Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma

To overcome the problem of interlaminar delamination of thermoplastic polyurethane laminated glass, silicate glass was etched with hydrofluoric acid and thermoplastic polyurethane was then treated with cold plasma. Compared with the untreated samples, the interlaminar shear strength of acid etching...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 16; no. 10; pp. 964 - 968
Main Author 李喜宝 卢金山 罗军明 张建军 欧军飞 徐海涛
Format Journal Article
LanguageEnglish
Published 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To overcome the problem of interlaminar delamination of thermoplastic polyurethane laminated glass, silicate glass was etched with hydrofluoric acid and thermoplastic polyurethane was then treated with cold plasma. Compared with the untreated samples, the interlaminar shear strength of acid etching samples, cold plasma-treated samples and acid etching combined with cold plasma-treated samples increased by 97%, 84% and 341%, respectively. Acid etching combined with cold plasma-treated samples exhibited a higher flexural strength and strain as compared with the untreated samples. The impact energy of acid etching samples, cold plasmatreated samples and acid etching combined with cold plasma-treated samples increased by 8.7%, 8.1% and 11.6%, respectively, in comparison with the untreated samples. FT-IR analysis showed that a large number of -C-O, CO N and CO O C groups appeared on the surface of cold plasma-treated thermoplastic polyurethane, which resulted in the formation of hydrogen bonds. SEM results showed that some pittings formed on the surface of the silicate glass treated by acid etching, which resulted in the formation of a three-dimensional interface structure between tile silicate glass and polyurethane. Hydrogen bonds combined with the three-dimensional interface between silicate glass and polyurethanes co-improved the mechanical properties of thermoplastic polyurethanes laminated glass.
Bibliography:To overcome the problem of interlaminar delamination of thermoplastic polyurethane laminated glass, silicate glass was etched with hydrofluoric acid and thermoplastic polyurethane was then treated with cold plasma. Compared with the untreated samples, the interlaminar shear strength of acid etching samples, cold plasma-treated samples and acid etching combined with cold plasma-treated samples increased by 97%, 84% and 341%, respectively. Acid etching combined with cold plasma-treated samples exhibited a higher flexural strength and strain as compared with the untreated samples. The impact energy of acid etching samples, cold plasmatreated samples and acid etching combined with cold plasma-treated samples increased by 8.7%, 8.1% and 11.6%, respectively, in comparison with the untreated samples. FT-IR analysis showed that a large number of -C-O, CO N and CO O C groups appeared on the surface of cold plasma-treated thermoplastic polyurethane, which resulted in the formation of hydrogen bonds. SEM results showed that some pittings formed on the surface of the silicate glass treated by acid etching, which resulted in the formation of a three-dimensional interface structure between tile silicate glass and polyurethane. Hydrogen bonds combined with the three-dimensional interface between silicate glass and polyurethanes co-improved the mechanical properties of thermoplastic polyurethanes laminated glass.
LI Xibao, LU Jinshan , LUO Junming, ZHANG Jianjun , OU Junfei , XU Haitao ( School of Materials Science and Engineering, Nanchang Hangkong University Nanchang 330063, China)
cold plasma, FT-IR, impact resistance, stress, mechanical properties, laminated glass
34-1187/TL
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1009-0630
DOI:10.1088/1009-0630/16/10/11