Effect of cognitive training on brain dynamics
The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities. To study the effect of functional connectivity on th...
Saved in:
Published in | Chinese physics B Vol. 33; no. 2; pp. 28704 - 609 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad09c8 |
Cover
Abstract | The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities. To study the effect of functional connectivity on the brain dynamics, the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work. The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation (AMC) training and from the control group are used to construct the functional brain networks. The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model. In the resting state, there are the differences of brain activation between the AMC group and the control group, and more brain regions are inspired in the AMC group. A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states. The dynamic characteristics are extracted by the excitation rates, the response intensities and the state distributions. The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus, and make the brain more efficient in processing tasks. |
---|---|
AbstractList | The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh-Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks. |
Author | Chen, Feiyan Wang, Miao He, Guoguang Xu, Tianyong Zhu, Ping Lv, Guiyang |
Author_xml | – sequence: 1 givenname: Guiyang surname: Lv fullname: Lv, Guiyang organization: School of Physics, Zhejiang University , China – sequence: 2 givenname: Tianyong surname: Xu fullname: Xu, Tianyong organization: School of Physics, Zhejiang University , China – sequence: 3 givenname: Feiyan surname: Chen fullname: Chen, Feiyan organization: School of Physics, Zhejiang University , China – sequence: 4 givenname: Ping surname: Zhu fullname: Zhu, Ping organization: School of Physics, Zhejiang University , China – sequence: 5 givenname: Miao surname: Wang fullname: Wang, Miao organization: School of Physics, Zhejiang University , China – sequence: 6 givenname: Guoguang surname: He fullname: He, Guoguang organization: School of Physics, Zhejiang University , China |
BookMark | eNp1kEtLAzEUhYNUsK3uXc7OjdPePJpJllLqAwpudB0yeQwpbVIyo6X-emcY0ZWre-F-51zOmaFJTNEhdIthgUGIJeYVKzGs-FJbkEZcoCmBlSipoGyCpr_nKzRr2x0Ax0DoFC023jvTFckXJjUxdOHTFV3WIYbYFCkW9bAX9hz1IZj2Gl16vW_dzc-co_fHzdv6udy-Pr2sH7aloVB1pQRDrKso5aIG4SpJCXHUCyetMc5IWQumNYcesYYQIpkVrKLcSUastpzO0d3oe9LR69ioXfrIsf-ovprTXjkChAGBivUkjKTJqW2z8-qYw0Hns8KghmbUEF0N0dXYTC-5HyUhHf-M_8W_AXEjZQU |
Cites_doi | 10.1016/j.neuroscience.2019.04.001 10.1016/j.neuroimage.2010.01.002 10.1371/journal.pone.0068910 10.1006/nimg.2001.1052 10.1142/S0218127420502569 10.1162/neco.2009.01-09-947 10.1063/1.4913526 10.1063/5.0006207 10.3389/fnhum.2015.00245 10.1063/1.5009812 10.3389/fnhum.2013.00317 10.1103/PhysRevLett.122.208101 10.1038/s42256-021-00376-1 10.1016/j.neuron.2016.02.009 10.1155/2016/1213723 10.1007/s11071-021-06318-1 0.1146/annurev.psych.49.1.43 10.1016/j.neuroscience.2020.02.033 10.1126/science.1099745 10.1002/wsbm.1348 10.1016/j.neuroscience.2016.06.051 10.1016/j.neuroimage.2015.01.054 10.1016/j.brainres.2013.09.030 10.1063/1.4914938 10.1016/j.compbiomed.2022.106461 10.1093/brain/120.10.1763 10.1038/s41598-019-50969-5 10.1016/j.neuroimage.2018.08.057 10.3389/fphys.2012.00163 10.1142/S0218127410026149 10.1073/pnas.0905267106 10.1371/journal.pcbi.1004372 10.1038/nn.4497 10.1016/j.cognition.2012.12.004 10.1038/s41583-018-0094-0 10.1016/j.neulet.2006.04.041 10.1016/j.neuron.2018.07.003 10.1523/JNEUROSCI.3195-18.2019 10.1155/2013/694075 10.1209/0295-5075/126/50007 10.1186/1471-2202-10-137 10.1103/PhysRevLett.126.098101 10.3233/RNN-120297 10.1006/nimg.2001.0978 10.1162/0898929042568532 10.1016/j.tics.2012.02.001 10.1103/PhysRevLett.110.178101 10.1073/pnas.1921475117 10.1016/j.neuroimage.2009.12.027 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad09c8 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 609 |
ExternalDocumentID | zgwl_e202402074 10_1088_1674_1056_ad09c8 cpb_33_2_028704 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c307t-90c2de73368b08e79322e3f8e9dccec99b84aa60e73dc22294d84736e942dad63 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:12 EDT 2025 Sun Aug 18 15:40:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | brian dynamics abacus-based mental calculation functional brain networks cognitive training |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-90c2de73368b08e79322e3f8e9dccec99b84aa60e73dc22294d84736e942dad63 |
OpenAccessLink | https://doi.org/10.1088/1674-1056/ad09c8 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_ad09c8 iop_journals_10_1088_1674_1056_ad09c8 wanfang_journals_zgwl_e202402074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Tzourio-Mazoyer (cpb_33_2_028704bib36) 2002; 15 Kolb (cpb_33_2_028704bib6) 1998; 49 Li (cpb_33_2_028704bib10) 2013; 1539 Minati (cpb_33_2_028704bib19) 2015; 25 Xia (cpb_33_2_028704bib45) 2013; 8 Chen (cpb_33_2_028704bib14) 2006; 403 Koulierakis (cpb_33_2_028704bib27) 2020; 30 Antonopoulos (cpb_33_2_028704bib28) 2015; 11 Haimovici (cpb_33_2_028704bib3) 2013; 110 Ramlow (cpb_33_2_028704bib26) 2019; 126 Kang (cpb_33_2_028704bib25) 2019; 9 Xie (cpb_33_2_028704bib9) 2018; 183 Koch (cpb_33_2_028704bib18) 2002; 16 Mitchell (cpb_33_2_028704bib23) 2020; 30 Turi (cpb_33_2_028704bib47) 2013; 31 Robinson (cpb_33_2_028704bib43) 2009; 10 Florin (cpb_33_2_028704bib39) 2015; 111 Buzsaki (cpb_33_2_028704bib40) 2004; 304 Zhou (cpb_33_2_028704bib44) 2019; 408 Suárez (cpb_33_2_028704bib1) 2021; 3 Büsing (cpb_33_2_028704bib15) 2010; 22 Decety (cpb_33_2_028704bib17) 1997; 120 Smith (cpb_33_2_028704bib32) 2009; 106 Rajan (cpb_33_2_028704bib2) 2016; 90 Ghandili (cpb_33_2_028704bib42) 2021 Lv (cpb_33_2_028704bib29) 2021; 104 Li (cpb_33_2_028704bib8) 2016; 2016 Greicius (cpb_33_2_028704bib31) 2004; 16 Wang (cpb_33_2_028704bib34) 2019; 39 Wang (cpb_33_2_028704bib51) 2013; 127 Mennes (cpb_33_2_028704bib33) 2010; 50 Schmidt (cpb_33_2_028704bib22) 2010; 20 Chouzouris (cpb_33_2_028704bib24) 2018; 28 Siettos (cpb_33_2_028704bib21) 2016; 8 Driscoll (cpb_33_2_028704bib41) 2020 Fosque (cpb_33_2_028704bib50) 2021; 126 Du (cpb_33_2_028704bib7) 2013; 2013 Zalesky (cpb_33_2_028704bib35) 2010; 50 Ansarinasab (cpb_33_2_028704bib30) 2023; 152 Hahn (cpb_33_2_028704bib38) 2019; 20 Beggs (cpb_33_2_028704bib48) 2012; 3 Kringelbach (cpb_33_2_028704bib5) 2020; 117 Yao (cpb_33_2_028704bib12) 2015; 9 Vuksanović (cpb_33_2_028704bib20) 2015; 25 Kelly (cpb_33_2_028704bib37) 2012; 16 Fontenele (cpb_33_2_028704bib49) 2019; 122 Breakspear (cpb_33_2_028704bib4) 2017; 20 Dong (cpb_33_2_028704bib13) 2016; 332 Zhou (cpb_33_2_028704bib11) 2020; 432 Antal (cpb_33_2_028704bib46) 2013; 7 Mastrogiuseppe (cpb_33_2_028704bib16) 2018; 99 |
References_xml | – volume: 408 start-page: 135 year: 2019 ident: cpb_33_2_028704bib44 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2019.04.001 – volume: 50 start-page: 1690 year: 2010 ident: cpb_33_2_028704bib33 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.002 – volume: 8 year: 2013 ident: cpb_33_2_028704bib45 publication-title: PloS One doi: 10.1371/journal.pone.0068910 – volume: 16 start-page: 241 year: 2002 ident: cpb_33_2_028704bib18 publication-title: Neuroimage doi: 10.1006/nimg.2001.1052 – volume: 30 year: 2020 ident: cpb_33_2_028704bib23 publication-title: Int. J. Bifur. Chaos doi: 10.1142/S0218127420502569 – volume: 22 start-page: 1272 year: 2010 ident: cpb_33_2_028704bib15 publication-title: Neural Comput. doi: 10.1162/neco.2009.01-09-947 – volume: 25 year: 2015 ident: cpb_33_2_028704bib20 publication-title: Chaos doi: 10.1063/1.4913526 – volume: 30 year: 2020 ident: cpb_33_2_028704bib27 publication-title: Chaos doi: 10.1063/5.0006207 – volume: 9 start-page: 245 year: 2015 ident: cpb_33_2_028704bib12 publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2015.00245 – volume: 28 year: 2018 ident: cpb_33_2_028704bib24 publication-title: Chaos doi: 10.1063/1.5009812 – volume: 7 start-page: 317 year: 2013 ident: cpb_33_2_028704bib46 publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2013.00317 – volume: 122 year: 2019 ident: cpb_33_2_028704bib49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.208101 – volume: 3 start-page: 771 year: 2021 ident: cpb_33_2_028704bib1 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00376-1 – volume: 90 start-page: 128 year: 2016 ident: cpb_33_2_028704bib2 publication-title: Neuron doi: 10.1016/j.neuron.2016.02.009 – volume: 2016 year: 2016 ident: cpb_33_2_028704bib8 publication-title: Neural Plast. doi: 10.1155/2016/1213723 – volume: 104 start-page: 1475 year: 2021 ident: cpb_33_2_028704bib29 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06318-1 – volume: 49 start-page: 43 year: 1998 ident: cpb_33_2_028704bib6 publication-title: Annu. Rev. Psychol. doi: 0.1146/annurev.psych.49.1.43 – volume: 432 start-page: 115 year: 2020 ident: cpb_33_2_028704bib11 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2020.02.033 – volume: 304 start-page: 1926 year: 2004 ident: cpb_33_2_028704bib40 publication-title: Science doi: 10.1126/science.1099745 – volume: 8 start-page: 438 year: 2016 ident: cpb_33_2_028704bib21 publication-title: Wiley Interdisciplinary Reviews: Systems Biology and Medicine doi: 10.1002/wsbm.1348 – volume: 332 start-page: 181 year: 2016 ident: cpb_33_2_028704bib13 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.06.051 – year: 2020 ident: cpb_33_2_028704bib41 – volume: 111 start-page: 26 year: 2015 ident: cpb_33_2_028704bib39 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.054 – volume: 1539 start-page: 24 year: 2013 ident: cpb_33_2_028704bib10 publication-title: Brain Res. doi: 10.1016/j.brainres.2013.09.030 – volume: 25 year: 2015 ident: cpb_33_2_028704bib19 publication-title: Chaos doi: 10.1063/1.4914938 – volume: 152 year: 2023 ident: cpb_33_2_028704bib30 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106461 – volume: 120 start-page: 1763 year: 1997 ident: cpb_33_2_028704bib17 publication-title: Brain: J. Neurol. doi: 10.1093/brain/120.10.1763 – volume: 9 year: 2019 ident: cpb_33_2_028704bib25 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50969-5 – volume: 183 start-page: 811 year: 2018 ident: cpb_33_2_028704bib9 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.057 – volume: 3 start-page: 163 year: 2012 ident: cpb_33_2_028704bib48 publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00163 – volume: 20 start-page: 859 year: 2010 ident: cpb_33_2_028704bib22 publication-title: Int. J. Bifur. Chaos doi: 10.1142/S0218127410026149 – volume: 106 year: 2009 ident: cpb_33_2_028704bib32 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905267106 – volume: 11 year: 2015 ident: cpb_33_2_028704bib28 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004372 – volume: 20 start-page: 340 year: 2017 ident: cpb_33_2_028704bib4 publication-title: Nat. Neurosci. doi: 10.1038/nn.4497 – volume: 127 start-page: 149 year: 2013 ident: cpb_33_2_028704bib51 publication-title: Cognition doi: 10.1016/j.cognition.2012.12.004 – volume: 20 start-page: 117 year: 2019 ident: cpb_33_2_028704bib38 publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0094-0 – volume: 403 start-page: 46 year: 2006 ident: cpb_33_2_028704bib14 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2006.04.041 – volume: 99 start-page: 609 year: 2018 ident: cpb_33_2_028704bib16 publication-title: Neuron doi: 10.1016/j.neuron.2018.07.003 – volume: 39 start-page: 6439 year: 2019 ident: cpb_33_2_028704bib34 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3195-18.2019 – volume: 2013 year: 2013 ident: cpb_33_2_028704bib7 publication-title: BioMed Res. Int. doi: 10.1155/2013/694075 – volume: 126 year: 2019 ident: cpb_33_2_028704bib26 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/126/50007 – volume: 10 start-page: 137 year: 2009 ident: cpb_33_2_028704bib43 publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-137 – volume: 126 year: 2021 ident: cpb_33_2_028704bib50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.098101 – volume: 31 start-page: 275 year: 2013 ident: cpb_33_2_028704bib47 publication-title: Restorative Neurol. Neurosci. doi: 10.3233/RNN-120297 – volume: 15 start-page: 273 year: 2002 ident: cpb_33_2_028704bib36 publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 16 start-page: 1484 year: 2004 ident: cpb_33_2_028704bib31 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/0898929042568532 – volume: 16 start-page: 181 year: 2012 ident: cpb_33_2_028704bib37 publication-title: Trends Cognitive Sci. doi: 10.1016/j.tics.2012.02.001 – year: 2021 ident: cpb_33_2_028704bib42 – volume: 110 year: 2013 ident: cpb_33_2_028704bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.178101 – volume: 117 start-page: 9566 year: 2020 ident: cpb_33_2_028704bib5 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1921475117 – volume: 50 start-page: 970 year: 2010 ident: cpb_33_2_028704bib35 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 |
SSID | ssj0061023 |
Score | 2.3298583 |
Snippet | The human brain is highly plastic. Cognitive training is usually used to modify functional connectivity of brain networks. Moreover, the structures of brain... The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 28704 |
SubjectTerms | abacus-based mental calculation brian dynamics cognitive training functional brain networks |
Title | Effect of cognitive training on brain dynamics |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad09c8 https://d.wanfangdata.com.cn/periodical/zgwl-e202402074 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiuDFt1hf5KAHD9lus9s0wZOIRQUfBws9CEte24OyW-wWob_eZLNbH4iItxxmk51J5kUm3wAcS5qynpIc60hHOJZRF4s-EViqLpWxy0BKANPbO3o1jG9GvVEDzhZvYfJJZfoDO_RAwV6EVUEc67i6eewaxneEDrliTVhyjSvd8b6-f6jNMHWYBC7bqqmrO8qfZvjik5p23fIFT5aKbPzJ2QzW4Kn-TV9j8hzMChmo-TcEx3_ysQ6rVRCKzj3pBjRMtgnLZTGomm5B4CGNUZ6iRXURqntJoDxD0o2R9s3sp9swHFw-Xlzhqq8CVlajC8xDRbRxOIhMhsxYDSXERCkzXCtlFOeSxULQ0JJo5fp9x9r6sIgaHhMtNI12oJXlmdkFpGUqiOyZlKc2kTHWGnC7vVxwRkPVD1UbTmvJJhMPn5GU196MJY7_xPGfeP7bcGJFlVQ6NP2FDlWb80E7H7-9JIY4wDZig6K9P061DyvuG1-FfQCt4nVmDm2QUcij8jC9A_vxx48 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLZoEYiFG1FODzAwJE2do_aIgKrlKB2o1C347ABKKpoKqb8eO3a4hBASm4dnJ3nOu-TP3wPghCUKx5wRT4Qi9CIWtjzaRtRjvJWwyFQgJYHpXT_pDqPrUTxyfU7LuzD5xLl-Xw8tUbBVoQPE4abBzXumYXyTioBw3JwIVQOLsXbFBtPVux9UrjgxvASm4qpmuHPKn1b5Epdq-tnlLZ5M0Wz8KeB01sBj9aoWZ_Lkzwrm8_k3Fsd_fMs6WHXJKDy34htgQWabYKkEhfLpFvAttTHMFXxHGcGqpwTMM8jMGArb1H66DYadq4eLruf6K3hcW3bhkYAjIQ0fImYBltpSEZKhwpIIziUnhOGI0iTQIoKbvt-R0LEsTCSJkKAiCXdAPcszuQugYIoiFktFlC5opPYKRG8zoQQnAW8HvAHOKu2mE0ujkZbH3xinRgep0UFqddAAp1pdqbOl6S9y0G3Qh-x8_PqcSmSI25BOjvb-uNQxWB5cdtLbXv9mH6yY6RaYfQDqxctMHuq8o2BH5b_1Bi6LzPM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+cognitive+training+on+brain+dynamics&rft.jtitle=Chinese+physics+B&rft.au=Lv+%E5%90%95%2C+Guiyang+%E8%B4%B5%E9%98%B3&rft.au=Xu+%E5%BE%90%2C+Tianyong+%E5%A4%A9%E5%8B%87&rft.au=Chen+%E9%99%88%2C+Feiyan+%E9%A3%9E%E7%87%95&rft.au=Zhu+%E6%9C%B1%2C+Ping+%E8%90%8D&rft.date=2024-02-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=2&rft.spage=28704&rft_id=info:doi/10.1088%2F1674-1056%2Fad09c8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad09c8 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |