Comprehensive assessment of the role of spectral data pre-processing in spectroscopy-based liquid biopsy
[Display omitted] •The choice of data pre-processing and classifier greatly affects classification.•The suitability of each pre-processing step depends on the data type and quality.•Certain pre-processing steps have a greater impact on classification than others.•Top pre-processing pipelines reached...
Saved in:
Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 339; p. 126261 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
15.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The choice of data pre-processing and classifier greatly affects classification.•The suitability of each pre-processing step depends on the data type and quality.•Certain pre-processing steps have a greater impact on classification than others.•Top pre-processing pipelines reached an AUROC of up to 0.82 for HCC diagnostics.
Spectroscopic data often contain artifacts or noise related to the sample characteristics, instrumental variations, or experimental design flaws. Therefore, classifying the raw data is not recommended and might lead to biased results. Nevertheless, most issues may be addressed through appropriate data pre-processing. Effective pre-processing is particularly crucial in critical applications like liquid biopsy for disease detection, where even minor performance improvements may impact patient outcomes. Unfortunately, there is no consensus regarding optimal pre-processing, complicating cross-study comparisons.
This study presents a comprehensive evaluation of various pre-processing methods and their combinations to assess their influence on classification results. The goal was to identify whether some pre-processing methods are associated with higher classification outcomes and find an optimal strategy for the given data. Data from Raman optical activity and infrared and Raman spectroscopy were processed, applying tens of thousands of possible pre-processing pipelines. The resulting data were classified using three algorithms to distinguish between subjects with liver cirrhosis and those who had developed hepatocellular carcinoma.
Results highlighted that some specific pre-processing methods often ranked among the best classification results, such as the Rolling Ball for correcting the baseline of Raman spectra or the Doubly Reweighted Penalized Least Squares and Mixture model in the case of Raman optical activity. On the other hand, the selection of filtering and/or normalization approach usually did not have a significant impact. Nonetheless, the pre-processing of top-scoring pipelines also depended on the classifier utilized. The best pipelines yielded an AUROC of 0.775–0.823, varying with the evaluated spectroscopic data and classifier. |
---|---|
AbstractList | [Display omitted]
•The choice of data pre-processing and classifier greatly affects classification.•The suitability of each pre-processing step depends on the data type and quality.•Certain pre-processing steps have a greater impact on classification than others.•Top pre-processing pipelines reached an AUROC of up to 0.82 for HCC diagnostics.
Spectroscopic data often contain artifacts or noise related to the sample characteristics, instrumental variations, or experimental design flaws. Therefore, classifying the raw data is not recommended and might lead to biased results. Nevertheless, most issues may be addressed through appropriate data pre-processing. Effective pre-processing is particularly crucial in critical applications like liquid biopsy for disease detection, where even minor performance improvements may impact patient outcomes. Unfortunately, there is no consensus regarding optimal pre-processing, complicating cross-study comparisons.
This study presents a comprehensive evaluation of various pre-processing methods and their combinations to assess their influence on classification results. The goal was to identify whether some pre-processing methods are associated with higher classification outcomes and find an optimal strategy for the given data. Data from Raman optical activity and infrared and Raman spectroscopy were processed, applying tens of thousands of possible pre-processing pipelines. The resulting data were classified using three algorithms to distinguish between subjects with liver cirrhosis and those who had developed hepatocellular carcinoma.
Results highlighted that some specific pre-processing methods often ranked among the best classification results, such as the Rolling Ball for correcting the baseline of Raman spectra or the Doubly Reweighted Penalized Least Squares and Mixture model in the case of Raman optical activity. On the other hand, the selection of filtering and/or normalization approach usually did not have a significant impact. Nonetheless, the pre-processing of top-scoring pipelines also depended on the classifier utilized. The best pipelines yielded an AUROC of 0.775–0.823, varying with the evaluated spectroscopic data and classifier. Spectroscopic data often contain artifacts or noise related to the sample characteristics, instrumental variations, or experimental design flaws. Therefore, classifying the raw data is not recommended and might lead to biased results. Nevertheless, most issues may be addressed through appropriate data pre-processing. Effective pre-processing is particularly crucial in critical applications like liquid biopsy for disease detection, where even minor performance improvements may impact patient outcomes. Unfortunately, there is no consensus regarding optimal pre-processing, complicating cross-study comparisons. This study presents a comprehensive evaluation of various pre-processing methods and their combinations to assess their influence on classification results. The goal was to identify whether some pre-processing methods are associated with higher classification outcomes and find an optimal strategy for the given data. Data from Raman optical activity and infrared and Raman spectroscopy were processed, applying tens of thousands of possible pre-processing pipelines. The resulting data were classified using three algorithms to distinguish between subjects with liver cirrhosis and those who had developed hepatocellular carcinoma. Results highlighted that some specific pre-processing methods often ranked among the best classification results, such as the Rolling Ball for correcting the baseline of Raman spectra or the Doubly Reweighted Penalized Least Squares and Mixture model in the case of Raman optical activity. On the other hand, the selection of filtering and/or normalization approach usually did not have a significant impact. Nonetheless, the pre-processing of top-scoring pipelines also depended on the classifier utilized. The best pipelines yielded an AUROC of 0.775-0.823, varying with the evaluated spectroscopic data and classifier. |
ArticleNumber | 126261 |
Author | Králová, Kateřina Fousková, Markéta Vrtělka, Ondřej Setnička, Vladimír |
Author_xml | – sequence: 1 givenname: Ondřej orcidid: 0000-0003-4981-0314 surname: Vrtělka fullname: Vrtělka, Ondřej email: Ondrej.Vrtelka@vscht.cz – sequence: 2 givenname: Kateřina orcidid: 0000-0003-3824-5567 surname: Králová fullname: Králová, Kateřina – sequence: 3 givenname: Markéta orcidid: 0000-0001-8756-9192 surname: Fousková fullname: Fousková, Markéta – sequence: 4 givenname: Vladimír orcidid: 0000-0002-9615-7955 surname: Setnička fullname: Setnička, Vladimír email: Vladimir.Setnicka@vscht.cz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40273765$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOwzAQRS1URB_wAWyQfyDFjzhOxQpVvKRKbGBtOfaEukriYKeV-ve4SmHJamY094zu3DmadL4DhG4pWVJCi_vdMmq9ZISJJWUFK-gFmtFS8owLISep52WR0ZyJKZrHuCOE0JKRKzTNCZNcFmKGtmvf9gG20EV3AKxjhBhb6AbsazxsAQffwKmPPZgh6AZbPWickKwP3iSx676w6857H43vj1mlI1jcuO-9s7hyvo_Ha3RZ6ybCzbku0Ofz08f6Ndu8v7ytHzeZ4UQOWVkbswLIS1Fwm4OGEoyUmllgOc-lqMpqVYEWNA2kYkwwUta8rixLmCaCL9DdeLffVy1Y1QfX6nBUvy8nAR0FJrmNAeo_CSXqFKvaqRSrOsWqxlgT8zAykJwfHAQVjYPOgHUhva2sd__QPzT7gWs |
Cites_doi | 10.1016/j.jlb.2024.100146 10.3390/molecules29194748 10.1016/j.chemolab.2004.10.003 10.1016/j.aohep.2024.101519 10.1039/C8AN01384E 10.1366/000370203322554518 10.1002/jrs.5089 10.1366/000370210791414281 10.1090/S0025-5718-1965-0178586-1 10.3390/cancers14133048 10.1117/1.JBO.28.2.025002 10.1002/jrs.5010 10.1007/s00216-014-8358-7 10.1039/D3AN00164D 10.1021/acs.jpcb.6b02273 10.1016/j.saa.2019.117373 10.1016/j.aca.2023.341925 10.1038/s41592-019-0686-2 10.1364/AO.58.003913 10.1021/acs.analchem.7b04127 10.1039/c3an00743j 10.1080/05704928.2021.1946076 10.1109/MCSE.2007.55 10.1039/b922045c 10.1038/s41596-021-00620-3 10.1177/030089160709300609 10.1002/jrs.5130 10.3389/fgene.2023.1152470 10.1186/s13045-022-01351-y 10.1016/j.saa.2023.123430 10.1080/00387010.2020.1730908 10.1016/j.trac.2020.116045 10.1016/j.saa.2023.123392 10.1016/j.jhep.2018.03.019 10.1002/cem.785 10.1080/05704928.2014.999936 10.3390/medicina58081099 10.1039/b602376m 10.1016/j.trac.2025.118135 10.21105/joss.03021 10.1016/S0169-7439(97)00029-4 10.1016/j.talanta.2023.125527 10.1021/ac034173t 10.1016/0168-583X(95)00908-6 10.1023/A:1010933404324 10.1038/s41586-020-2649-2 10.21105/joss.01237 10.1364/AO.404863 10.1366/0003702953964039 10.1021/ac60214a047 10.1186/s12014-024-09452-1 10.1140/epjti/s40485-015-0018-6 10.1002/wics.125 10.1016/j.saa.2024.124152 10.1366/000370207782597003 10.1002/hep.31288 10.1039/D3AN00103B 10.1021/acs.jproteome.3c00047 10.1016/j.saa.2024.124770 10.1007/BF00994018 10.1177/0003702817752371 10.1039/C4AN01061B 10.1021/bi00713a023 10.1016/j.chemolab.2012.03.011 10.1002/hep4.2045 10.1366/0003702053945985 10.1016/B978-0-444-64027-7.00006-9 10.1366/14-07798 10.1021/acs.analchem.9b02280 10.1002/bjs5.50289 10.1002/jrs.1747 10.1002/mco2.564 10.1177/00037028211021846 10.1039/C4AY00068D |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.saa.2025.126261 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3557 |
ExternalDocumentID | 40273765 10_1016_j_saa_2025_126261 S1386142525005670 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO AAYWO ABMAC ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AFJKZ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG AJSZI ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ M36 R2- RIG UHS CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c307t-8fcc9ee48563d4eae8ec77a2de243475b8b9bea513470b225208f3fbd2c9ea053 |
IEDL.DBID | .~1 |
ISSN | 1386-1425 |
IngestDate | Mon May 19 02:16:30 EDT 2025 Tue Jul 01 04:46:25 EDT 2025 Sat Jun 14 16:52:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chiroptical spectroscopy Diagnostics Machine learning Classification Liquid biopsy Data pre-processing Vibrational spectroscopy |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-8fcc9ee48563d4eae8ec77a2de243475b8b9bea513470b225208f3fbd2c9ea053 |
ORCID | 0000-0002-9615-7955 0000-0003-3824-5567 0000-0001-8756-9192 0000-0003-4981-0314 |
PMID | 40273765 |
ParticipantIDs | pubmed_primary_40273765 crossref_primary_10_1016_j_saa_2025_126261 elsevier_sciencedirect_doi_10_1016_j_saa_2025_126261 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-10-15 |
PublicationDateYYYYMMDD | 2025-10-15 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
PublicationTitleAlternate | Spectrochim Acta A Mol Biomol Spectrosc |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Chen, Liang (b0225) 2010; 135 González-Vidal, Pérez-Pueyo, Soneira (b0295) 2017; 48 Kralova, Kral, Vrtelka, Setnicka (b0365) 2024; 304 Cortes, Vapnik (b0355) 1995; 20 Nikanjam, Kato, Kurzrock (b0025) 2022; 15 Kneen, Annegarn (b0305) 1996; 109-110 Batool (b0020) 2023; 4 Bruździak (b0155) 2019; 223 Verma, Pyreddy, Redmond, Qazi, Khalid, O'Brien-Simpson, Shukla, Tomljenovic-Hanic (b0370) 2023; 1282 Rohleder, Petrich (b0065) 2008 Zhao, Lui, McLean, Zeng (b0260) 2007; 61 Člupek, Matějka, Volka (b0340) 2007; 38 Tang, Yuan, Zhang, Marshall, Yen Tay, Wang (b0100) 2025; 184 Kralova (b0320) 2024; 305 Perez-Pueyo, Soneira, Ruiz-Moreno (b0280) 2010; 64 Bowie, Chase, Lewis, Griffiths (b0115) 2006 He, Zhang, Liu, Huang, He, Xie, Wu, Du (b0220) 2014; 6 Sheehy, Picot, Dallaire, Ember, Nguyen, Petrecca, Trudel, Leblond (b0210) 2023; 28 Hříbek, Klasová, Tůma, Kupsa, Urbánek (b0135) 2022; 58 Hříbek (b0395) 2024; 29 Naumann (b0075) 2008 Gautam, Vanga, Ariese, Umapathy (b0095) 2015; 2 Ye, Tian, Wei, Li (b0240) 2020; 59 Harris (b0170) 2020; 585 Lee, Gommers, Waselewski, Wohlfahrt, O’Leary (b0205) 2019; 4 Mazet, Carteret, Brie, Idier, Humbert (b0270) 2005; 76 Mishra, Biancolillo, Roger, Marini, Rutledge (b0120) 2020; 132 Virtanen (b0185) 2020; 17 Zajac, Kaczor, Pallares Zazo, Mlynarski, Dudek, Baranska (b0385) 2016; 120 National Cancer Institute, NCI Dictionary of Cancer Terms. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy (accessed 14 October 2024). Fousková, Habartová, Vališ, Nahodilová, Vaňková, Synytsya, Šestáková, Votruba, Setnička (b0430) 2024; 322 Wei, Chen, Liu (b0110) 2015; 50 Vrtělka, Králová, Fousková, Habartová, Hříbek, Urbánek, Setnička (b0150) 2023; 148 Breiman (b0360) 2001; 45 Guo, Popp, Bocklitz (b0085) 2021; 16 Alsberg, Woodward, Kell (b0345) 1997; 37 Lieber, Mahadevan-Jansen (b0255) 2003; 57 Cooley, Tukey (b0330) 1965; 19 Chen, Kane (b0380) 1974; 13 Vulchi, Morgunov, Junjuri, Bocklitz (b0080) 2024; 29 Anderson, Anderson, Moug, Baker (b0045) 2020; 4 Tatarkovič, Synytsya, Šťovíčková, Bunganič, Miškovičová, Petruželka, Setnička (b0160) 2015; 407 Koch, Suhr, Roth, Meinhardt-Wollweber (b0285) 2017; 48 Pedregosa (b0190) 2011; 12 Mosier-Boss, Lieberman, Newbery (b0310) 1995; 49 Mitra (b0335) 2006 Xu, Liu, Cai, Yang (b0235) 2019; 58 Institute for Health Metrics and Evaluation (IHME). GBD Results. Seattle, WA: IHME, University of Washington, 2024. https://vizhub.healthdata.org/gbd-results/ (accessed 20 October 2024). Vališ, Fousková, Janstová, Habartová, Petrtýl, Petruželka, Synytsya, Setnička (b0420) 2024; 313 Sala (b0405) 2022; 14 Fousková, Vališ, Synytsya, Habartová, Petrtýl, Petruželka, Setnička (b0425) 2023; 148 S. Ostovar pour, L.D. Barron, S.T. Mutter, E.W. Blanch, Chapter 6 - Raman Optical Activity, in: P.L. Polavarapu (Ed.), Chiral Analysis (second ed.), Elsevier, 2018, pp. 249-291. Di Sario, Rossella, Famulari, Maurizio, Lazarevic, Giannese, Felici (b0035) 2023; 14 Kralova, Vrtelka, Fouskova, Smirnova, Michalkova, Hribek, Urbanek, Kuckova, Setnicka (b0050) 2024; 270 Eilers, Marx (b0275) 2010; 2 Singal, Haaland, Parikh, Ozbay, Kirshner, Chakankar, Porter, Chhatwal, Ayer (b0435) 2022; 6 Wang (b0015) 2024; 5 Boukovala, Westphalen, Probst (b0010) 2024; 4 Michálková, Horník, Sýkora, Setnička, Bunganič (b0040) 2023; 22 Chen, Dai (b0290) 2018; 72 Travert, Fernandez (b0200) 2024 Li, Zhan, Wang, Huang, Xu, Zhang, Zheng, Liang, Wang (b0300) 2013; 138 Baek, Park, Ahn, Choo (b0230) 2015; 140 Ellis, Goodacre (b0060) 2006; 131 Schulze, Jirasek, Yu, Lim, Turner, Blades (b0315) 2005; 59 Savitzky, Golay (b0325) 1964; 36 Lasch (b0090) 2012; 117 Finlayson, Rinaldi, Baker (b0400) 2019; 91 Butler, Smith, Fritzsch, Radhakrishnan, Palmer, Baker (b0105) 2018; 143 Lualdi, Colombo, Leo, Morelli, Vannelli, Battaglia, Poiasina, Marchesini (b0375) 2007; 93 McGlynn, Petrick, El-Serag (b0140) 2021; 73 Liu, Sun, Huang, Li, Liu (b0265) 2015; 69 Schie, Rüger, Mondol, Ramoji, Neugebauer, Krafft, Popp (b0415) 2018; 90 Dudek, Zajac, Kaczor, Baranska (b0390) 2017; 48 Waskom (b0180) 2021; 6 Eilers (b0215) 2003; 75 Wenk, Zuo, Kislinger, Sepiashvili (b0030) 2024; 21 Oller-Moreno, Pardo, Jiménez-Soto, Samitier, Marco (b0250) 2014 Zhang, Tang, Tong, Wang, Wang, Lv, Tang, Wang (b0245) 2020; 53 Paraskevaidi (b0055) 2021; 56 Galle, Forner, Llovet, Mazzaferro, Piscaglia, Raoul, Schirmacher, Vilgrain (b0130) 2018; 69 Ollesch, Theegarten, Altmayer, Darwiche, Hager, Stamatis, Gerwert (b0410) 2016; 5 The pandas development team, pandas-dev/pandas: Pandas (v2.1.4), Zenodo, 2023. Doi: 10.5281/zenodo.10304236. Hunter (b0175) 2007; 9 Cameron, Rinaldi, Rutherford, Sala, Theakstone, Baker (b0125) 2022; 76 Barker, Rayens (b0350) 2003; 17 D. Erb, pybaselines: A Python library of algorithms for the baseline correction of experimental data (v1.1.0), Zenodo, 2024. Doi: 10.5281/zenodo.5608581. Lee (10.1016/j.saa.2025.126261_b0205) 2019; 4 Cameron (10.1016/j.saa.2025.126261_b0125) 2022; 76 Člupek (10.1016/j.saa.2025.126261_b0340) 2007; 38 Ye (10.1016/j.saa.2025.126261_b0240) 2020; 59 Wei (10.1016/j.saa.2025.126261_b0110) 2015; 50 Batool (10.1016/j.saa.2025.126261_b0020) 2023; 4 Tatarkovič (10.1016/j.saa.2025.126261_b0160) 2015; 407 Virtanen (10.1016/j.saa.2025.126261_b0185) 2020; 17 Wenk (10.1016/j.saa.2025.126261_b0030) 2024; 21 Zhang (10.1016/j.saa.2025.126261_b0245) 2020; 53 Hříbek (10.1016/j.saa.2025.126261_b0395) 2024; 29 Perez-Pueyo (10.1016/j.saa.2025.126261_b0280) 2010; 64 Koch (10.1016/j.saa.2025.126261_b0285) 2017; 48 Kneen (10.1016/j.saa.2025.126261_b0305) 1996; 109-110 Vrtělka (10.1016/j.saa.2025.126261_b0150) 2023; 148 Michálková (10.1016/j.saa.2025.126261_b0040) 2023; 22 Li (10.1016/j.saa.2025.126261_b0300) 2013; 138 Xu (10.1016/j.saa.2025.126261_b0235) 2019; 58 Anderson (10.1016/j.saa.2025.126261_b0045) 2020; 4 Liu (10.1016/j.saa.2025.126261_b0265) 2015; 69 Dudek (10.1016/j.saa.2025.126261_b0390) 2017; 48 Oller-Moreno (10.1016/j.saa.2025.126261_b0250) 2014 Nikanjam (10.1016/j.saa.2025.126261_b0025) 2022; 15 Chen (10.1016/j.saa.2025.126261_b0290) 2018; 72 Galle (10.1016/j.saa.2025.126261_b0130) 2018; 69 Schulze (10.1016/j.saa.2025.126261_b0315) 2005; 59 10.1016/j.saa.2025.126261_b0005 Paraskevaidi (10.1016/j.saa.2025.126261_b0055) 2021; 56 Mishra (10.1016/j.saa.2025.126261_b0120) 2020; 132 Di Sario (10.1016/j.saa.2025.126261_b0035) 2023; 14 Vulchi (10.1016/j.saa.2025.126261_b0080) 2024; 29 Chen (10.1016/j.saa.2025.126261_b0380) 1974; 13 Vališ (10.1016/j.saa.2025.126261_b0420) 2024; 313 Cooley (10.1016/j.saa.2025.126261_b0330) 1965; 19 Hříbek (10.1016/j.saa.2025.126261_b0135) 2022; 58 Kralova (10.1016/j.saa.2025.126261_b0050) 2024; 270 Gautam (10.1016/j.saa.2025.126261_b0095) 2015; 2 Butler (10.1016/j.saa.2025.126261_b0105) 2018; 143 10.1016/j.saa.2025.126261_b0165 Sheehy (10.1016/j.saa.2025.126261_b0210) 2023; 28 Naumann (10.1016/j.saa.2025.126261_b0075) 2008 Zajac (10.1016/j.saa.2025.126261_b0385) 2016; 120 Fousková (10.1016/j.saa.2025.126261_b0425) 2023; 148 Tang (10.1016/j.saa.2025.126261_b0100) 2025; 184 McGlynn (10.1016/j.saa.2025.126261_b0140) 2021; 73 Boukovala (10.1016/j.saa.2025.126261_b0010) 2024; 4 Sala (10.1016/j.saa.2025.126261_b0405) 2022; 14 Hunter (10.1016/j.saa.2025.126261_b0175) 2007; 9 Verma (10.1016/j.saa.2025.126261_b0370) 2023; 1282 Savitzky (10.1016/j.saa.2025.126261_b0325) 1964; 36 Kralova (10.1016/j.saa.2025.126261_b0365) 2024; 304 Lualdi (10.1016/j.saa.2025.126261_b0375) 2007; 93 Singal (10.1016/j.saa.2025.126261_b0435) 2022; 6 Baek (10.1016/j.saa.2025.126261_b0230) 2015; 140 10.1016/j.saa.2025.126261_b0195 Zhao (10.1016/j.saa.2025.126261_b0260) 2007; 61 Eilers (10.1016/j.saa.2025.126261_b0215) 2003; 75 Mazet (10.1016/j.saa.2025.126261_b0270) 2005; 76 Finlayson (10.1016/j.saa.2025.126261_b0400) 2019; 91 Bowie (10.1016/j.saa.2025.126261_b0115) 2006 Rohleder (10.1016/j.saa.2025.126261_b0065) 2008 Cortes (10.1016/j.saa.2025.126261_b0355) 1995; 20 10.1016/j.saa.2025.126261_b0070 González-Vidal (10.1016/j.saa.2025.126261_b0295) 2017; 48 Lasch (10.1016/j.saa.2025.126261_b0090) 2012; 117 Travert (10.1016/j.saa.2025.126261_b0200) 2024 Waskom (10.1016/j.saa.2025.126261_b0180) 2021; 6 Ollesch (10.1016/j.saa.2025.126261_b0410) 2016; 5 Ellis (10.1016/j.saa.2025.126261_b0060) 2006; 131 Guo (10.1016/j.saa.2025.126261_b0085) 2021; 16 Lieber (10.1016/j.saa.2025.126261_b0255) 2003; 57 Kralova (10.1016/j.saa.2025.126261_b0320) 2024; 305 Zhang (10.1016/j.saa.2025.126261_b0225) 2010; 135 Eilers (10.1016/j.saa.2025.126261_b0275) 2010; 2 Wang (10.1016/j.saa.2025.126261_b0015) 2024; 5 Pedregosa (10.1016/j.saa.2025.126261_b0190) 2011; 12 Barker (10.1016/j.saa.2025.126261_b0350) 2003; 17 Breiman (10.1016/j.saa.2025.126261_b0360) 2001; 45 Mitra (10.1016/j.saa.2025.126261_b0335) 2006 Schie (10.1016/j.saa.2025.126261_b0415) 2018; 90 Alsberg (10.1016/j.saa.2025.126261_b0345) 1997; 37 Bruździak (10.1016/j.saa.2025.126261_b0155) 2019; 223 He (10.1016/j.saa.2025.126261_b0220) 2014; 6 10.1016/j.saa.2025.126261_b0145 Harris (10.1016/j.saa.2025.126261_b0170) 2020; 585 Mosier-Boss (10.1016/j.saa.2025.126261_b0310) 1995; 49 Fousková (10.1016/j.saa.2025.126261_b0430) 2024; 322 |
References_xml | – volume: 64 start-page: 595 year: 2010 end-page: 600 ident: b0280 article-title: Morphology-Based Automated Baseline Removal for Raman Spectra of Artistic Pigments publication-title: Appl. Spectrosc. – volume: 5 start-page: 129 year: 2016 end-page: 144 ident: b0410 article-title: An infrared spectroscopic blood test for non-small cell lung carcinoma and subtyping into pulmonary squamous cell carcinoma or adenocarcinoma, Biomed. Spectrosc publication-title: Imaging – volume: 58 start-page: 1099 year: 2022 ident: b0135 article-title: Etiopathogenetic Factors of Hepatocellular Carcinoma, Overall Survival, and Their Evolution over Time—Czech Tertiary Center Overview publication-title: Medicina – volume: 72 start-page: 731 year: 2018 end-page: 739 ident: b0290 article-title: An Automated Baseline Correction Method Based on Iterative Morphological Operations publication-title: Appl. Spectrosc. – volume: 148 start-page: 2793 year: 2023 end-page: 2800 ident: b0150 article-title: Vibrational and chiroptical analysis of blood plasma for hepatocellular carcinoma diagnostics publication-title: Analyst – volume: 109-110 start-page: 209 year: 1996 end-page: 213 ident: b0305 article-title: Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds publication-title: Nucl. Instrum. Methods Phys. Res., B – volume: 1282 year: 2023 ident: b0370 article-title: Detection and identification of amino acids and proteins using their intrinsic fluorescence in the visible light spectrum publication-title: Anal. Chim. Acta – volume: 143 start-page: 6121 year: 2018 end-page: 6134 ident: b0105 article-title: Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy publication-title: Analyst – volume: 131 start-page: 875 year: 2006 end-page: 885 ident: b0060 article-title: Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy publication-title: Analyst – volume: 407 start-page: 1335 year: 2015 end-page: 1342 ident: b0160 article-title: The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma publication-title: Anal. Bioanal. Chem. – volume: 93 start-page: 567 year: 2007 end-page: 571 ident: b0375 article-title: Natural Fluorescence Spectroscopy of Human Blood Plasma in the Diagnosis of Colorectal Cancer: Feasibility Study and Preliminary Results publication-title: Tumori J. – volume: 28 year: 2023 ident: b0210 article-title: Open-sourced Raman spectroscopy data processing package implementing a baseline removal algorithm validated from multiple datasets acquired in human tissue and biofluids publication-title: J. Biomed. Opt. – volume: 148 start-page: 2518 year: 2023 end-page: 2526 ident: b0425 article-title: In vivo Raman spectroscopy in the diagnostics of colon cancer publication-title: Analyst – volume: 76 start-page: 121 year: 2005 end-page: 133 ident: b0270 article-title: Background removal from spectra by designing and minimising a non-quadratic cost function publication-title: Chemom. Intell. Lab. Syst. – volume: 305 year: 2024 ident: b0320 article-title: Raman spectroscopy and Raman optical activity of blood plasma for differential diagnosis of gastrointestinal cancers publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 61 start-page: 1225 year: 2007 end-page: 1232 ident: b0260 article-title: Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy publication-title: Appl. Spectrosc. – start-page: 1 year: 2008 end-page: 8 ident: b0075 article-title: Vibrational Spectroscopy in Microbiology and Medical Diagnostics publication-title: Biomedical Vibrational Spectroscopy – volume: 21 start-page: 6 year: 2024 ident: b0030 article-title: Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers publication-title: Clin. Proteomics – volume: 2 start-page: 8 year: 2015 ident: b0095 article-title: Review of multidimensional data processing approaches for Raman and infrared spectroscopy publication-title: EPJ Tech. Instrum. – volume: 90 start-page: 2023 year: 2018 end-page: 2030 ident: b0415 article-title: High-Throughput Screening Raman Spectroscopy Platform for Label-Free Cellomics publication-title: Anal. Chem. – volume: 135 start-page: 1138 year: 2010 end-page: 1146 ident: b0225 article-title: Baseline correction using adaptive iteratively reweighted penalized least squares publication-title: Analyst – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b0185 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – reference: D. Erb, pybaselines: A Python library of algorithms for the baseline correction of experimental data (v1.1.0), Zenodo, 2024. Doi: 10.5281/zenodo.5608581. – volume: 75 start-page: 3631 year: 2003 end-page: 3636 ident: b0215 article-title: A Perfect Smoother publication-title: Anal. Chem. – volume: 57 start-page: 1363 year: 2003 end-page: 1367 ident: b0255 article-title: Automated method for subtraction of fluorescence from biological Raman spectra publication-title: Appl. Spectrosc. – volume: 4 year: 2024 ident: b0010 article-title: Liquid biopsy into the clinics: Current evidence and future perspectives publication-title: J. Liquid Biopsy – year: 2024 ident: b0200 article-title: SpectroChemPy, a framework for processing, analyzing and modeling spectroscopic data for chemistry with Python (v0.6.9) publication-title: Zenodo – volume: 17 start-page: 166 year: 2003 end-page: 173 ident: b0350 article-title: Partial least squares for discrimination publication-title: J. Chemom. – volume: 322 year: 2024 ident: b0430 article-title: Raman spectroscopy in lung cancer diagnostics: Can an in vivo setup compete with ex vivo applications? publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – reference: The pandas development team, pandas-dev/pandas: Pandas (v2.1.4), Zenodo, 2023. Doi: 10.5281/zenodo.10304236. – volume: 58 start-page: 3913 year: 2019 end-page: 3920 ident: b0235 article-title: Baseline correction method based on doubly reweighted penalized least squares publication-title: Appl. Opt. – volume: 59 start-page: 10933 year: 2020 end-page: 10943 ident: b0240 article-title: Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum publication-title: Appl. Opt. – volume: 29 year: 2024 ident: b0395 article-title: Efficacy of blood plasma spectroscopy for early liver cancer diagnostics in obese patients publication-title: Ann. Hepatol. – start-page: 105 year: 2008 end-page: 120 ident: b0065 article-title: Raman Spectroscopy of Biofluids publication-title: Biomedical vibrational spectroscopy – year: 2006 ident: b0335 article-title: Digital signal processing: a computer based approach – volume: 223 year: 2019 ident: b0155 article-title: Vapor correction of FTIR spectra – A simple automatic least squares approach publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 14 start-page: 3048 year: 2022 ident: b0405 article-title: Liquid Biopsy for Pancreatic Cancer Detection Using Infrared Spectroscopy publication-title: Cancers – volume: 14 year: 2023 ident: b0035 article-title: Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review publication-title: Front. Genet. – volume: 22 start-page: 1936 year: 2023 end-page: 1946 ident: b0040 article-title: Prediction of Pathologic Change Development in the Pancreas Associated with Diabetes Mellitus Assessed by NMR Metabolomics publication-title: J. Proteome Res. – volume: 138 start-page: 4483 year: 2013 end-page: 4492 ident: b0300 article-title: Morphological weighted penalized least squares for background correction publication-title: Analyst – volume: 6 start-page: 4402 year: 2014 end-page: 4407 ident: b0220 article-title: Baseline correction for Raman spectra using an improved asymmetric least squares method publication-title: Anal. Methods – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b0325 article-title: Smoothing and Differentiation of Data by Simplified Least Squares Procedures publication-title: Anal. Chem. – volume: 6 start-page: 2925 year: 2022 end-page: 2936 ident: b0435 article-title: Comparison of a multitarget blood test to ultrasound and alpha-fetoprotein for hepatocellular carcinoma surveillance: Results of a network meta-analysis publication-title: Hepatol. Commun. – volume: 69 start-page: 834 year: 2015 end-page: 842 ident: b0265 article-title: Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction publication-title: Appl. Spectrosc. – volume: 13 start-page: 3330 year: 1974 end-page: 3335 ident: b0380 article-title: Contribution of carotenoids to the optical activity of human serum low-density lipoprotein publication-title: Biochemistry – volume: 4 start-page: 554 year: 2020 end-page: 562 ident: b0045 article-title: Liquid biopsy for cancer diagnosis using vibrational spectroscopy: systematic review publication-title: BJS Open – volume: 56 start-page: 804 year: 2021 end-page: 868 ident: b0055 article-title: Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases publication-title: Appl. Spectrosc. Rev. – volume: 50 start-page: 387 year: 2015 end-page: 406 ident: b0110 article-title: Review of Fluorescence Suppression Techniques in Raman Spectroscopy publication-title: Appl. Spectrosc. Rev. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0360 article-title: Random Forests publication-title: Mach. Learn. – volume: 184 year: 2025 ident: b0100 article-title: Application of machine learning-assisted surface-enhanced Raman spectroscopy in medical laboratories: Principles, opportunities, and challenges publication-title: TrAC Trends Anal. Chem. – volume: 117 start-page: 100 year: 2012 end-page: 114 ident: b0090 article-title: Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging publication-title: Chemom. Intell. Lab. Syst. – volume: 91 start-page: 12117 year: 2019 end-page: 12128 ident: b0400 article-title: Is Infrared Spectroscopy Ready for the Clinic? publication-title: Anal. Chem. – volume: 48 start-page: 336 year: 2017 end-page: 342 ident: b0285 article-title: Iterative morphological and mollifier-based baseline correction for Raman spectra publication-title: J. Raman Spectrosc. – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b0170 article-title: Array programming with NumPy publication-title: Nature – volume: 59 start-page: 545 year: 2005 end-page: 574 ident: b0315 article-title: Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation publication-title: Appl. Spectrosc. – volume: 53 start-page: 222 year: 2020 end-page: 233 ident: b0245 article-title: Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method publication-title: Spectrosc. Lett. – volume: 270 year: 2024 ident: b0050 article-title: Comprehensive spectroscopic, metabolomic, and proteomic liquid biopsy in the diagnostics of hepatocellular carcinoma publication-title: Talanta – volume: 69 start-page: 182 year: 2018 end-page: 236 ident: b0130 article-title: EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma publication-title: J. Hepatol. – reference: Institute for Health Metrics and Evaluation (IHME). GBD Results. Seattle, WA: IHME, University of Washington, 2024. https://vizhub.healthdata.org/gbd-results/ (accessed 20 October 2024). – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0190 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 304 year: 2024 ident: b0365 article-title: Comparative study of Raman spectroscopy techniques in blood plasma-based clinical diagnostics: A demonstration on Alzheimer’s disease publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 2 start-page: 637 year: 2010 end-page: 653 ident: b0275 article-title: Splines, knots, and penalties publication-title: WIREs Comp. Stat. – volume: 4 start-page: 1237 year: 2019 ident: b0205 article-title: PyWavelets: A Python package for wavelet analysis publication-title: J. Open Source Softw. – volume: 76 start-page: 393 year: 2022 end-page: 415 ident: b0125 article-title: Clinical Spectroscopy: Lost in Translation? publication-title: Appl. Spectrosc. – volume: 15 start-page: 131 year: 2022 ident: b0025 article-title: Liquid biopsy: current technology and clinical applications publication-title: J. Hemat. Oncol. – volume: 132 year: 2020 ident: b0120 article-title: New data preprocessing trends based on ensemble of multiple preprocessing techniques, TrAC publication-title: Trends Anal. Chem. – start-page: 1 year: 2014 end-page: 5 ident: b0250 article-title: Adaptive Asymmetric Least Squares baseline estimation for analytical instruments publication-title: 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14) – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: b0175 article-title: Matplotlib: A 2D Graphics Environment publication-title: Comput. Sci. Eng. – volume: 16 start-page: 5426 year: 2021 end-page: 5459 ident: b0085 article-title: Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling publication-title: Nat. Protoc. – volume: 5 start-page: e564 year: 2024 ident: b0015 article-title: Liquid biopsy for human cancer: cancer screening, monitoring, and treatment publication-title: MedComm – volume: 49 start-page: 630 year: 1995 end-page: 638 ident: b0310 article-title: Fluorescence Rejection in Raman Spectroscopy by Shifted-Spectra, Edge Detection, and FFT Filtering Techniques publication-title: Appl. Spectrosc. – volume: 19 start-page: 297 year: 1965 end-page: 301 ident: b0330 article-title: An Algorithm for the Machine Calculation of Complex Fourier Series publication-title: Math. Comp. – volume: 38 start-page: 1174 year: 2007 end-page: 1179 ident: b0340 article-title: Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing publication-title: J. Raman Spectrosc. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0355 article-title: Support-vector networks publication-title: Mach. Learn. – reference: National Cancer Institute, NCI Dictionary of Cancer Terms. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy (accessed 14 October 2024). – reference: S. Ostovar pour, L.D. Barron, S.T. Mutter, E.W. Blanch, Chapter 6 - Raman Optical Activity, in: P.L. Polavarapu (Ed.), Chiral Analysis (second ed.), Elsevier, 2018, pp. 249-291. – volume: 6 start-page: 3021 year: 2021 ident: b0180 article-title: seaborn: statistical data visualization publication-title: J. Open Source Softw. – volume: 29 start-page: 4748 year: 2024 ident: b0080 article-title: Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures publication-title: Molecules – volume: 120 start-page: 4028 year: 2016 end-page: 4033 ident: b0385 article-title: Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement publication-title: J. Phys. Chem. B – volume: 140 start-page: 250 year: 2015 end-page: 257 ident: b0230 article-title: Baseline correction using asymmetrically reweighted penalized least squares smoothing publication-title: Analyst – year: 2006 ident: b0115 article-title: Anomalies and Artifacts in Raman Spectroscopy publication-title: Handbook of Vibrational Spectroscopy – volume: 37 start-page: 215 year: 1997 end-page: 239 ident: b0345 article-title: An introduction to wavelet transforms for chemometricians: A time-frequency approach publication-title: Chemom. Intell. Lab. Syst. – volume: 313 year: 2024 ident: b0420 article-title: Automated classification pipeline for real-time in vivo examination of colorectal tissue using Raman spectroscopy publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 4 year: 2023 ident: b0020 article-title: The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring publication-title: Cell Rep. Med. – volume: 73 start-page: 4 year: 2021 end-page: 13 ident: b0140 article-title: Epidemiology of Hepatocellular Carcinoma publication-title: Hepatology – volume: 48 start-page: 878 year: 2017 end-page: 883 ident: b0295 article-title: Automatic morphology-based cubic p-spline fitting methodology for smoothing and baseline-removal of Raman spectra publication-title: J. Raman Spectrosc. – volume: 48 start-page: 673 year: 2017 end-page: 679 ident: b0390 article-title: Resonance Raman optical activity of zeaxanthin aggregates publication-title: J. Raman Spectrosc. – volume: 4 year: 2024 ident: 10.1016/j.saa.2025.126261_b0010 article-title: Liquid biopsy into the clinics: Current evidence and future perspectives publication-title: J. Liquid Biopsy doi: 10.1016/j.jlb.2024.100146 – volume: 29 start-page: 4748 year: 2024 ident: 10.1016/j.saa.2025.126261_b0080 article-title: Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures publication-title: Molecules doi: 10.3390/molecules29194748 – volume: 76 start-page: 121 year: 2005 ident: 10.1016/j.saa.2025.126261_b0270 article-title: Background removal from spectra by designing and minimising a non-quadratic cost function publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.10.003 – volume: 29 year: 2024 ident: 10.1016/j.saa.2025.126261_b0395 article-title: Efficacy of blood plasma spectroscopy for early liver cancer diagnostics in obese patients publication-title: Ann. Hepatol. doi: 10.1016/j.aohep.2024.101519 – volume: 143 start-page: 6121 year: 2018 ident: 10.1016/j.saa.2025.126261_b0105 article-title: Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy publication-title: Analyst doi: 10.1039/C8AN01384E – volume: 57 start-page: 1363 year: 2003 ident: 10.1016/j.saa.2025.126261_b0255 article-title: Automated method for subtraction of fluorescence from biological Raman spectra publication-title: Appl. Spectrosc. doi: 10.1366/000370203322554518 – volume: 48 start-page: 673 year: 2017 ident: 10.1016/j.saa.2025.126261_b0390 article-title: Resonance Raman optical activity of zeaxanthin aggregates publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5089 – volume: 64 start-page: 595 year: 2010 ident: 10.1016/j.saa.2025.126261_b0280 article-title: Morphology-Based Automated Baseline Removal for Raman Spectra of Artistic Pigments publication-title: Appl. Spectrosc. doi: 10.1366/000370210791414281 – ident: 10.1016/j.saa.2025.126261_b0145 – volume: 19 start-page: 297 year: 1965 ident: 10.1016/j.saa.2025.126261_b0330 article-title: An Algorithm for the Machine Calculation of Complex Fourier Series publication-title: Math. Comp. doi: 10.1090/S0025-5718-1965-0178586-1 – year: 2006 ident: 10.1016/j.saa.2025.126261_b0335 – volume: 14 start-page: 3048 year: 2022 ident: 10.1016/j.saa.2025.126261_b0405 article-title: Liquid Biopsy for Pancreatic Cancer Detection Using Infrared Spectroscopy publication-title: Cancers doi: 10.3390/cancers14133048 – volume: 28 year: 2023 ident: 10.1016/j.saa.2025.126261_b0210 article-title: Open-sourced Raman spectroscopy data processing package implementing a baseline removal algorithm validated from multiple datasets acquired in human tissue and biofluids publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.28.2.025002 – volume: 48 start-page: 336 year: 2017 ident: 10.1016/j.saa.2025.126261_b0285 article-title: Iterative morphological and mollifier-based baseline correction for Raman spectra publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5010 – volume: 407 start-page: 1335 year: 2015 ident: 10.1016/j.saa.2025.126261_b0160 article-title: The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-014-8358-7 – volume: 148 start-page: 2793 year: 2023 ident: 10.1016/j.saa.2025.126261_b0150 article-title: Vibrational and chiroptical analysis of blood plasma for hepatocellular carcinoma diagnostics publication-title: Analyst doi: 10.1039/D3AN00164D – volume: 120 start-page: 4028 year: 2016 ident: 10.1016/j.saa.2025.126261_b0385 article-title: Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b02273 – volume: 223 year: 2019 ident: 10.1016/j.saa.2025.126261_b0155 article-title: Vapor correction of FTIR spectra – A simple automatic least squares approach publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.117373 – volume: 1282 year: 2023 ident: 10.1016/j.saa.2025.126261_b0370 article-title: Detection and identification of amino acids and proteins using their intrinsic fluorescence in the visible light spectrum publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.341925 – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.saa.2025.126261_b0185 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 58 start-page: 3913 year: 2019 ident: 10.1016/j.saa.2025.126261_b0235 article-title: Baseline correction method based on doubly reweighted penalized least squares publication-title: Appl. Opt. doi: 10.1364/AO.58.003913 – start-page: 1 year: 2008 ident: 10.1016/j.saa.2025.126261_b0075 article-title: Vibrational Spectroscopy in Microbiology and Medical Diagnostics – volume: 90 start-page: 2023 year: 2018 ident: 10.1016/j.saa.2025.126261_b0415 article-title: High-Throughput Screening Raman Spectroscopy Platform for Label-Free Cellomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04127 – ident: 10.1016/j.saa.2025.126261_b0165 – volume: 138 start-page: 4483 year: 2013 ident: 10.1016/j.saa.2025.126261_b0300 article-title: Morphological weighted penalized least squares for background correction publication-title: Analyst doi: 10.1039/c3an00743j – volume: 56 start-page: 804 year: 2021 ident: 10.1016/j.saa.2025.126261_b0055 article-title: Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2021.1946076 – volume: 9 start-page: 90 year: 2007 ident: 10.1016/j.saa.2025.126261_b0175 article-title: Matplotlib: A 2D Graphics Environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 135 start-page: 1138 year: 2010 ident: 10.1016/j.saa.2025.126261_b0225 article-title: Baseline correction using adaptive iteratively reweighted penalized least squares publication-title: Analyst doi: 10.1039/b922045c – volume: 16 start-page: 5426 year: 2021 ident: 10.1016/j.saa.2025.126261_b0085 article-title: Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00620-3 – volume: 93 start-page: 567 year: 2007 ident: 10.1016/j.saa.2025.126261_b0375 article-title: Natural Fluorescence Spectroscopy of Human Blood Plasma in the Diagnosis of Colorectal Cancer: Feasibility Study and Preliminary Results publication-title: Tumori J. doi: 10.1177/030089160709300609 – volume: 48 start-page: 878 year: 2017 ident: 10.1016/j.saa.2025.126261_b0295 article-title: Automatic morphology-based cubic p-spline fitting methodology for smoothing and baseline-removal of Raman spectra publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5130 – volume: 14 year: 2023 ident: 10.1016/j.saa.2025.126261_b0035 article-title: Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review publication-title: Front. Genet. doi: 10.3389/fgene.2023.1152470 – volume: 15 start-page: 131 year: 2022 ident: 10.1016/j.saa.2025.126261_b0025 article-title: Liquid biopsy: current technology and clinical applications publication-title: J. Hemat. Oncol. doi: 10.1186/s13045-022-01351-y – volume: 305 year: 2024 ident: 10.1016/j.saa.2025.126261_b0320 article-title: Raman spectroscopy and Raman optical activity of blood plasma for differential diagnosis of gastrointestinal cancers publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2023.123430 – volume: 53 start-page: 222 year: 2020 ident: 10.1016/j.saa.2025.126261_b0245 article-title: Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2020.1730908 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.saa.2025.126261_b0190 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 132 year: 2020 ident: 10.1016/j.saa.2025.126261_b0120 article-title: New data preprocessing trends based on ensemble of multiple preprocessing techniques, TrAC publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2020.116045 – start-page: 105 year: 2008 ident: 10.1016/j.saa.2025.126261_b0065 article-title: Raman Spectroscopy of Biofluids – volume: 304 year: 2024 ident: 10.1016/j.saa.2025.126261_b0365 article-title: Comparative study of Raman spectroscopy techniques in blood plasma-based clinical diagnostics: A demonstration on Alzheimer’s disease publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2023.123392 – volume: 69 start-page: 182 year: 2018 ident: 10.1016/j.saa.2025.126261_b0130 article-title: EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.03.019 – volume: 17 start-page: 166 year: 2003 ident: 10.1016/j.saa.2025.126261_b0350 article-title: Partial least squares for discrimination publication-title: J. Chemom. doi: 10.1002/cem.785 – volume: 50 start-page: 387 year: 2015 ident: 10.1016/j.saa.2025.126261_b0110 article-title: Review of Fluorescence Suppression Techniques in Raman Spectroscopy publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2014.999936 – volume: 58 start-page: 1099 year: 2022 ident: 10.1016/j.saa.2025.126261_b0135 article-title: Etiopathogenetic Factors of Hepatocellular Carcinoma, Overall Survival, and Their Evolution over Time—Czech Tertiary Center Overview publication-title: Medicina doi: 10.3390/medicina58081099 – volume: 131 start-page: 875 year: 2006 ident: 10.1016/j.saa.2025.126261_b0060 article-title: Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy publication-title: Analyst doi: 10.1039/b602376m – volume: 184 year: 2025 ident: 10.1016/j.saa.2025.126261_b0100 article-title: Application of machine learning-assisted surface-enhanced Raman spectroscopy in medical laboratories: Principles, opportunities, and challenges publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2025.118135 – volume: 6 start-page: 3021 year: 2021 ident: 10.1016/j.saa.2025.126261_b0180 article-title: seaborn: statistical data visualization publication-title: J. Open Source Softw. doi: 10.21105/joss.03021 – volume: 37 start-page: 215 year: 1997 ident: 10.1016/j.saa.2025.126261_b0345 article-title: An introduction to wavelet transforms for chemometricians: A time-frequency approach publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00029-4 – volume: 270 year: 2024 ident: 10.1016/j.saa.2025.126261_b0050 article-title: Comprehensive spectroscopic, metabolomic, and proteomic liquid biopsy in the diagnostics of hepatocellular carcinoma publication-title: Talanta doi: 10.1016/j.talanta.2023.125527 – volume: 75 start-page: 3631 year: 2003 ident: 10.1016/j.saa.2025.126261_b0215 article-title: A Perfect Smoother publication-title: Anal. Chem. doi: 10.1021/ac034173t – volume: 109-110 start-page: 209 year: 1996 ident: 10.1016/j.saa.2025.126261_b0305 article-title: Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds publication-title: Nucl. Instrum. Methods Phys. Res., B doi: 10.1016/0168-583X(95)00908-6 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.saa.2025.126261_b0360 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 4 year: 2023 ident: 10.1016/j.saa.2025.126261_b0020 article-title: The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring publication-title: Cell Rep. Med. – volume: 585 start-page: 357 year: 2020 ident: 10.1016/j.saa.2025.126261_b0170 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – year: 2024 ident: 10.1016/j.saa.2025.126261_b0200 article-title: SpectroChemPy, a framework for processing, analyzing and modeling spectroscopic data for chemistry with Python (v0.6.9) publication-title: Zenodo – ident: 10.1016/j.saa.2025.126261_b0195 – volume: 4 start-page: 1237 year: 2019 ident: 10.1016/j.saa.2025.126261_b0205 article-title: PyWavelets: A Python package for wavelet analysis publication-title: J. Open Source Softw. doi: 10.21105/joss.01237 – start-page: 1 year: 2014 ident: 10.1016/j.saa.2025.126261_b0250 article-title: Adaptive Asymmetric Least Squares baseline estimation for analytical instruments – volume: 59 start-page: 10933 year: 2020 ident: 10.1016/j.saa.2025.126261_b0240 article-title: Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum publication-title: Appl. Opt. doi: 10.1364/AO.404863 – volume: 49 start-page: 630 year: 1995 ident: 10.1016/j.saa.2025.126261_b0310 article-title: Fluorescence Rejection in Raman Spectroscopy by Shifted-Spectra, Edge Detection, and FFT Filtering Techniques publication-title: Appl. Spectrosc. doi: 10.1366/0003702953964039 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.saa.2025.126261_b0325 article-title: Smoothing and Differentiation of Data by Simplified Least Squares Procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 21 start-page: 6 year: 2024 ident: 10.1016/j.saa.2025.126261_b0030 article-title: Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers publication-title: Clin. Proteomics doi: 10.1186/s12014-024-09452-1 – volume: 2 start-page: 8 year: 2015 ident: 10.1016/j.saa.2025.126261_b0095 article-title: Review of multidimensional data processing approaches for Raman and infrared spectroscopy publication-title: EPJ Tech. Instrum. doi: 10.1140/epjti/s40485-015-0018-6 – volume: 2 start-page: 637 year: 2010 ident: 10.1016/j.saa.2025.126261_b0275 article-title: Splines, knots, and penalties publication-title: WIREs Comp. Stat. doi: 10.1002/wics.125 – volume: 313 year: 2024 ident: 10.1016/j.saa.2025.126261_b0420 article-title: Automated classification pipeline for real-time in vivo examination of colorectal tissue using Raman spectroscopy publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2024.124152 – volume: 61 start-page: 1225 year: 2007 ident: 10.1016/j.saa.2025.126261_b0260 article-title: Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy publication-title: Appl. Spectrosc. doi: 10.1366/000370207782597003 – volume: 73 start-page: 4 issue: Suppl 1 year: 2021 ident: 10.1016/j.saa.2025.126261_b0140 article-title: Epidemiology of Hepatocellular Carcinoma publication-title: Hepatology doi: 10.1002/hep.31288 – volume: 148 start-page: 2518 year: 2023 ident: 10.1016/j.saa.2025.126261_b0425 article-title: In vivo Raman spectroscopy in the diagnostics of colon cancer publication-title: Analyst doi: 10.1039/D3AN00103B – volume: 22 start-page: 1936 year: 2023 ident: 10.1016/j.saa.2025.126261_b0040 article-title: Prediction of Pathologic Change Development in the Pancreas Associated with Diabetes Mellitus Assessed by NMR Metabolomics publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.3c00047 – volume: 322 year: 2024 ident: 10.1016/j.saa.2025.126261_b0430 article-title: Raman spectroscopy in lung cancer diagnostics: Can an in vivo setup compete with ex vivo applications? publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2024.124770 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.saa.2025.126261_b0355 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 72 start-page: 731 year: 2018 ident: 10.1016/j.saa.2025.126261_b0290 article-title: An Automated Baseline Correction Method Based on Iterative Morphological Operations publication-title: Appl. Spectrosc. doi: 10.1177/0003702817752371 – year: 2006 ident: 10.1016/j.saa.2025.126261_b0115 article-title: Anomalies and Artifacts in Raman Spectroscopy – volume: 140 start-page: 250 year: 2015 ident: 10.1016/j.saa.2025.126261_b0230 article-title: Baseline correction using asymmetrically reweighted penalized least squares smoothing publication-title: Analyst doi: 10.1039/C4AN01061B – volume: 13 start-page: 3330 year: 1974 ident: 10.1016/j.saa.2025.126261_b0380 article-title: Contribution of carotenoids to the optical activity of human serum low-density lipoprotein publication-title: Biochemistry doi: 10.1021/bi00713a023 – volume: 117 start-page: 100 year: 2012 ident: 10.1016/j.saa.2025.126261_b0090 article-title: Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.03.011 – volume: 6 start-page: 2925 year: 2022 ident: 10.1016/j.saa.2025.126261_b0435 article-title: Comparison of a multitarget blood test to ultrasound and alpha-fetoprotein for hepatocellular carcinoma surveillance: Results of a network meta-analysis publication-title: Hepatol. Commun. doi: 10.1002/hep4.2045 – volume: 59 start-page: 545 year: 2005 ident: 10.1016/j.saa.2025.126261_b0315 article-title: Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation publication-title: Appl. Spectrosc. doi: 10.1366/0003702053945985 – volume: 5 start-page: 129 year: 2016 ident: 10.1016/j.saa.2025.126261_b0410 article-title: An infrared spectroscopic blood test for non-small cell lung carcinoma and subtyping into pulmonary squamous cell carcinoma or adenocarcinoma, Biomed. Spectrosc publication-title: Imaging – ident: 10.1016/j.saa.2025.126261_b0070 doi: 10.1016/B978-0-444-64027-7.00006-9 – volume: 69 start-page: 834 year: 2015 ident: 10.1016/j.saa.2025.126261_b0265 article-title: Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction publication-title: Appl. Spectrosc. doi: 10.1366/14-07798 – volume: 91 start-page: 12117 year: 2019 ident: 10.1016/j.saa.2025.126261_b0400 article-title: Is Infrared Spectroscopy Ready for the Clinic? publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02280 – volume: 4 start-page: 554 year: 2020 ident: 10.1016/j.saa.2025.126261_b0045 article-title: Liquid biopsy for cancer diagnosis using vibrational spectroscopy: systematic review publication-title: BJS Open doi: 10.1002/bjs5.50289 – volume: 38 start-page: 1174 year: 2007 ident: 10.1016/j.saa.2025.126261_b0340 article-title: Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1747 – ident: 10.1016/j.saa.2025.126261_b0005 – volume: 5 start-page: e564 year: 2024 ident: 10.1016/j.saa.2025.126261_b0015 article-title: Liquid biopsy for human cancer: cancer screening, monitoring, and treatment publication-title: MedComm doi: 10.1002/mco2.564 – volume: 76 start-page: 393 year: 2022 ident: 10.1016/j.saa.2025.126261_b0125 article-title: Clinical Spectroscopy: Lost in Translation? publication-title: Appl. Spectrosc. doi: 10.1177/00037028211021846 – volume: 6 start-page: 4402 year: 2014 ident: 10.1016/j.saa.2025.126261_b0220 article-title: Baseline correction for Raman spectra using an improved asymmetric least squares method publication-title: Anal. Methods doi: 10.1039/C4AY00068D |
SSID | ssj0001820 |
Score | 2.45979 |
Snippet | [Display omitted]
•The choice of data pre-processing and classifier greatly affects classification.•The suitability of each pre-processing step depends on the... Spectroscopic data often contain artifacts or noise related to the sample characteristics, instrumental variations, or experimental design flaws. Therefore,... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 126261 |
SubjectTerms | Algorithms Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - pathology Chiroptical spectroscopy Classification Data pre-processing Diagnostics Humans Least-Squares Analysis Liquid biopsy Liquid Biopsy - methods Liver Cirrhosis - diagnosis Liver Cirrhosis - pathology Liver Neoplasms - diagnosis Liver Neoplasms - pathology Machine learning Spectrophotometry, Infrared - methods Spectrum Analysis, Raman - methods Vibrational spectroscopy |
Title | Comprehensive assessment of the role of spectral data pre-processing in spectroscopy-based liquid biopsy |
URI | https://dx.doi.org/10.1016/j.saa.2025.126261 https://www.ncbi.nlm.nih.gov/pubmed/40273765 |
Volume | 339 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWl_1UfbgSUjbbHaTzbEUS1VaBC30FrLZDY1IGvs49OJvdyaPqhcFb9k8NmF2Z75Z8s23hNwI3LVM-sZS0oUFijEGfE50rVj5DvcNAHquMzsau8MJf5iKaY30q1oYpFWWsb-I6Xm0Ls90Smt2siTpPNsOdA9TDkAcUNzDdTvnHs7y9scXzQMFyvNFl3QtvLv6s5lzvJYhSg8x0bYZJPb2H9j0DXgGh-SgzBhpr_ioI1IzaYPs9auN2hpkN2dxRstjMkPvXphZQUqn4VZ1k85jCpkeRS4hHuf1lQvoFQmiFJkgWVEwAEBGk7S8PseSlY2FQKfpW_K-TjRVyTxbbk7IZHD30h9a5VYKVgROvLJkHEW-MVwK19HchEaayPNCpg3jDveEkspXJhRYWNpV4OOsK2MnVprBYyE46impp_PUnBMaul6kecRRuoxz7SgOTqxsxqSOY4erJrmtjBhkhWJGUFHJXgOweIAWDwqLNwmvzBz8GPYAIvpvj50VQ7J9A0ddHs8VF__r8JLsYwtByRZXpL5arM01ZBsr1cqnU4vs9O4fh2NojZ9Gnzcv1Gg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqIlQWBOVVnh6YkNI2iZ04I6qoCrRdaKVuVpw4ahBKQh9DF347d3kUWEBii-LYic6---6U7-4IueXYtUx42lDCgQBFaw06x7tGpDybeRoAPa8zOxo7gyl7mvFZjfSqXBikVZa2v7DpubUu73RKaXayOO68mDYsD0cOQBxQ3IW4fYeB-mIbg_bHF88DK5TnUZdwDHy8-rWZk7yWPtYesnjbtMCzN_8Ap2_I0z8g-6XLSO-LrzokNZ00SaNXdWprkt2cxhksj8gc1Xuh5wUrnfrbsps0jSi4ehTJhHidJ1guYFVkiFKkgmRFxgAgGY2TcjzFnJWNgUgX0rf4fR2HVMVpttwck2n_YdIbGGUvBSMALV4ZIgoCT2smuGOHTPta6MB1fSvUFrOZy5VQntI-x8zSrgIlt7oisiMVWjDNB009IfUkTfQZob7jBiELGNYuYyy0FQMtVqZliTCKbKZa5K4SosyKkhmy4pK9SpC4RInLQuItwioxyx_7LsGk_zbttNiS7RsYFuZxHX7-vwVvSGMwGQ3l8HH8fEH2cAQRyuSXpL5arPUVuB4rdZ0frU89t9Tq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+assessment+of+the+role+of+spectral+data+pre-processing+in+spectroscopy-based+liquid+biopsy&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Vrt%C4%9Blka%2C+Ond%C5%99ej&rft.au=Kr%C3%A1lov%C3%A1%2C+Kate%C5%99ina&rft.au=Fouskov%C3%A1%2C+Mark%C3%A9ta&rft.au=Setni%C4%8Dka%2C+Vladim%C3%ADr&rft.date=2025-10-15&rft.issn=1386-1425&rft.volume=339&rft.spage=126261&rft_id=info:doi/10.1016%2Fj.saa.2025.126261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_saa_2025_126261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |