Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany
Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-...
Saved in:
Published in | Journal of hydroinformatics Vol. 20; no. 5; pp. 1131 - 1147 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1464-7141 1465-1734 |
DOI | 10.2166/hydro.2018.217 |
Cover
Loading…
Abstract | Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-user perspective. The developed metrics are used to benchmark the performance of a statistical model, namely, GompitZ based on survival analysis and Markov-chains, and a machine learning model, namely, Random Forest, an ensemble learning method based on decision trees. The models have been trained with the extensive CCTV dataset of the sewer network of Berlin, Germany (115,258 inspections). At network level, both models give satisfactory outcomes with deviations between predicted and inspected condition distributions below 5%. At pipe level, the statistical model does not perform better than a simple random model, which attributes randomly a condition class to each inspected pipe, whereas the machine learning model provides satisfying performance. 66.7% of the pipes inspected in bad condition have been predicted correctly. The machine learning approach shows a strong potential for supporting operators in the identification of pipes in critical condition for inspection programs whereas the statistical approach is more adapted to support strategic rehabilitation planning. |
---|---|
AbstractList | Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to address this issue by developing a set of clearly understandable metrics to assess the performance of sewer deterioration models from an end-user perspective. The developed metrics are used to benchmark the performance of a statistical model, namely, GompitZ based on survival analysis and Markov-chains, and a machine learning model, namely, Random Forest, an ensemble learning method based on decision trees. The models have been trained with the extensive CCTV dataset of the sewer network of Berlin, Germany (115,258 inspections). At network level, both models give satisfactory outcomes with deviations between predicted and inspected condition distributions below 5%. At pipe level, the statistical model does not perform better than a simple random model, which attributes randomly a condition class to each inspected pipe, whereas the machine learning model provides satisfying performance. 66.7% of the pipes inspected in bad condition have been predicted correctly. The machine learning approach shows a strong potential for supporting operators in the identification of pipes in critical condition for inspection programs whereas the statistical approach is more adapted to support strategic rehabilitation planning. |
Author | Eckert, E. Riechel, M. Sonnenberg, H. Fesneau, M. Caradot, N. Lengemann, N. Rouault, P. Waschnewski, J. Hernandez, N. Torres, A. |
Author_xml | – sequence: 1 givenname: N. surname: Caradot fullname: Caradot, N. organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany – sequence: 2 givenname: M. surname: Riechel fullname: Riechel, M. organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany – sequence: 3 givenname: M. surname: Fesneau fullname: Fesneau, M. organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany – sequence: 4 givenname: N. surname: Hernandez fullname: Hernandez, N. organization: Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, DC, Colombia – sequence: 5 givenname: A. surname: Torres fullname: Torres, A. organization: Pontificia Universidad Javeriana, Faculty of Engineering, Bogotá, DC, Colombia – sequence: 6 givenname: H. surname: Sonnenberg fullname: Sonnenberg, H. organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany – sequence: 7 givenname: E. surname: Eckert fullname: Eckert, E. organization: Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany – sequence: 8 givenname: N. surname: Lengemann fullname: Lengemann, N. organization: Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany – sequence: 9 givenname: J. surname: Waschnewski fullname: Waschnewski, J. organization: Berliner Wasser Betriebe, Neue Jüdenstraße, 10179 Berlin, Germany – sequence: 10 givenname: P. surname: Rouault fullname: Rouault, P. organization: Kompetenzzentrum Wasser Berlin, Cicerostr. 24, Berlin, Germany |
BookMark | eNp1kDFPwzAQhS1UJNrCymyJlRRf4tjpCBUUpEowwBy59oW4pHaxU6Fu_HTclgmJ6e58772TvxEZOO-QkEtgkxyEuGl3JvhJzqBKszwhQ-CizEAWfHDoeSaBwxkZxbhiLIeigiH5fglK91arji7R6Xatwod179Q3NPaqt_G4U87QtdKtdUg7VMHtNWtvsIu08YFuAhqbctJr3yLV3hnbW-8OOfiFSWE3GKl19A5DZ901nWNYK7c7J6eN6iJe_NYxeXu4f509Zovn-dPsdpHpgsk-UwB6KXkJVSFLoStTTjVTGhlAseRKG2EAJFdGTKdVqaXRBV9WFa8kikKnz47J1TF3E_znFmNfr_w2uHSyTluR56JkeVJNjiodfIwBm3oTbGKyq4HVe8r1gXK9p5xmmQz8j0HbPTfv-qBs95_tBwcnhig |
CitedBy_id | crossref_primary_10_1080_1573062X_2023_2217430 crossref_primary_10_1016_j_scs_2022_104379 crossref_primary_10_1080_15732479_2020_1733029 crossref_primary_10_2166_wst_2022_263 crossref_primary_10_1016_j_ress_2025_110862 crossref_primary_10_1061__ASCE_IS_1943_555X_0000500 crossref_primary_10_1016_j_watres_2022_118247 crossref_primary_10_3390_w17030393 crossref_primary_10_2166_hydro_2020_129 crossref_primary_10_3390_su15043849 crossref_primary_10_1080_1573062X_2024_2423391 crossref_primary_10_1007_s10257_021_00506_7 crossref_primary_10_1016_j_eswa_2023_119671 crossref_primary_10_1007_s10661_023_12027_6 crossref_primary_10_1108_JM2_11_2019_0258 crossref_primary_10_1007_s00521_022_07237_x crossref_primary_10_1061_JPSEA2_PSENG_1464 crossref_primary_10_1007_s11270_024_07618_z crossref_primary_10_2166_wpt_2024_001 crossref_primary_10_1016_j_jclepro_2022_131460 crossref_primary_10_1109_ACCESS_2022_3222823 crossref_primary_10_3390_w12061771 crossref_primary_10_1016_j_jhydrol_2021_126130 crossref_primary_10_1111_risa_13742 crossref_primary_10_1080_23789689_2020_1787033 crossref_primary_10_1080_1573062X_2020_1713382 crossref_primary_10_1016_j_procs_2020_08_031 crossref_primary_10_2166_wst_2020_604 crossref_primary_10_1016_j_scitotenv_2022_155267 crossref_primary_10_1016_j_autcon_2022_104464 crossref_primary_10_3390_su14095549 crossref_primary_10_1080_15732479_2019_1653938 crossref_primary_10_2166_hydro_2024_135 crossref_primary_10_1080_15732479_2021_1998142 crossref_primary_10_1080_1573062X_2023_2282126 crossref_primary_10_1061__ASCE_IS_1943_555X_0000708 crossref_primary_10_1016_j_ress_2023_109611 crossref_primary_10_1080_15732479_2022_2119480 crossref_primary_10_1061__ASCE_PS_1949_1204_0000656 crossref_primary_10_1061_JWRMD5_WRENG_6225 crossref_primary_10_2166_wst_2020_299 crossref_primary_10_3390_su12208733 crossref_primary_10_1016_j_asej_2022_101960 |
Cites_doi | 10.1016/j.autcon.2014.04.004 10.2166/wst.2012.393 10.1080/15730620903447597 10.1016/j.watres.2013.11.017 10.1016/S1462-0758(02)00034-1 10.1023/A:1010933404324 10.1016/j.proeng.2014.11.205 10.1080/15730620801939398 10.2166/hydro.2015.122 10.1080/15732479.2014.887122 10.1061/(ASCE)CF.1943-5509.0000081 10.2166/wst.2009.432 10.1080/15730620902810902 10.1139/cjce-2013-0431 10.1080/15730620600961684 10.1198/jasa.2009.tm08622 10.1061/(ASCE)0887-3828(2008)22:5(333) |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Sep 2018 |
Copyright_xml | – notice: Copyright IWA Publishing Sep 2018 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
DOI | 10.2166/hydro.2018.217 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 1147 |
ExternalDocumentID | 10_2166_hydro_2018_217 |
GeographicLocations | United States--US Berlin Germany Germany |
GeographicLocations_xml | – name: Berlin Germany – name: United States--US – name: Germany |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYOK AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS EJD GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c307t-a11cb745183756c8d59c0ace0113b4acd6d1174ad69985c7dc34b88487e63c213 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Fri Jul 25 22:35:46 EDT 2025 Tue Jul 01 04:10:32 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-a11cb745183756c8d59c0ace0113b4acd6d1174ad69985c7dc34b88487e63c213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/20/5/1131/657070/jh0201131.pdf |
PQID | 2136226502 |
PQPubID | 2044529 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2136226502 crossref_primary_10_2166_hydro_2018_217 crossref_citationtrail_10_2166_hydro_2018_217 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2018 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | 2020032617512449800_HYDRO-D-18-00017C29 (2020032617512449800_HYDRO-D-18-00017C27) 2017; 2 (2020032617512449800_HYDRO-D-18-00017C32) 2014; 44 (2020032617512449800_HYDRO-D-18-00017C8) 2002; 46 (2020032617512449800_HYDRO-D-18-00017C11) 2012; 13 (2020032617512449800_HYDRO-D-18-00017C25) 2008; 5 (2020032617512449800_HYDRO-D-18-00017C30) 2009; 11 (2020032617512449800_HYDRO-D-18-00017C34) 2014; 89 (2020032617512449800_HYDRO-D-18-00017C17) 2004 (2020032617512449800_HYDRO-D-18-00017C26) 2002; 2/3 (2020032617512449800_HYDRO-D-18-00017C33) 2006; 3 (2020032617512449800_HYDRO-D-18-00017C9) 2009; 60 (2020032617512449800_HYDRO-D-18-00017C35) 2012; 66 (2020032617512449800_HYDRO-D-18-00017C7) 2002; 4 2020032617512449800_HYDRO-D-18-00017C12 (2020032617512449800_HYDRO-D-18-00017C36) 2012; 9 (2020032617512449800_HYDRO-D-18-00017C28) 2015; 17 (2020032617512449800_HYDRO-D-18-00017C16) 2017; 14 (2020032617512449800_HYDRO-D-18-00017C21) 2010; 105 2020032617512449800_HYDRO-D-18-00017C14 (2020032617512449800_HYDRO-D-18-00017C13) 2001; 45 (2020032617512449800_HYDRO-D-18-00017C1) 2015; 11 (2020032617512449800_HYDRO-D-18-00017C4) 2009; 6 (2020032617512449800_HYDRO-D-18-00017C10) 2015 2020032617512449800_HYDRO-D-18-00017C5 (2020032617512449800_HYDRO-D-18-00017C23) 2010; 24 2020032617512449800_HYDRO-D-18-00017C2 2020032617512449800_HYDRO-D-18-00017C6 (2020032617512449800_HYDRO-D-18-00017C3) 2010; 7 (2020032617512449800_HYDRO-D-18-00017C18) 2008; 22 2020032617512449800_HYDRO-D-18-00017C22 (2020032617512449800_HYDRO-D-18-00017C31) 2014; 49 2020032617512449800_HYDRO-D-18-00017C20 (2020032617512449800_HYDRO-D-18-00017C15) 1984 (2020032617512449800_HYDRO-D-18-00017C19) 2014; 41 2020032617512449800_HYDRO-D-18-00017C24 |
References_xml | – volume: 44 start-page: 84 year: 2014 ident: 2020032617512449800_HYDRO-D-18-00017C32 article-title: Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition publication-title: Automation in Construction doi: 10.1016/j.autcon.2014.04.004 – volume-title: Using Random Forest to Learn Imbalanced Data year: 2004 ident: 2020032617512449800_HYDRO-D-18-00017C17 – volume-title: Classification and Regression Trees year: 1984 ident: 2020032617512449800_HYDRO-D-18-00017C15 – ident: 2020032617512449800_HYDRO-D-18-00017C24 – volume: 66 start-page: 2410 issue: 11 year: 2012 ident: 2020032617512449800_HYDRO-D-18-00017C35 article-title: A multi-objective optimisation model for sewer rehabilitation considering critical risk of failure publication-title: Water Science and Technology doi: 10.2166/wst.2012.393 – ident: 2020032617512449800_HYDRO-D-18-00017C20 – volume: 7 start-page: 47 issue: 1 year: 2010 ident: 2020032617512449800_HYDRO-D-18-00017C3 article-title: Modeling the structural deterioration of urban drainage pipes: the state-of-the-art in statistical methods publication-title: Urban Water Journal doi: 10.1080/15730620903447597 – ident: 2020032617512449800_HYDRO-D-18-00017C22 – volume: 49 start-page: 124 year: 2014 ident: 2020032617512449800_HYDRO-D-18-00017C31 article-title: Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis publication-title: Water Research doi: 10.1016/j.watres.2013.11.017 – volume: 46 start-page: 389 issue: 6–7 year: 2002 ident: 2020032617512449800_HYDRO-D-18-00017C8 article-title: Selective inspection planning with ageing forecast for sewer types publication-title: Water Science and Technology – volume: 11 start-page: 211 issue: 3–4 year: 2009 ident: 2020032617512449800_HYDRO-D-18-00017C30 article-title: Asset deterioration analysis using multi-utility data and multi-objective data mining publication-title: Journal of Hydroinformatics – volume: 4 start-page: 401 issue: 4 year: 2002 ident: 2020032617512449800_HYDRO-D-18-00017C7 article-title: A data mining approach to modelling of water supply assets publication-title: Urban Water doi: 10.1016/S1462-0758(02)00034-1 – volume: 45 start-page: 5 year: 2001 ident: 2020032617512449800_HYDRO-D-18-00017C13 article-title: Random forest publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: 2020032617512449800_HYDRO-D-18-00017C2 – ident: 2020032617512449800_HYDRO-D-18-00017C12 – ident: 2020032617512449800_HYDRO-D-18-00017C6 – ident: 2020032617512449800_HYDRO-D-18-00017C14 – volume: 89 start-page: 401 year: 2014 ident: 2020032617512449800_HYDRO-D-18-00017C34 article-title: A Random Forest algorithm applied to condition-based wastewater deterioration modeling and forecasting publication-title: Procedia Engineering doi: 10.1016/j.proeng.2014.11.205 – volume: 13 start-page: 281 year: 2012 ident: 2020032617512449800_HYDRO-D-18-00017C11 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research – volume: 5 start-page: 97 issue: 2 year: 2008 ident: 2020032617512449800_HYDRO-D-18-00017C25 article-title: Modelling the deterioration process of drainage pipelines publication-title: Urban Water Journal doi: 10.1080/15730620801939398 – volume: 14 start-page: 264 issue: 2 year: 2017 ident: 2020032617512449800_HYDRO-D-18-00017C16 article-title: Evaluation of uncertainties in sewer condition assessment publication-title: Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance – volume: 17 start-page: 789 issue: 5 year: 2015 ident: 2020032617512449800_HYDRO-D-18-00017C28 article-title: Evaluating the role of deterioration models for condition assessment of sewers publication-title: Journal of Hydroinformatics doi: 10.2166/hydro.2015.122 – ident: 2020032617512449800_HYDRO-D-18-00017C29 – volume: 11 start-page: 376 issue: 3 year: 2015 ident: 2020032617512449800_HYDRO-D-18-00017C1 article-title: Benefits of using basic, imprecise or uncertain data for elaborating sewer inspection programmes publication-title: Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance doi: 10.1080/15732479.2014.887122 – volume: 24 start-page: 170 issue: 2 year: 2010 ident: 2020032617512449800_HYDRO-D-18-00017C23 article-title: Structural condition assessment of sewer pipelines publication-title: Journal of Performance of Constructed Facilities doi: 10.1061/(ASCE)CF.1943-5509.0000081 – volume: 2/3 start-page: 18 year: 2002 ident: 2020032617512449800_HYDRO-D-18-00017C26 article-title: Classification and regression by random forest publication-title: R News – volume: 60 start-page: 841 issue: 4 year: 2009 ident: 2020032617512449800_HYDRO-D-18-00017C9 article-title: An effective multi-objective approach to prioritisation of sewer pipe inspection publication-title: Water Science and Technology doi: 10.2166/wst.2009.432 – volume: 6 start-page: 303 issue: 4 year: 2009 ident: 2020032617512449800_HYDRO-D-18-00017C4 article-title: An investigation of the factors influencing sewer structural deterioration publication-title: Urban Water Journal doi: 10.1080/15730620902810902 – volume: 41 start-page: 294 issue: 4 year: 2014 ident: 2020032617512449800_HYDRO-D-18-00017C19 article-title: Predicting the structural condition of individual sanitary sewer pipes with random forests publication-title: Canadian Journal of Civil Engineering doi: 10.1139/cjce-2013-0431 – volume: 3 start-page: 175 issue: 3 year: 2006 ident: 2020032617512449800_HYDRO-D-18-00017C33 article-title: Application of probabilistic neural networks in modeling structural deterioration of stormwater pipes publication-title: Urban Water Journal doi: 10.1080/15730620600961684 – volume: 105 start-page: 205 issue: 489 year: 2010 ident: 2020032617512449800_HYDRO-D-18-00017C21 article-title: High-dimensional variable selection for survival data publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08622 – volume-title: Zustand der Kanalisation in Deutschland (Overview on Sewer Pipes Condition in Germany) year: 2015 ident: 2020032617512449800_HYDRO-D-18-00017C10 – volume: 22 start-page: 333 issue: 5 year: 2008 ident: 2020032617512449800_HYDRO-D-18-00017C18 article-title: Infrastructure condition prediction models for sustainable sewer pipelines publication-title: Journal of Performance of Constructed Facilities doi: 10.1061/(ASCE)0887-3828(2008)22:5(333) – volume: 2 start-page: 131 year: 2017 ident: 2020032617512449800_HYDRO-D-18-00017C27 article-title: Investitionsstau in der Abwasserentsorgung (Investment bottleneck in the disposal of wastewater) publication-title: KA – Korrespondenz Abwasser, Abfall – volume: 9 start-page: 44 issue: 4 year: 2012 ident: 2020032617512449800_HYDRO-D-18-00017C36 article-title: Gestion patrimoniale des réseaux d'assainissement: de l’état des réseaux à la planification de leur réhabilitation – Outils, méthodes et perspectives (Asset management of sewer networks: from sewer condition to rehabilitation planning) publication-title: Sciences Eaux & Territoires – ident: 2020032617512449800_HYDRO-D-18-00017C5 |
SSID | ssj0021381 |
Score | 2.3356962 |
Snippet | Deterioration models can be successfully deployed only if decision-makers trust the modelling outcomes and are aware of model uncertainties. Our study aims to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1131 |
SubjectTerms | Artificial intelligence Asset management Decision trees Deterioration Forests Infrastructure Inspection Learning algorithms Machine learning Markov chains Mathematical models Modelling Performance assessment Pipes Rehabilitation Sewer pipes Sewer systems Statistical analysis Statistical models Survival Survival analysis |
Title | Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany |
URI | https://www.proquest.com/docview/2136226502 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aHvQiPrFaJQfBi6Gb7CPbk6hUi2ARsdDbkldtwW7XbkV686c7yaaVHvQYEnKYZL7Ml0zmQ-iCqbCdMCoJE-2URHoYEMEpJRrYBOOBkkNufyM_9ZJuP3ocxAN_4Vb6tMolJjqg1lNl78hbjALUMogn2HXxQaxqlH1d9RIam6gOEJwC-arfdnrPLyvKRUMnUwpwYLMOI1qVbWQ0SVqjhZ7Z3380hTZfP5bWUdkdNfe7aMfHiPimWtQ9tGHyfbTl5cpHiwP0XVUZAvNiCbtsNBHuxhtPh9h-EHK1l6FP5BpPXLKkwV4d4g076ZsSQ6yKi5l9pbF5zxjCQAzMWLsELjeP-TIwYlyYEo9zXFXFusIPFsjzxSHq33de77rESykQBU48J4JSJXkUgwPzOFGpjtsqEMqAd4cyEkonmgI3EToB-hUrrlUYyTQFNmOSUIEZj1Atn-bmGGEuIQKMBWNKx9EQAoqISh0GGmDVCn6mDUSWlsyUrzNu5S7eM-Ab1vKZs3xmLQ9t3kCXq_FFVWHjz5HN5cJk3tPK7HdfnPzffYq27URVflgT1eazT3MGAcVcnvtd8wN4Scup |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOcAF8RQsLx8WccGidpw4PSDEuyxQIQQSt6xf3SJBWtoi1Bu_iN_I2ElAHJYbR8uWFY2_jL-xx_MB_OYmaiScacpVI6XCtutUScaoxWiCy7rRbelfI1-2kuat-HMX343BW_UWxqdVVj4xOGrbNf6MfIczdLUc-QTf6z1Rrxrlb1crCY0CFudu9IIh22D37AjXd5Pzk-ObwyYtVQWoQTwPqWLMaClixLKME5PauGHqyjgEeqSFMjaxDGm6sglGIrGR1kRCpykSe5dEBj8D5x2HCRFhKFODiYPj1tX1R4jHoiCLiu7HZzkKVpSJ5CxJdjoj2_evDVmKbfl1G_y6C4St7WQGpktOSvYLEM3CmMvnYLKUR--M5uG1qGqEy0k0orrzqMIJO-m2iX-QFGo9Y5_KLXkMyZmOlGoU_0iQ2hkQ5Mak1_e3Qj7PmiDtJBiJ25AwFuZxLw5H3PfcgNznpKjCtU1O_caRjxbg9keMvAi1vJu7JSBSI-OMFefGxqKNBEYwbaO6RTfuBUbTZaCVJTNT1jX38hoPGcY33vJZsHzmLY9tuQxbH-N7RUWP_45crRYmK__sQfaJw1_fd2_AZPPm8iK7OGudr8CUn7TITVuF2rD_7NaQzAz1eokgAn9_GrTvBMUHlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BkKCXivIQgdD6AOKClbX34c2hQm0hvCOEQOK2-LUNEmxCkirKrb-LX9exd5eKQ3vjaNmyVuNvx9_Y4_kAdrgOOwlninLZSWlk8oBKwRg1GE1wEWiVC_ca-bKXnNxGZ3fx3Ry81G9hXFpl7RO9ozYD7c7I25yhq-XIJ3g7r9Iirg67B8Nn6hSk3E1rLadRQuTczqYYvo2_nh7iWu9y3j26-XFCK4UBqhHbEyoZ00pEMeJaxIlOTdzRgdQWQR-qSGqTGIaUXZoEo5JYC6PDSKUpknybhBo_CeedhwWBUVHQgIXvR72r69dwj4VeIhVdkct4jFhZMpKzJGn3Z2bkXh6yFNvi7Zb4dkfw21x3GT5W_JR8KwH1CeZssQJLlVR6f7YKv8sKR7i0RCHC-0_Sn7aTQU7c4yRf9xn7ZGHIk0_UtKRSpvhJvOzOmCBPJsORuyFyOdcEKSjBqNz45DE_j51aHPEwtGPyUJCyItc-OXabSDFbg9t3MfI6NIpBYTeACIXsM5acaxNHOZKZiCkTBgZduhMbTZtAa0tmuqpx7qQ2HjOMdZzlM2_5zFke26IJe6_jh2V1j3-ObNULk1V_-Tj7i8nN_3d_gUUEa3Zx2jvfgg9uzjJNrQWNyeiX3UZeM1GfKwARuH9vzP4BBRALyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+benchmarking+of+statistical+and+machine+learning+models+for+predicting+the+condition+of+sewer+pipes+in+Berlin%2C+Germany&rft.jtitle=Journal+of+hydroinformatics&rft.au=Caradot%2C+N.&rft.au=Riechel%2C+M.&rft.au=Fesneau%2C+M.&rft.au=Hernandez%2C+N.&rft.date=2018-09-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=20&rft.issue=5&rft.spage=1131&rft.epage=1147&rft_id=info:doi/10.2166%2Fhydro.2018.217&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2018_217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |