Effect of cognitive training on brain dynamics

The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities. To study the effect of functional connectivity on th...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 2; pp. 28704 - 609
Main Authors Lv, Guiyang, Xu, Tianyong, Chen, Feiyan, Zhu, Ping, Wang, Miao, He, Guoguang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad09c8

Cover

Abstract The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities. To study the effect of functional connectivity on the brain dynamics, the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work. The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation (AMC) training and from the control group are used to construct the functional brain networks. The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model. In the resting state, there are the differences of brain activation between the AMC group and the control group, and more brain regions are inspired in the AMC group. A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states. The dynamic characteristics are extracted by the excitation rates, the response intensities and the state distributions. The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus, and make the brain more efficient in processing tasks.
AbstractList The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh-Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.
Author Chen, Feiyan
Wang, Miao
He, Guoguang
Xu, Tianyong
Zhu, Ping
Lv, Guiyang
Author_xml – sequence: 1
  givenname: Guiyang
  surname: Lv
  fullname: Lv, Guiyang
  organization: School of Physics, Zhejiang University , China
– sequence: 2
  givenname: Tianyong
  surname: Xu
  fullname: Xu, Tianyong
  organization: School of Physics, Zhejiang University , China
– sequence: 3
  givenname: Feiyan
  surname: Chen
  fullname: Chen, Feiyan
  organization: School of Physics, Zhejiang University , China
– sequence: 4
  givenname: Ping
  surname: Zhu
  fullname: Zhu, Ping
  organization: School of Physics, Zhejiang University , China
– sequence: 5
  givenname: Miao
  surname: Wang
  fullname: Wang, Miao
  organization: School of Physics, Zhejiang University , China
– sequence: 6
  givenname: Guoguang
  surname: He
  fullname: He, Guoguang
  organization: School of Physics, Zhejiang University , China
BookMark eNp1kEtLAzEUhYNUsK3uXc7OjdPePJpJllLqAwpudB0yeQwpbVIyo6X-emcY0ZWre-F-51zOmaFJTNEhdIthgUGIJeYVKzGs-FJbkEZcoCmBlSipoGyCpr_nKzRr2x0Ax0DoFC023jvTFckXJjUxdOHTFV3WIYbYFCkW9bAX9hz1IZj2Gl16vW_dzc-co_fHzdv6udy-Pr2sH7aloVB1pQRDrKso5aIG4SpJCXHUCyetMc5IWQumNYcesYYQIpkVrKLcSUastpzO0d3oe9LR69ioXfrIsf-ovprTXjkChAGBivUkjKTJqW2z8-qYw0Hns8KghmbUEF0N0dXYTC-5HyUhHf-M_8W_AXEjZQU
Cites_doi 10.1016/j.neuroscience.2019.04.001
10.1016/j.neuroimage.2010.01.002
10.1371/journal.pone.0068910
10.1006/nimg.2001.1052
10.1142/S0218127420502569
10.1162/neco.2009.01-09-947
10.1063/1.4913526
10.1063/5.0006207
10.3389/fnhum.2015.00245
10.1063/1.5009812
10.3389/fnhum.2013.00317
10.1103/PhysRevLett.122.208101
10.1038/s42256-021-00376-1
10.1016/j.neuron.2016.02.009
10.1155/2016/1213723
10.1007/s11071-021-06318-1
0.1146/annurev.psych.49.1.43
10.1016/j.neuroscience.2020.02.033
10.1126/science.1099745
10.1002/wsbm.1348
10.1016/j.neuroscience.2016.06.051
10.1016/j.neuroimage.2015.01.054
10.1016/j.brainres.2013.09.030
10.1063/1.4914938
10.1016/j.compbiomed.2022.106461
10.1093/brain/120.10.1763
10.1038/s41598-019-50969-5
10.1016/j.neuroimage.2018.08.057
10.3389/fphys.2012.00163
10.1142/S0218127410026149
10.1073/pnas.0905267106
10.1371/journal.pcbi.1004372
10.1038/nn.4497
10.1016/j.cognition.2012.12.004
10.1038/s41583-018-0094-0
10.1016/j.neulet.2006.04.041
10.1016/j.neuron.2018.07.003
10.1523/JNEUROSCI.3195-18.2019
10.1155/2013/694075
10.1209/0295-5075/126/50007
10.1186/1471-2202-10-137
10.1103/PhysRevLett.126.098101
10.3233/RNN-120297
10.1006/nimg.2001.0978
10.1162/0898929042568532
10.1016/j.tics.2012.02.001
10.1103/PhysRevLett.110.178101
10.1073/pnas.1921475117
10.1016/j.neuroimage.2009.12.027
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad09c8
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 609
ExternalDocumentID zgwl_e202402074
10_1088_1674_1056_ad09c8
cpb_33_2_028704
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c307t-90c2de73368b08e79322e3f8e9dccec99b84aa60e73dc22294d84736e942dad63
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:12 EDT 2025
Sun Aug 18 15:40:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords brian dynamics
abacus-based mental calculation
functional brain networks
cognitive training
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-90c2de73368b08e79322e3f8e9dccec99b84aa60e73dc22294d84736e942dad63
OpenAccessLink https://doi.org/10.1088/1674-1056/ad09c8
PageCount 8
ParticipantIDs crossref_primary_10_1088_1674_1056_ad09c8
iop_journals_10_1088_1674_1056_ad09c8
wanfang_journals_zgwl_e202402074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Tzourio-Mazoyer (cpb_33_2_028704bib36) 2002; 15
Kolb (cpb_33_2_028704bib6) 1998; 49
Li (cpb_33_2_028704bib10) 2013; 1539
Minati (cpb_33_2_028704bib19) 2015; 25
Xia (cpb_33_2_028704bib45) 2013; 8
Chen (cpb_33_2_028704bib14) 2006; 403
Koulierakis (cpb_33_2_028704bib27) 2020; 30
Antonopoulos (cpb_33_2_028704bib28) 2015; 11
Haimovici (cpb_33_2_028704bib3) 2013; 110
Ramlow (cpb_33_2_028704bib26) 2019; 126
Kang (cpb_33_2_028704bib25) 2019; 9
Xie (cpb_33_2_028704bib9) 2018; 183
Koch (cpb_33_2_028704bib18) 2002; 16
Mitchell (cpb_33_2_028704bib23) 2020; 30
Turi (cpb_33_2_028704bib47) 2013; 31
Robinson (cpb_33_2_028704bib43) 2009; 10
Florin (cpb_33_2_028704bib39) 2015; 111
Buzsaki (cpb_33_2_028704bib40) 2004; 304
Zhou (cpb_33_2_028704bib44) 2019; 408
Suárez (cpb_33_2_028704bib1) 2021; 3
Büsing (cpb_33_2_028704bib15) 2010; 22
Decety (cpb_33_2_028704bib17) 1997; 120
Smith (cpb_33_2_028704bib32) 2009; 106
Rajan (cpb_33_2_028704bib2) 2016; 90
Ghandili (cpb_33_2_028704bib42) 2021
Lv (cpb_33_2_028704bib29) 2021; 104
Li (cpb_33_2_028704bib8) 2016; 2016
Greicius (cpb_33_2_028704bib31) 2004; 16
Wang (cpb_33_2_028704bib34) 2019; 39
Wang (cpb_33_2_028704bib51) 2013; 127
Mennes (cpb_33_2_028704bib33) 2010; 50
Schmidt (cpb_33_2_028704bib22) 2010; 20
Chouzouris (cpb_33_2_028704bib24) 2018; 28
Siettos (cpb_33_2_028704bib21) 2016; 8
Driscoll (cpb_33_2_028704bib41) 2020
Fosque (cpb_33_2_028704bib50) 2021; 126
Du (cpb_33_2_028704bib7) 2013; 2013
Zalesky (cpb_33_2_028704bib35) 2010; 50
Ansarinasab (cpb_33_2_028704bib30) 2023; 152
Hahn (cpb_33_2_028704bib38) 2019; 20
Beggs (cpb_33_2_028704bib48) 2012; 3
Kringelbach (cpb_33_2_028704bib5) 2020; 117
Yao (cpb_33_2_028704bib12) 2015; 9
Vuksanović (cpb_33_2_028704bib20) 2015; 25
Kelly (cpb_33_2_028704bib37) 2012; 16
Fontenele (cpb_33_2_028704bib49) 2019; 122
Breakspear (cpb_33_2_028704bib4) 2017; 20
Dong (cpb_33_2_028704bib13) 2016; 332
Zhou (cpb_33_2_028704bib11) 2020; 432
Antal (cpb_33_2_028704bib46) 2013; 7
Mastrogiuseppe (cpb_33_2_028704bib16) 2018; 99
References_xml – volume: 408
  start-page: 135
  year: 2019
  ident: cpb_33_2_028704bib44
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2019.04.001
– volume: 50
  start-page: 1690
  year: 2010
  ident: cpb_33_2_028704bib33
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.002
– volume: 8
  year: 2013
  ident: cpb_33_2_028704bib45
  publication-title: PloS One
  doi: 10.1371/journal.pone.0068910
– volume: 16
  start-page: 241
  year: 2002
  ident: cpb_33_2_028704bib18
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.1052
– volume: 30
  year: 2020
  ident: cpb_33_2_028704bib23
  publication-title: Int. J. Bifur. Chaos
  doi: 10.1142/S0218127420502569
– volume: 22
  start-page: 1272
  year: 2010
  ident: cpb_33_2_028704bib15
  publication-title: Neural Comput.
  doi: 10.1162/neco.2009.01-09-947
– volume: 25
  year: 2015
  ident: cpb_33_2_028704bib20
  publication-title: Chaos
  doi: 10.1063/1.4913526
– volume: 30
  year: 2020
  ident: cpb_33_2_028704bib27
  publication-title: Chaos
  doi: 10.1063/5.0006207
– volume: 9
  start-page: 245
  year: 2015
  ident: cpb_33_2_028704bib12
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2015.00245
– volume: 28
  year: 2018
  ident: cpb_33_2_028704bib24
  publication-title: Chaos
  doi: 10.1063/1.5009812
– volume: 7
  start-page: 317
  year: 2013
  ident: cpb_33_2_028704bib46
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2013.00317
– volume: 122
  year: 2019
  ident: cpb_33_2_028704bib49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.208101
– volume: 3
  start-page: 771
  year: 2021
  ident: cpb_33_2_028704bib1
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00376-1
– volume: 90
  start-page: 128
  year: 2016
  ident: cpb_33_2_028704bib2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.009
– volume: 2016
  year: 2016
  ident: cpb_33_2_028704bib8
  publication-title: Neural Plast.
  doi: 10.1155/2016/1213723
– volume: 104
  start-page: 1475
  year: 2021
  ident: cpb_33_2_028704bib29
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06318-1
– volume: 49
  start-page: 43
  year: 1998
  ident: cpb_33_2_028704bib6
  publication-title: Annu. Rev. Psychol.
  doi: 0.1146/annurev.psych.49.1.43
– volume: 432
  start-page: 115
  year: 2020
  ident: cpb_33_2_028704bib11
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2020.02.033
– volume: 304
  start-page: 1926
  year: 2004
  ident: cpb_33_2_028704bib40
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 8
  start-page: 438
  year: 2016
  ident: cpb_33_2_028704bib21
  publication-title: Wiley Interdisciplinary Reviews: Systems Biology and Medicine
  doi: 10.1002/wsbm.1348
– volume: 332
  start-page: 181
  year: 2016
  ident: cpb_33_2_028704bib13
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.06.051
– year: 2020
  ident: cpb_33_2_028704bib41
– volume: 111
  start-page: 26
  year: 2015
  ident: cpb_33_2_028704bib39
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.054
– volume: 1539
  start-page: 24
  year: 2013
  ident: cpb_33_2_028704bib10
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2013.09.030
– volume: 25
  year: 2015
  ident: cpb_33_2_028704bib19
  publication-title: Chaos
  doi: 10.1063/1.4914938
– volume: 152
  year: 2023
  ident: cpb_33_2_028704bib30
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106461
– volume: 120
  start-page: 1763
  year: 1997
  ident: cpb_33_2_028704bib17
  publication-title: Brain: J. Neurol.
  doi: 10.1093/brain/120.10.1763
– volume: 9
  year: 2019
  ident: cpb_33_2_028704bib25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50969-5
– volume: 183
  start-page: 811
  year: 2018
  ident: cpb_33_2_028704bib9
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.057
– volume: 3
  start-page: 163
  year: 2012
  ident: cpb_33_2_028704bib48
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00163
– volume: 20
  start-page: 859
  year: 2010
  ident: cpb_33_2_028704bib22
  publication-title: Int. J. Bifur. Chaos
  doi: 10.1142/S0218127410026149
– volume: 106
  year: 2009
  ident: cpb_33_2_028704bib32
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905267106
– volume: 11
  year: 2015
  ident: cpb_33_2_028704bib28
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004372
– volume: 20
  start-page: 340
  year: 2017
  ident: cpb_33_2_028704bib4
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4497
– volume: 127
  start-page: 149
  year: 2013
  ident: cpb_33_2_028704bib51
  publication-title: Cognition
  doi: 10.1016/j.cognition.2012.12.004
– volume: 20
  start-page: 117
  year: 2019
  ident: cpb_33_2_028704bib38
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0094-0
– volume: 403
  start-page: 46
  year: 2006
  ident: cpb_33_2_028704bib14
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2006.04.041
– volume: 99
  start-page: 609
  year: 2018
  ident: cpb_33_2_028704bib16
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.003
– volume: 39
  start-page: 6439
  year: 2019
  ident: cpb_33_2_028704bib34
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3195-18.2019
– volume: 2013
  year: 2013
  ident: cpb_33_2_028704bib7
  publication-title: BioMed Res. Int.
  doi: 10.1155/2013/694075
– volume: 126
  year: 2019
  ident: cpb_33_2_028704bib26
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/126/50007
– volume: 10
  start-page: 137
  year: 2009
  ident: cpb_33_2_028704bib43
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-137
– volume: 126
  year: 2021
  ident: cpb_33_2_028704bib50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.098101
– volume: 31
  start-page: 275
  year: 2013
  ident: cpb_33_2_028704bib47
  publication-title: Restorative Neurol. Neurosci.
  doi: 10.3233/RNN-120297
– volume: 15
  start-page: 273
  year: 2002
  ident: cpb_33_2_028704bib36
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 16
  start-page: 1484
  year: 2004
  ident: cpb_33_2_028704bib31
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/0898929042568532
– volume: 16
  start-page: 181
  year: 2012
  ident: cpb_33_2_028704bib37
  publication-title: Trends Cognitive Sci.
  doi: 10.1016/j.tics.2012.02.001
– year: 2021
  ident: cpb_33_2_028704bib42
– volume: 110
  year: 2013
  ident: cpb_33_2_028704bib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.178101
– volume: 117
  start-page: 9566
  year: 2020
  ident: cpb_33_2_028704bib5
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1921475117
– volume: 50
  start-page: 970
  year: 2010
  ident: cpb_33_2_028704bib35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
SSID ssj0061023
Score 2.3298583
Snippet The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain...
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 28704
SubjectTerms abacus-based mental calculation
brian dynamics
cognitive training
functional brain networks
Title Effect of cognitive training on brain dynamics
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad09c8
https://d.wanfangdata.com.cn/periodical/zgwl-e202402074
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiuDFt1hf5KAHD9lus9s0wZOIRQUfBws9CEte24OyW-wWob_eZLNbH4iItxxmk51J5kUm3wAcS5qynpIc60hHOJZRF4s-EViqLpWxy0BKANPbO3o1jG9GvVEDzhZvYfJJZfoDO_RAwV6EVUEc67i6eewaxneEDrliTVhyjSvd8b6-f6jNMHWYBC7bqqmrO8qfZvjik5p23fIFT5aKbPzJ2QzW4Kn-TV9j8hzMChmo-TcEx3_ysQ6rVRCKzj3pBjRMtgnLZTGomm5B4CGNUZ6iRXURqntJoDxD0o2R9s3sp9swHFw-Xlzhqq8CVlajC8xDRbRxOIhMhsxYDSXERCkzXCtlFOeSxULQ0JJo5fp9x9r6sIgaHhMtNI12oJXlmdkFpGUqiOyZlKc2kTHWGnC7vVxwRkPVD1UbTmvJJhMPn5GU196MJY7_xPGfeP7bcGJFlVQ6NP2FDlWb80E7H7-9JIY4wDZig6K9P061DyvuG1-FfQCt4nVmDm2QUcij8jC9A_vxx48
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLZoEYiFG1FODzAwJE2do_aIgKrlKB2o1C347ABKKpoKqb8eO3a4hBASm4dnJ3nOu-TP3wPghCUKx5wRT4Qi9CIWtjzaRtRjvJWwyFQgJYHpXT_pDqPrUTxyfU7LuzD5xLl-Xw8tUbBVoQPE4abBzXumYXyTioBw3JwIVQOLsXbFBtPVux9UrjgxvASm4qpmuHPKn1b5Epdq-tnlLZ5M0Wz8KeB01sBj9aoWZ_Lkzwrm8_k3Fsd_fMs6WHXJKDy34htgQWabYKkEhfLpFvAttTHMFXxHGcGqpwTMM8jMGArb1H66DYadq4eLruf6K3hcW3bhkYAjIQ0fImYBltpSEZKhwpIIziUnhOGI0iTQIoKbvt-R0LEsTCSJkKAiCXdAPcszuQugYIoiFktFlC5opPYKRG8zoQQnAW8HvAHOKu2mE0ujkZbH3xinRgep0UFqddAAp1pdqbOl6S9y0G3Qh-x8_PqcSmSI25BOjvb-uNQxWB5cdtLbXv9mH6yY6RaYfQDqxctMHuq8o2BH5b_1Bi6LzPM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+cognitive+training+on+brain+dynamics&rft.jtitle=Chinese+physics+B&rft.au=Lv+%E5%90%95%2C+Guiyang+%E8%B4%B5%E9%98%B3&rft.au=Xu+%E5%BE%90%2C+Tianyong+%E5%A4%A9%E5%8B%87&rft.au=Chen+%E9%99%88%2C+Feiyan+%E9%A3%9E%E7%87%95&rft.au=Zhu+%E6%9C%B1%2C+Ping+%E8%90%8D&rft.date=2024-02-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=2&rft.spage=28704&rft_id=info:doi/10.1088%2F1674-1056%2Fad09c8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad09c8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg