-8389 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/17568277231207252?utm_source=summon&utm_medium=discovery-provider |
PQID | 3046506831 |
PQPubID | 4450834 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3046506831 crossref_primary_10_1177_17568277231207252 sage_journals_10_1177_17568277231207252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Brentwood |
PublicationTitle | International journal of spray and combustion dynamics |
PublicationTitleAlternate | International Journal of Spray and Combustion Dynamics |
PublicationYear | 2024 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Benajes, García-Oliver, Pastor 2022; 235 Schmidt, Schmid 2019; 867 Ruan, Chen, Yu 2021; 64 Sieber, Oliver Paschereit, Oberleithner 2017; 139 Duwig, Ducruix, Veynante 2012; 134 Oberleithner, Stöhr, Im 2015; 162 Syred 2006; 32 Mardani, Asadi, Beige 2022; 34 Kyprianidis, Nalianda, Dahlquist 2015; 75 Sun, Zhao, Zhu 2021; 8 Brunton, Budišić, Kaiser 2022; 64 Mendez, Balabane, Buchlin 2019; 870 Dowd, Meadows 2021; 13 Holz, Braun, Chaussonnet 2019; 12 Chaussonnet, Gepperth, Holz 2020; 125 Wegner, Gruschka, Krebs 2011; 133 Fredrich, Jones, Marquis 2021; 33 Kaufmann, Nicoud, Poinsot 2002; 131 Nemitallah, Abdelhafez, Ali 2019; 43 Pawar, Padding, Deen 2015; 138 Salvador, Carreres, García-Tíscar 2021; 112 Wu, Wang, Lin 2021; 283 Arnaldo Valdés, Burmaoglu, Tucci 2019; 11 Hoch, Azimian, Baumann 2020; 43 Yu, Chen, Fu 2022; 153 Sazhin 2006; 32 Mongia, Held, Hsiao 2003; 19 Zimont, Polifke, Bettelini 1998; 120 1878; 18 Poinsot 2017; 36 Pitz, Mueller 2011; 37 Metghalchi, Keck 1982; 48 Kumar, Vanka, Banerjee 2022; 61 Schmidt, Colonius 2020; 58 Liu, Wang, Yang 2019; 141 bibr9-17568277231207252 bibr31-17568277231207252 bibr21-17568277231207252 bibr11-17568277231207252 bibr3-17568277231207252 bibr19-17568277231207252 bibr16-17568277231207252 bibr6-17568277231207252 Pörtner HO (bibr1-17568277231207252) 2022 bibr4-17568277231207252 bibr14-17568277231207252 bibr17-17568277231207252 bibr41-17568277231207252 bibr7-17568277231207252 bibr24-17568277231207252 bibr47-17568277231207252 bibr34-17568277231207252 bibr37-17568277231207252 bibr27-17568277231207252 bibr44-17568277231207252 bibr28-17568277231207252 bibr2-17568277231207252 bibr18-17568277231207252 Rocklin M (bibr43-17568277231207252) bibr38-17568277231207252 Nemitallah MA (bibr5-17568277231207252) 2019; 43 bibr25-17568277231207252 bibr12-17568277231207252 bibr15-17568277231207252 bibr30-17568277231207252 bibr8-17568277231207252 bibr35-17568277231207252 bibr45-17568277231207252 bibr48-17568277231207252 bibr33-17568277231207252 bibr40-17568277231207252 bibr10-17568277231207252 bibr20-17568277231207252 bibr36-17568277231207252 bibr13-17568277231207252 bibr23-17568277231207252 bibr26-17568277231207252 bibr46-17568277231207252 bibr29-17568277231207252 bibr42-17568277231207252 bibr32-17568277231207252 bibr39-17568277231207252 bibr22-17568277231207252 |
References_xml | – volume: 43 start-page: 2538 year: 2020 end-page: 2547 article-title: Comparison of voxel-based and mesh-based CFD models for aerosol deposition on complex fibrous filters publication-title: Chem Eng Technol – volume: 867 year: 2019 article-title: A conditional space–time POD formalism for intermittent and rare events: Example of acoustic bursts in turbulent jets publication-title: J Fluid Mech – volume: 58 start-page: 1023 year: 2020 end-page: 1033 article-title: Guide to spectral proper orthogonal decomposition publication-title: AIAA J – volume: 75 start-page: 2323 year: 2015 end-page: 2330 article-title: A NOx emissions correlation for modern RQL combustors publication-title: Energy Procedia – volume: 141 start-page: 121014 year: 2019 article-title: Flow dynamics in a multiswirler model combustor based on large eddy simulation and proper orthogonal decomposition analysis publication-title: J Eng Gas Turbine Power – volume: 12 start-page: 1 year: 2019 end-page: 22 article-title: Close nozzle spray characteristics of a prefilming airblast atomizer publication-title: Energies – volume: 61 start-page: 2562 year: 2022 end-page: 2579 article-title: Dominant modes in a gas cyclone flow field using proper orthogonal decomposition publication-title: Ind Eng Chem Res – volume: 34 start-page: 085129 year: 2022 article-title: Investigation of flame structure and precessing vortex core instability of a gas turbine model combustor with different swirler configurations publication-title: Phys Fluids – volume: 32 start-page: 162 year: 2006 end-page: 214 article-title: Advanced models of fuel droplet heating and evaporation publication-title: Prog Energy Combust Sci – volume: 235 start-page: 111730 year: 2022 article-title: Analysis of local extinction of a n-heptane spray flame using large-eddy simulation with tabulated chemistry publication-title: Combust Flame – volume: 138 start-page: 17 year: 2015 end-page: 30 article-title: Numerical and experimental investigation of induced flow and droplet–droplet interactions in a liquid spray publication-title: Chem Eng Sci – volume: 120 start-page: 526 year: 1998 end-page: 532 article-title: An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure publication-title: J Eng Gas Turbine Power – volume: 153 start-page: 103403 year: 2022 article-title: On the efficiency of the advancing-front surface mesh generation algorithm publication-title: Comput Aided Des – volume: 11 start-page: 2065 year: 2019 end-page: 2065 article-title: Flight path 2050 and ACARE goals for maintaining and extending industrial leadership in aviation: A map of the aviation technology space publication-title: Sustainability – volume: 8 start-page: 60 year: 2021 end-page: 60 article-title: Generation and mitigation mechanism studies of nonlinear thermoacoustic instability in a modelled swirling combustor with a heat exchanger publication-title: Aerospace – volume: 133 start-page: 071502 year: 2011 article-title: CFD prediction of partload CO emissions using a two-timescale combustion model publication-title: J Eng Gas Turbine Power – volume: 37 start-page: 330 year: 2011 end-page: 350 article-title: Recent progress in the development of diesel surrogate fuels publication-title: Prog Energy Combust Sci – volume: 870 start-page: 988 year: 2019 end-page: 1036 article-title: Multi-scale proper orthogonal decomposition of complex fluid flows publication-title: J Fluid Mech – volume: 131 start-page: 371 year: 2002 end-page: 385 article-title: Flow forcing techniques for numerical simulation of combustion instabilities publication-title: Combust Flame – volume: 43 year: 2019 article-title: Frontiers in combustion techniques and burner designs for emissions control and CO capture: A review publication-title: Int J Energy Res – volume: 32 start-page: 93 year: 2006 end-page: 161 article-title: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems publication-title: Prog Energy Combust Sci – volume: 64 start-page: 1345 year: 2021 end-page: 1358 article-title: Experimental study on impacts of fuel type on thermo-acoustic instability in a gas turbine model combustor publication-title: Sci China Technol Sci – volume: 125 start-page: 103229 year: 2020 article-title: Influence of the ambient pressure on the liquid accumulation and on the primary spray in prefilming airblast atomization publication-title: Int J Multiphase Flow – volume: 112 start-page: 106622 year: 2021 article-title: Modal decomposition of the unsteady non-reactive flow field in a swirl-stabilized combustor operated by a lean premixed injection system publication-title: Aerosp Sci Technol – volume: 64 start-page: 229 year: 2022 end-page: 340 article-title: Modern Koopman theory for dynamical systems publication-title: SIAM Rev – volume: 283 start-page: 119124 year: 2021 article-title: Picosecond pulsed digital off-axis holography for near-nozzle droplet size and 3D distribution measurement of a swirl kerosene spray publication-title: Fuel – volume: 36 start-page: 1 year: 2017 end-page: 28 article-title: Prediction and control of combustion instabilities in real engines publication-title: Proc Combust Inst – volume: 139 start-page: 021503 year: 2017 article-title: Advanced identification of coherent structures in swirl-stabilized combustors publication-title: J Eng Gas Turbine Power – volume: 33 start-page: 085122 year: 2021 article-title: A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms publication-title: Phys Fluids – volume: 19 start-page: 822 year: 2003 end-page: 829 article-title: Challenges and progress in controlling dynamics in gas turbine combustors publication-title: J Propulsion Power – volume: 134 start-page: 101501 year: 2012 article-title: Studying the stabilization dynamics of swirling partially premixed flames by proper orthogonal decomposition publication-title: J Eng Gas Turbine Power – volume: 48 start-page: 191 year: 1982 end-page: 210 article-title: Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature publication-title: Combust Flame – volume: 162 start-page: 3100 year: 2015 end-page: 3114 article-title: Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: Experiments and linear stability analysis publication-title: Combust Flame – volume: 13 start-page: 3 year: 2021 end-page: 19 article-title: The effects of ring-shaped porous inert media on equivalence ratio oscillations in a self-excited thermoacoustic instability publication-title: Int J Spray Combust Dyn – volume: 18 start-page: 319 year: 1878 end-page: 321 article-title: The explanation of certain acoustical phenomena publication-title: Nature – ident: bibr2-17568277231207252 doi: 10.3390/su11072065 – ident: bibr3-17568277231207252 doi: 10.1201/9781420086058 – ident: bibr7-17568277231207252 doi: 10.1177/1756827721991776 – ident: bibr32-17568277231207252 doi: 10.1007/978-3-540-44419-0_30 – ident: bibr36-17568277231207252 doi: 10.1016/j.fuel.2020.119124 – ident: bibr21-17568277231207252 doi: 10.1016/j.pecs.2005.10.002 – ident: bibr10-17568277231207252 doi: 10.3390/aerospace8030060 – ident: bibr38-17568277231207252 doi: 10.1017/CBO9780511919701 – volume: 43 year: 2019 ident: bibr5-17568277231207252 publication-title: Int J Energy Res – ident: bibr17-17568277231207252 doi: 10.1063/5.0057521 – ident: bibr25-17568277231207252 doi: 10.5957/JOSR.09180049 – ident: bibr14-17568277231207252 doi: 10.1115/1.4034261 – ident: bibr29-17568277231207252 doi: 10.1016/j.pecs.2010.06.004 – ident: bibr41-17568277231207252 doi: 10.1017/jfm.2019.212 – ident: bibr15-17568277231207252 doi: 10.1115/1.4007013 – ident: bibr46-17568277231207252 doi: 10.1007/978-3-642-00296-0 – ident: bibr20-17568277231207252 doi: 10.1115/1.4045338 – ident: bibr27-17568277231207252 doi: 10.1115/1.2818178 – ident: bibr9-17568277231207252 doi: 10.2514/2.6197 – ident: bibr16-17568277231207252 doi: 10.1007/s11431-020-1725-1 – ident: bibr37-17568277231207252 doi: 10.1016/j.combustflame.2021.111730 – volume-title: in Proceedings of the 14th Python in science conference, ident: bibr43-17568277231207252 – ident: bibr12-17568277231207252 doi: 10.1016/j.proci.2016.05.007 – ident: bibr26-17568277231207252 – volume-title: Climate change 2022: Impacts, adaptation and vulnerability. Technical summary year: 2022 ident: bibr1-17568277231207252 – ident: bibr6-17568277231207252 doi: 10.1017/CBO9781139059961 – ident: bibr33-17568277231207252 doi: 10.1016/j.pecs.2005.11.001 – ident: bibr39-17568277231207252 doi: 10.2514/1.J058809 – ident: bibr13-17568277231207252 doi: 10.1016/j.ast.2021.106622 – ident: bibr30-17568277231207252 – ident: bibr40-17568277231207252 doi: 10.1017/jfm.2019.200 – ident: bibr18-17568277231207252 doi: 10.1021/acs.iecr.1c03357 – ident: bibr22-17568277231207252 doi: 10.1063/5.0097430 – ident: bibr34-17568277231207252 doi: 10.1016/j.ijmultiphaseflow.2020.103229 – ident: bibr4-17568277231207252 doi: 10.1016/j.egypro.2015.07.433 – ident: bibr47-17568277231207252 doi: 10.1137/21M1401243 – ident: bibr28-17568277231207252 doi: 10.1115/1.4002021 – ident: bibr44-17568277231207252 doi: 10.1109/UrgentHPC51945.2020.00011 – ident: bibr45-17568277231207252 doi: 10.1007/978-1-4842-2199-0 – ident: bibr42-17568277231207252 doi: 10.1137/1.9780898719604 – ident: bibr11-17568277231207252 doi: 10.3390/en12142835 – ident: bibr24-17568277231207252 doi: 10.1016/j.cad.2022.103403 – ident: bibr31-17568277231207252 doi: 10.1016/0010-2180(82)90127-4 – ident: bibr8-17568277231207252 doi: 10.1038/018319a0 – ident: bibr19-17568277231207252 doi: 10.1016/j.combustflame.2015.02.015 – ident: bibr48-17568277231207252 doi: 10.1016/S0010-2180(02)00419-4 – ident: bibr35-17568277231207252 doi: 10.1016/j.ces.2015.07.048 – ident: bibr23-17568277231207252 doi: 10.1002/ceat.202000318 |
SSID | ssib053833703 ssj0000783604 |
Score | 2.2920218 |
Snippet | Jet fuel-fired combustors in aero gas turbine engines have switched to lean burn to decrease nitric oxide emissions in recent years as a result of strict... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 16 |
SubjectTerms | Acoustic frequencies Acoustics Aerospace engines Combustion chambers Compressibility Computational fluid dynamics Detached eddy simulation Firing (igniting) Gas turbine engines Jet engine fuels Modal analysis Natural gas Nitric oxide Parallel processing Perturbation Proper Orthogonal Decomposition Thermoacoustics |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA86L178FqdTchAEIdgmTdKcRMQ5BD052G2kSSoDWWfXXfzrfa_LmCJ6bJrm8PI-fs375T1CLqWQGEo9c7lKWOa5ZTaxAnTZSA7hOaQJXk5-flGDYfY0kqN44DaPtMqVT2wdta8cnpHfYAZPJioX6e3sg2HXKMyuxhYam2QrhUiDep73H1f6BLYshI5ZxtYzt1cW2kSzlorlXOuY6MQaTDiGQ4B4eKK55D9D1Rp_fqN8tVGov0d2Inykd8v93icbYXpAdiOUpNFQ54dkAnZeYKOuakr9sun8nNpYgIRWJbW0ZcAu6sknfGgndQEwuqHYzemdFnjQWVPkxL_BvGoGD5jfqd4Qt1MfkIge2V5HZNh_eL0fsNhVgTmw54ZZ4T3Pcm6NMHkJ8MhBQCqU8y4IqZ2WxjhVBquLVCkvrTKcB5N4EUwQDuDbMelMq2k4IRTGtEzLTOVBZHmhDaxq4X9PmVJxx9MuuV4JcDxbFs8Yp7G--C9pd0lvJeJxtKP5eL3rXXKFYl-_-nOh0_8XOiPbHIDJku7VI52mXoRzABZNcdFqzxeiwsX0 priority: 102 providerName: ProQuest |
Title | Combustion dynamics analysis of a pressurized airblast swirl burner using proper orthogonal decomposition |
URI | https://journals.sagepub.com/doi/full/10.1177/17568277231207252 https://www.proquest.com/docview/3046506831 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4XHopLbQqjyIfkCpVSkns2LFPFUWEFYhVWYG6t8ixHbQSbNBucqC_vjOJU0AtEqcoTmJboxnPF883HkIOBBfoSl1klYyj1DETmdhw0GUtGLhnn8SYnHwxlqPr9GwqpiukHnJhggSX35BWBTPqFmu0btyNPgxBxkPweVIxAIY8YXHGBPveNndFv909VNXAFoxPt3cY2rZIiHyIhvS2VbKOxZjAkteP8smvvyYA5s95FgKT3WLeZTl0sWkYM8JBQ2z0v_N47t0eIesTlljnuPJ35G1AnPSoV5H3ZMXPN8lGQJ802PZyi8xgaSixtlc9p66vU7-kJpxZQuuKGtqRZtvF7Dd8aGaLEpB3Q7EA1C0tcW90QZFGfwPv1fdwgyGh-gahPnUeueuBIPaBXOcnV8ejKBRiiCwsAU1kuHMsVcxorlUFiMqCDyulddZzkdlMaG1l5U1WJlI6YaRmzOvYca89t4D4PpK1eT33nwiFtkwkVSqV56kqMw29GvhFlLqSzLJkm3wdBFjc9-dtFEk4kvwfaW-TvUHExaA4BYZ6RSwVh76-oNgfH73Y0c6r39wlbxjAmp4stkfWmkXrPwMsacp9sqry0_2gUHD9cTL-OYHW80v1B70x3RQ |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEulPIQ2xbwAYSEFJHYsR0fEALaakvbFUKt1FtwbKdaCW2W3a2q9kfxG5lJHC2oorce4yRzmHyZ-ex5AbyWQpIr9YkrVJrkntvEplYglo3k6J5DllJx8vFYjU7zr2fybA1-97UwlFbZ28TWUPvG0Rn5e4rgyVQVIvs4-5XQ1CiKrvYjNDpYHIarS9yyLT4c7OL3fcP5_t7Jl1ESpwokDvG8TKzwnucFt0aYokZ64NAgV8p5F4TUTktjnKqD1VWmlJdWGc6DSb0IJgiH9AXl3oP1nCpaB7D-eW_87XuPYLQeQugY12x9QVsk0Ya2tVRJwbWOoVXq-kRrtIQci6eaS_6vc1wx3r-SzFq_t_8IHkbCyj51CNuEtTB9DBuRvLJoGhZPYIKWpaLRYM2U-W7M_YLZ2PKENTWzrM25vZhPrvFFO5lXSNyXjOZH_WQVHa3OGWXhn-NzzQwvKKLUnNNOgflAqe8xv-wpnN6Jxp_BYNpMw3NguKZlVueqCCIvKm1QqsUdpjK14o5nQ3jXK7Ccde06yix2NL-h7SHs9Cou45-7KFc4G8JbUvvq1n8Fbd0u6BXcH50cH5VHB-PDbXjAkRZ1yWY7MFjOL8ILpDXL6mXEEoMfdw3fP2TwBFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-ygfjitzidmgdBEKpt0qTN41DL_BoiDvdW0iQdA2nHPl786720mVNU8LFtepTLXe7X3O9yCJ0yymwo1Z6Kue-FmkhP-pKCLQtGIDybwLfFyY893u2HdwM2cBtuthbGaXB6YWlV8EXVYm29e6zzS5djvISQx2MCuJAGxI8IgyW4Gdoeug3U7CTPr58WDd5MaeTyjNXaXBUtVKlmkOFZIS7V-avc78FqiUC_kL6qOJRsonUHIHGnnvEttGKKbbThwCR2rjrdQSPw9My26ioLrOu281Ms3REkuMyxxBUHdj4ZvcOLcjTJAEjPsO3n9IYzu9U5wZYVP4Rx5RgubIanHFrkjrWxVHTH99pF_eTm5arrub4KngKPnnmSak3CmEhBRZwDQFIQkjKutDKURSpiQiieGxllAeeaSS4IMcLX1AhDFQC4PdQoysLsIwz3IhbkIY8NDeMsEiBVwh8fFzknigQtdL5QYDquj89IA3fC-A9tt1B7oeJ0YQepzdwyn8cUZJ1ZtS8f_Sno4N8jT9Dq03WSPtz27g_RGgHAUtPA2qgxm8zNEQCOWXbsrOoDBrfIHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combustion+dynamics+analysis+of+a+pressurized+airblast+swirl+burner+using+proper+orthogonal+decomposition&rft.jtitle=International+journal+of+spray+and+combustion+dynamics&rft.au=Ghasemi%2C+Alireza&rft.au=Christou%2C+Thomas&rft.au=Kok%2C+Jim+B.W.&rft.au=Stelzner%2C+Bj%C3%B6rn&rft.date=2024-06-01&rft.pub=SAGE+Publications&rft.issn=1756-8277&rft.eissn=1756-8285&rft.volume=16&rft.issue=1-2&rft.spage=16&rft.epage=32&rft_id=info:doi/10.1177%2F17568277231207252&rft.externalDocID=10.1177_17568277231207252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-8277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-8277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-8277&client=summon |