Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany

Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 20; no. 5; pp. 1131 - 1147
Main Authors Caradot, N., Riechel, M., Fesneau, M., Hernandez, N., Torres, A., Sonnenberg, H., Eckert, E., Lengemann, N., Waschnewski, J., Rouault, P.
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.09.2018
Subjects
Online AccessGet full text
ISSN1464-7141
1465-1734
DOI10.2166/hydro.2018.217

Cover

Loading…
Abstract Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-user perspective. The developed metrics are used to benchmark the performance of a statistical model, namely, GompitZ based on survival analysis and Markov-chains, and a machine learning model, namely, Random Forest, an ensemble learning method based on decision trees. The models have been trained with the extensive CCTV dataset of the sewer network of Berlin, Germany (115,258 inspections). At network level, both models give satisfactory outcomes with deviations between predicted and inspected condition distributions below 5%. At pipe level, the statistical model does not perform better than a simple random model, which attributes randomly a condition class to each inspected pipe, whereas the machine learning model provides satisfying performance. 66.7% of the pipes inspected in bad condition have been predicted correctly. The machine learning approach shows a strong potential for supporting operators in the identification of pipes in critical condition for inspection programs whereas the statistical approach is more adapted to support strategic rehabilitation planning.
AbstractList Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-user perspective. The developed metrics are used to benchmark the performance of a statistical model, namely, GompitZ based on survival analysis and Markov-chains, and a machine learning model, namely, Random Forest, an ensemble learning method based on decision trees. The models have been trained with the extensive CCTV dataset of the sewer network of Berlin, Germany (115,258 inspections). At network level, both models give satisfactory outcomes with deviations between predicted and inspected condition distributions below 5%. At pipe level, the statistical model does not perform better than a simple random model, which attributes randomly a condition class to each inspected pipe, whereas the machine learning model provides satisfying performance. 66.7% of the pipes inspected in bad condition have been predicted correctly. The machine learning approach shows a strong potential for supporting operators in the identification of pipes in critical condition for inspection programs whereas the statistical approach is more adapted to support strategic rehabilitation planning.
Author Eckert, E.
Riechel, M.
Sonnenberg, H.
Fesneau, M.
Caradot, N.
Lengemann, N.
Rouault, P.
Waschnewski, J.
Hernandez, N.
Torres, A.
Author_xml – sequence: 1
  givenname: N.
  surname: Caradot
  fullname: Caradot, N.
  organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany
– sequence: 2
  givenname: M.
  surname: Riechel
  fullname: Riechel, M.
  organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany
– sequence: 3
  givenname: M.
  surname: Fesneau
  fullname: Fesneau, M.
  organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany
– sequence: 4
  givenname: N.
  surname: Hernandez
  fullname: Hernandez, N.
  organization: Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, DC, Colombia
– sequence: 5
  givenname: A.
  surname: Torres
  fullname: Torres, A.
  organization: Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, DC, Colombia
– sequence: 6
  givenname: H.
  surname: Sonnenberg
  fullname: Sonnenberg, H.
  organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany
– sequence: 7
  givenname: E.
  surname: Eckert
  fullname: Eckert, E.
  organization: Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany
– sequence: 8
  givenname: N.
  surname: Lengemann
  fullname: Lengemann, N.
  organization: Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany
– sequence: 9
  givenname: J.
  surname: Waschnewski
  fullname: Waschnewski, J.
  organization: Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany
– sequence: 10
  givenname: P.
  surname: Rouault
  fullname: Rouault, P.
  organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany
BookMark eNp1kDFPwzAQhS1UJNrCymyJlRRf4tjpCBUUpEowwBy59oW4pHaxU6Fu_HTclgmJ6e58772TvxEZOO-QkEtgkxyEuGl3JvhJzqBKszwhQ-CizEAWfHDoeSaBwxkZxbhiLIeigiH5fglK91arji7R6Xatwod179Q3NPaqt_G4U87QtdKtdUg7VMHtNWtvsIu08YFuAhqbctJr3yLV3hnbW-8OOfiFSWE3GKl19A5DZ901nWNYK7c7J6eN6iJe_NYxeXu4f509Zovn-dPsdpHpgsk-UwB6KXkJVSFLoStTTjVTGhlAseRKG2EAJFdGTKdVqaXRBV9WFa8kikKnz47J1TF3E_znFmNfr_w2uHSyTluR56JkeVJNjiodfIwBm3oTbGKyq4HVe8r1gXK9p5xmmQz8j0HbPTfv-qBs95_tBwcnhig
CitedBy_id crossref_primary_10_1080_1573062X_2023_2217430
crossref_primary_10_1016_j_scs_2022_104379
crossref_primary_10_1080_15732479_2020_1733029
crossref_primary_10_2166_wst_2022_263
crossref_primary_10_1016_j_ress_2025_110862
crossref_primary_10_1061__ASCE_IS_1943_555X_0000500
crossref_primary_10_1016_j_watres_2022_118247
crossref_primary_10_3390_w17030393
crossref_primary_10_2166_hydro_2020_129
crossref_primary_10_3390_su15043849
crossref_primary_10_1080_1573062X_2024_2423391
crossref_primary_10_1007_s10257_021_00506_7
crossref_primary_10_1016_j_eswa_2023_119671
crossref_primary_10_1007_s10661_023_12027_6
crossref_primary_10_1108_JM2_11_2019_0258
crossref_primary_10_1007_s00521_022_07237_x
crossref_primary_10_1061_JPSEA2_PSENG_1464
crossref_primary_10_1007_s11270_024_07618_z
crossref_primary_10_2166_wpt_2024_001
crossref_primary_10_1016_j_jclepro_2022_131460
crossref_primary_10_1109_ACCESS_2022_3222823
crossref_primary_10_3390_w12061771
crossref_primary_10_1016_j_jhydrol_2021_126130
crossref_primary_10_1111_risa_13742
crossref_primary_10_1080_23789689_2020_1787033
crossref_primary_10_1080_1573062X_2020_1713382
crossref_primary_10_1016_j_procs_2020_08_031
crossref_primary_10_2166_wst_2020_604
crossref_primary_10_1016_j_scitotenv_2022_155267
crossref_primary_10_1016_j_autcon_2022_104464
crossref_primary_10_3390_su14095549
crossref_primary_10_1080_15732479_2019_1653938
crossref_primary_10_2166_hydro_2024_135
crossref_primary_10_1080_15732479_2021_1998142
crossref_primary_10_1080_1573062X_2023_2282126
crossref_primary_10_1061__ASCE_IS_1943_555X_0000708
crossref_primary_10_1016_j_ress_2023_109611
crossref_primary_10_1080_15732479_2022_2119480
crossref_primary_10_1061__ASCE_PS_1949_1204_0000656
crossref_primary_10_1061_JWRMD5_WRENG_6225
crossref_primary_10_2166_wst_2020_299
crossref_primary_10_3390_su12208733
crossref_primary_10_1016_j_asej_2022_101960
Cites_doi 10.1016/j.autcon.2014.04.004
10.2166/wst.2012.393
10.1080/15730620903447597
10.1016/j.watres.2013.11.017
10.1016/S1462-0758(02)00034-1
10.1023/A:1010933404324
10.1016/j.proeng.2014.11.205
10.1080/15730620801939398
10.2166/hydro.2015.122
10.1080/15732479.2014.887122
10.1061/(ASCE)CF.1943-5509.0000081
10.2166/wst.2009.432
10.1080/15730620902810902
10.1139/cjce-2013-0431
10.1080/15730620600961684
10.1198/jasa.2009.tm08622
10.1061/(ASCE)0887-3828(2008)22:5(333)
ContentType Journal Article
Copyright Copyright IWA Publishing Sep 2018
Copyright_xml – notice: Copyright IWA Publishing Sep 2018
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.2166/hydro.2018.217
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 1147
ExternalDocumentID 10_2166_hydro_2018_217
GeographicLocations United States--US
Berlin Germany
Germany
GeographicLocations_xml – name: Berlin Germany
– name: United States--US
– name: Germany
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYOK
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
EJD
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c307t-a11cb745183756c8d59c0ace0113b4acd6d1174ad69985c7dc34b88487e63c213
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Fri Jul 25 22:35:46 EDT 2025
Tue Jul 01 04:10:32 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-a11cb745183756c8d59c0ace0113b4acd6d1174ad69985c7dc34b88487e63c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf
PQID 2136226502
PQPubID 2044529
PageCount 17
ParticipantIDs proquest_journals_2136226502
crossref_primary_10_2166_hydro_2018_217
crossref_citationtrail_10_2166_hydro_2018_217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2018
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References 2020032617512449800_HYDRO-D-18-00017C29
(2020032617512449800_HYDRO-D-18-00017C27) 2017; 2
(2020032617512449800_HYDRO-D-18-00017C32) 2014; 44
(2020032617512449800_HYDRO-D-18-00017C8) 2002; 46
(2020032617512449800_HYDRO-D-18-00017C11) 2012; 13
(2020032617512449800_HYDRO-D-18-00017C25) 2008; 5
(2020032617512449800_HYDRO-D-18-00017C30) 2009; 11
(2020032617512449800_HYDRO-D-18-00017C34) 2014; 89
(2020032617512449800_HYDRO-D-18-00017C17) 2004
(2020032617512449800_HYDRO-D-18-00017C26) 2002; 2/3
(2020032617512449800_HYDRO-D-18-00017C33) 2006; 3
(2020032617512449800_HYDRO-D-18-00017C9) 2009; 60
(2020032617512449800_HYDRO-D-18-00017C35) 2012; 66
(2020032617512449800_HYDRO-D-18-00017C7) 2002; 4
2020032617512449800_HYDRO-D-18-00017C12
(2020032617512449800_HYDRO-D-18-00017C36) 2012; 9
(2020032617512449800_HYDRO-D-18-00017C28) 2015; 17
(2020032617512449800_HYDRO-D-18-00017C16) 2017; 14
(2020032617512449800_HYDRO-D-18-00017C21) 2010; 105
2020032617512449800_HYDRO-D-18-00017C14
(2020032617512449800_HYDRO-D-18-00017C13) 2001; 45
(2020032617512449800_HYDRO-D-18-00017C1) 2015; 11
(2020032617512449800_HYDRO-D-18-00017C4) 2009; 6
(2020032617512449800_HYDRO-D-18-00017C10) 2015
2020032617512449800_HYDRO-D-18-00017C5
(2020032617512449800_HYDRO-D-18-00017C23) 2010; 24
2020032617512449800_HYDRO-D-18-00017C2
2020032617512449800_HYDRO-D-18-00017C6
(2020032617512449800_HYDRO-D-18-00017C3) 2010; 7
(2020032617512449800_HYDRO-D-18-00017C18) 2008; 22
2020032617512449800_HYDRO-D-18-00017C22
(2020032617512449800_HYDRO-D-18-00017C31) 2014; 49
2020032617512449800_HYDRO-D-18-00017C20
(2020032617512449800_HYDRO-D-18-00017C15) 1984
(2020032617512449800_HYDRO-D-18-00017C19) 2014; 41
2020032617512449800_HYDRO-D-18-00017C24
References_xml – volume: 44
  start-page: 84
  year: 2014
  ident: 2020032617512449800_HYDRO-D-18-00017C32
  article-title: Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2014.04.004
– volume-title: Using Random Forest to Learn Imbalanced Data
  year: 2004
  ident: 2020032617512449800_HYDRO-D-18-00017C17
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 2020032617512449800_HYDRO-D-18-00017C15
– ident: 2020032617512449800_HYDRO-D-18-00017C24
– volume: 66
  start-page: 2410
  issue: 11
  year: 2012
  ident: 2020032617512449800_HYDRO-D-18-00017C35
  article-title: A multi-objective optimisation model for sewer rehabilitation considering critical risk of failure
  publication-title: Water Science and Technology
  doi: 10.2166/wst.2012.393
– ident: 2020032617512449800_HYDRO-D-18-00017C20
– volume: 7
  start-page: 47
  issue: 1
  year: 2010
  ident: 2020032617512449800_HYDRO-D-18-00017C3
  article-title: Modeling the structural deterioration of urban drainage pipes: the state-of-the-art in statistical methods
  publication-title: Urban Water Journal
  doi: 10.1080/15730620903447597
– ident: 2020032617512449800_HYDRO-D-18-00017C22
– volume: 49
  start-page: 124
  year: 2014
  ident: 2020032617512449800_HYDRO-D-18-00017C31
  article-title: Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis
  publication-title: Water Research
  doi: 10.1016/j.watres.2013.11.017
– volume: 46
  start-page: 389
  issue: 6–7
  year: 2002
  ident: 2020032617512449800_HYDRO-D-18-00017C8
  article-title: Selective inspection planning with ageing forecast for sewer types
  publication-title: Water Science and Technology
– volume: 11
  start-page: 211
  issue: 3–4
  year: 2009
  ident: 2020032617512449800_HYDRO-D-18-00017C30
  article-title: Asset deterioration analysis using multi-utility data and multi-objective data mining
  publication-title: Journal of Hydroinformatics
– volume: 4
  start-page: 401
  issue: 4
  year: 2002
  ident: 2020032617512449800_HYDRO-D-18-00017C7
  article-title: A data mining approach to modelling of water supply assets
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(02)00034-1
– volume: 45
  start-page: 5
  year: 2001
  ident: 2020032617512449800_HYDRO-D-18-00017C13
  article-title: Random forest
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 2020032617512449800_HYDRO-D-18-00017C2
– ident: 2020032617512449800_HYDRO-D-18-00017C12
– ident: 2020032617512449800_HYDRO-D-18-00017C6
– ident: 2020032617512449800_HYDRO-D-18-00017C14
– volume: 89
  start-page: 401
  year: 2014
  ident: 2020032617512449800_HYDRO-D-18-00017C34
  article-title: A Random Forest algorithm applied to condition-based wastewater deterioration modeling and forecasting
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2014.11.205
– volume: 13
  start-page: 281
  year: 2012
  ident: 2020032617512449800_HYDRO-D-18-00017C11
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 5
  start-page: 97
  issue: 2
  year: 2008
  ident: 2020032617512449800_HYDRO-D-18-00017C25
  article-title: Modelling the deterioration process of drainage pipelines
  publication-title: Urban Water Journal
  doi: 10.1080/15730620801939398
– volume: 14
  start-page: 264
  issue: 2
  year: 2017
  ident: 2020032617512449800_HYDRO-D-18-00017C16
  article-title: Evaluation of uncertainties in sewer condition assessment
  publication-title: Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance
– volume: 17
  start-page: 789
  issue: 5
  year: 2015
  ident: 2020032617512449800_HYDRO-D-18-00017C28
  article-title: Evaluating the role of deterioration models for condition assessment of sewers
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2015.122
– ident: 2020032617512449800_HYDRO-D-18-00017C29
– volume: 11
  start-page: 376
  issue: 3
  year: 2015
  ident: 2020032617512449800_HYDRO-D-18-00017C1
  article-title: Benefits of using basic, imprecise or uncertain data for elaborating sewer inspection programmes
  publication-title: Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance
  doi: 10.1080/15732479.2014.887122
– volume: 24
  start-page: 170
  issue: 2
  year: 2010
  ident: 2020032617512449800_HYDRO-D-18-00017C23
  article-title: Structural condition assessment of sewer pipelines
  publication-title: Journal of Performance of Constructed Facilities
  doi: 10.1061/(ASCE)CF.1943-5509.0000081
– volume: 2/3
  start-page: 18
  year: 2002
  ident: 2020032617512449800_HYDRO-D-18-00017C26
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 60
  start-page: 841
  issue: 4
  year: 2009
  ident: 2020032617512449800_HYDRO-D-18-00017C9
  article-title: An effective multi-objective approach to prioritisation of sewer pipe inspection
  publication-title: Water Science and Technology
  doi: 10.2166/wst.2009.432
– volume: 6
  start-page: 303
  issue: 4
  year: 2009
  ident: 2020032617512449800_HYDRO-D-18-00017C4
  article-title: An investigation of the factors influencing sewer structural deterioration
  publication-title: Urban Water Journal
  doi: 10.1080/15730620902810902
– volume: 41
  start-page: 294
  issue: 4
  year: 2014
  ident: 2020032617512449800_HYDRO-D-18-00017C19
  article-title: Predicting the structural condition of individual sanitary sewer pipes with random forests
  publication-title: Canadian Journal of Civil Engineering
  doi: 10.1139/cjce-2013-0431
– volume: 3
  start-page: 175
  issue: 3
  year: 2006
  ident: 2020032617512449800_HYDRO-D-18-00017C33
  article-title: Application of probabilistic neural networks in modeling structural deterioration of stormwater pipes
  publication-title: Urban Water Journal
  doi: 10.1080/15730620600961684
– volume: 105
  start-page: 205
  issue: 489
  year: 2010
  ident: 2020032617512449800_HYDRO-D-18-00017C21
  article-title: High-dimensional variable selection for survival data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.tm08622
– volume-title: Zustand der Kanalisation in Deutschland (Overview on Sewer Pipes Condition in Germany)
  year: 2015
  ident: 2020032617512449800_HYDRO-D-18-00017C10
– volume: 22
  start-page: 333
  issue: 5
  year: 2008
  ident: 2020032617512449800_HYDRO-D-18-00017C18
  article-title: Infrastructure condition prediction models for sustainable sewer pipelines
  publication-title: Journal of Performance of Constructed Facilities
  doi: 10.1061/(ASCE)0887-3828(2008)22:5(333)
– volume: 2
  start-page: 131
  year: 2017
  ident: 2020032617512449800_HYDRO-D-18-00017C27
  article-title: Investitionsstau in der Abwasserentsorgung (Investment bottleneck in the disposal of wastewater)
  publication-title: KA – Korrespondenz Abwasser, Abfall
– volume: 9
  start-page: 44
  issue: 4
  year: 2012
  ident: 2020032617512449800_HYDRO-D-18-00017C36
  article-title: Gestion patrimoniale des réseaux d'assainissement: de l’état des réseaux à la planification de leur réhabilitation – Outils, méthodes et perspectives (Asset management of sewer networks: from sewer condition to rehabilitation planning)
  publication-title: Sciences Eaux & Territoires
– ident: 2020032617512449800_HYDRO-D-18-00017C5
SSID ssj0021381
Score 2.3356962
Snippet Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1131
SubjectTerms Artificial intelligence
Asset management
Decision trees
Deterioration
Forests
Infrastructure
Inspection
Learning algorithms
Machine learning
Markov chains
Mathematical models
Modelling
Performance assessment
Pipes
Rehabilitation
Sewer pipes
Sewer systems
Statistical analysis
Statistical models
Survival
Survival analysis
Title Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany
URI https://www.proquest.com/docview/2136226502
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aHvQiPrFaJQfBi6Gb7CPbk6hUi2ARsdDbkldtwW7XbkV686c7yaaVHvQYEnKYZL7Ml0zmQ-iCqbCdMCoJE-2URHoYEMEpJRrYBOOBkkNufyM_9ZJuP3ocxAN_4Vb6tMolJjqg1lNl78hbjALUMogn2HXxQaxqlH1d9RIam6gOEJwC-arfdnrPLyvKRUMnUwpwYLMOI1qVbWQ0SVqjhZ7Z3380hTZfP5bWUdkdNfe7aMfHiPimWtQ9tGHyfbTl5cpHiwP0XVUZAvNiCbtsNBHuxhtPh9h-EHK1l6FP5BpPXLKkwV4d4g076ZsSQ6yKi5l9pbF5zxjCQAzMWLsELjeP-TIwYlyYEo9zXFXFusIPFsjzxSHq33de77rESykQBU48J4JSJXkUgwPzOFGpjtsqEMqAd4cyEkonmgI3EToB-hUrrlUYyTQFNmOSUIEZj1Atn-bmGGEuIQKMBWNKx9EQAoqISh0GGmDVCn6mDUSWlsyUrzNu5S7eM-Ab1vKZs3xmLQ9t3kCXq_FFVWHjz5HN5cJk3tPK7HdfnPzffYq27URVflgT1eazT3MGAcVcnvtd8wN4Scup
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOcAF8RQsLx8WccGidpw4PSDEuyxQIQQSt6xf3SJBWtoi1Bu_iN_I2ElAHJYbR8uWFY2_jL-xx_MB_OYmaiScacpVI6XCtutUScaoxWiCy7rRbelfI1-2kuat-HMX343BW_UWxqdVVj4xOGrbNf6MfIczdLUc-QTf6z1Rrxrlb1crCY0CFudu9IIh22D37AjXd5Pzk-ObwyYtVQWoQTwPqWLMaClixLKME5PauGHqyjgEeqSFMjaxDGm6sglGIrGR1kRCpykSe5dEBj8D5x2HCRFhKFODiYPj1tX1R4jHoiCLiu7HZzkKVpSJ5CxJdjoj2_evDVmKbfl1G_y6C4St7WQGpktOSvYLEM3CmMvnYLKUR--M5uG1qGqEy0k0orrzqMIJO-m2iX-QFGo9Y5_KLXkMyZmOlGoU_0iQ2hkQ5Mak1_e3Qj7PmiDtJBiJ25AwFuZxLw5H3PfcgNznpKjCtU1O_caRjxbg9keMvAi1vJu7JSBSI-OMFefGxqKNBEYwbaO6RTfuBUbTZaCVJTNT1jX38hoPGcY33vJZsHzmLY9tuQxbH-N7RUWP_45crRYmK__sQfaJw1_fd2_AZPPm8iK7OGudr8CUn7TITVuF2rD_7NaQzAz1eokgAn9_GrTvBMUHlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BkKCXivIQgdD6AOKClbX34c2hQm0hvCOEQOK2-LUNEmxCkirKrb-LX9exd5eKQ3vjaNmyVuNvx9_Y4_kAdrgOOwlninLZSWlk8oBKwRg1GE1wEWiVC_ca-bKXnNxGZ3fx3Ry81G9hXFpl7RO9ozYD7c7I25yhq-XIJ3g7r9Iirg67B8Nn6hSk3E1rLadRQuTczqYYvo2_nh7iWu9y3j26-XFCK4UBqhHbEyoZ00pEMeJaxIlOTdzRgdQWQR-qSGqTGIaUXZoEo5JYC6PDSKUpknybhBo_CeedhwWBUVHQgIXvR72r69dwj4VeIhVdkct4jFhZMpKzJGn3Z2bkXh6yFNvi7Zb4dkfw21x3GT5W_JR8KwH1CeZssQJLlVR6f7YKv8sKR7i0RCHC-0_Sn7aTQU7c4yRf9xn7ZGHIk0_UtKRSpvhJvOzOmCBPJsORuyFyOdcEKSjBqNz45DE_j51aHPEwtGPyUJCyItc-OXabSDFbg9t3MfI6NIpBYTeACIXsM5acaxNHOZKZiCkTBgZduhMbTZtAa0tmuqpx7qQ2HjOMdZzlM2_5zFke26IJe6_jh2V1j3-ObNULk1V_-Tj7i8nN_3d_gUUEa3Zx2jvfgg9uzjJNrQWNyeiX3UZeM1GfKwARuH9vzP4BBRALyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+benchmarking+of+statistical+and+machine+learning+models+for+predicting+the+condition+of+sewer+pipes+in+Berlin%2C+Germany&rft.jtitle=Journal+of+hydroinformatics&rft.au=Caradot%2C+N.&rft.au=Riechel%2C+M.&rft.au=Fesneau%2C+M.&rft.au=Hernandez%2C+N.&rft.date=2018-09-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=20&rft.issue=5&rft.spage=1131&rft.epage=1147&rft_id=info:doi/10.2166%2Fhydro.2018.217&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2018_217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon