Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence

The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of th...

Full description

Saved in:
Bibliographic Details
Published inScience translational medicine Vol. 5; no. 205; p. 205ra133
Main Authors Patel, Ketan R, Andreadi, Catherine, Britton, Robert G, Horner-Glister, Emma, Karmokar, Ankur, Sale, Stewart, Brown, Victoria A, Brenner, Dean E, Singh, Rajinder, Steward, William P, Gescher, Andreas J, Brown, Karen
Format Journal Article
LanguageEnglish
Published United States 02.10.2013
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of the parent compound. We present quantitation of sulfate and glucuronide conjugates of resveratrol in human plasma and tissue after repeated ingestion of resveratrol by volunteers and cancer patients, respectively. Subsequent pharmacokinetic characterization of a mixture of resveratrol-3-O-sulfate and resveratrol-4'-O-sulfate in mice showed that these metabolites are absorbed orally but have low bioavailabilities of ~14 and 3%, respectively. Sulfate hydrolysis in vivo liberated free resveratrol, which accounted for ~2% of the total resveratrol species present in mouse plasma. Monosulfate metabolites were also converted to the parent in human colorectal cells. The extent of cellular uptake was dependent on specific membrane transporters and dictated antiproliferative activity. Sulfate metabolites induced autophagy and senescence in human cancer cells; these effects were abrogated by inclusion of a sulfatase inhibitor, which reduced intracellular resveratrol. Together, our findings suggest that resveratrol is delivered to target tissues in a stable sulfate-conjugated form and that the parent compound is gradually regenerated in selected cells and may give rise to the beneficial effects in vivo. At doses considered to be safe in humans, resveratrol generated via this route may be of greater importance than the unmetabolized form.
AbstractList The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of the parent compound. We present quantitation of sulfate and glucuronide conjugates of resveratrol in human plasma and tissue after repeated ingestion of resveratrol by volunteers and cancer patients, respectively. Subsequent pharmacokinetic characterization of a mixture of resveratrol-3-O-sulfate and resveratrol-4'-O-sulfate in mice showed that these metabolites are absorbed orally but have low bioavailabilities of ~14 and 3%, respectively. Sulfate hydrolysis in vivo liberated free resveratrol, which accounted for ~2% of the total resveratrol species present in mouse plasma. Monosulfate metabolites were also converted to the parent in human colorectal cells. The extent of cellular uptake was dependent on specific membrane transporters and dictated antiproliferative activity. Sulfate metabolites induced autophagy and senescence in human cancer cells; these effects were abrogated by inclusion of a sulfatase inhibitor, which reduced intracellular resveratrol. Together, our findings suggest that resveratrol is delivered to target tissues in a stable sulfate-conjugated form and that the parent compound is gradually regenerated in selected cells and may give rise to the beneficial effects in vivo. At doses considered to be safe in humans, resveratrol generated via this route may be of greater importance than the unmetabolized form.
Author Brown, Karen
Sale, Stewart
Patel, Ketan R
Horner-Glister, Emma
Brown, Victoria A
Karmokar, Ankur
Britton, Robert G
Brenner, Dean E
Steward, William P
Gescher, Andreas J
Andreadi, Catherine
Singh, Rajinder
Author_xml – sequence: 1
  givenname: Ketan R
  surname: Patel
  fullname: Patel, Ketan R
  organization: Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
– sequence: 2
  givenname: Catherine
  surname: Andreadi
  fullname: Andreadi, Catherine
– sequence: 3
  givenname: Robert G
  surname: Britton
  fullname: Britton, Robert G
– sequence: 4
  givenname: Emma
  surname: Horner-Glister
  fullname: Horner-Glister, Emma
– sequence: 5
  givenname: Ankur
  surname: Karmokar
  fullname: Karmokar, Ankur
– sequence: 6
  givenname: Stewart
  surname: Sale
  fullname: Sale, Stewart
– sequence: 7
  givenname: Victoria A
  surname: Brown
  fullname: Brown, Victoria A
– sequence: 8
  givenname: Dean E
  surname: Brenner
  fullname: Brenner, Dean E
– sequence: 9
  givenname: Rajinder
  surname: Singh
  fullname: Singh, Rajinder
– sequence: 10
  givenname: William P
  surname: Steward
  fullname: Steward, William P
– sequence: 11
  givenname: Andreas J
  surname: Gescher
  fullname: Gescher, Andreas J
– sequence: 12
  givenname: Karen
  surname: Brown
  fullname: Brown, Karen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24089405$$D View this record in MEDLINE/PubMed
BookMark eNo1kN1OxCAQhYnRuD_6BsbwAlWgQNtLs_Ev2cQL9XpD6bCLYaECXbNvL0a9mnMm853kzAKd-uABoStKbihl8jZpm6Pyye1huKkJEW1DTtCcdlxWknE2Q4uUPgiRbS3kOZoxTtqOEzFHn6-TMyoD3kNWfXA2Q8JjDAc7AFYeW1-CNTg3ORXxGILDJkQcIR0gqhyL34L_kTb4AgyFGCZd2CmHcae2R_xl8w6ncpQ0eA0X6Mwol-Dyby7R-8P92-qpWr88Pq_u1pWuSZOrlgjTNX2tGO9q2ZqubzgxBgSRw8B6SkULkteadTVlXAgQmnYgtWal71B2S3T9mztOfXnLZox2r-Jx89-dfQOzL2Dn
CitedBy_id crossref_primary_10_1080_03602532_2024_2402751
crossref_primary_10_1016_j_phymed_2022_154288
crossref_primary_10_1016_j_lfs_2018_06_028
crossref_primary_10_1016_j_crfs_2025_100972
crossref_primary_10_3390_nu14051013
crossref_primary_10_2217_nnm_2020_0289
crossref_primary_10_1016_j_hermed_2017_09_002
crossref_primary_10_3390_nu6020844
crossref_primary_10_1016_j_bcp_2021_114481
crossref_primary_10_3390_molecules25225319
crossref_primary_10_1039_C9FO03008E
crossref_primary_10_1097_QAD_0000000000000168
crossref_primary_10_3390_molecules191117154
crossref_primary_10_1021_acs_jafc_8b03100
crossref_primary_10_1002_pros_23006
crossref_primary_10_3390_foods13182886
crossref_primary_10_1002_prp2_294
crossref_primary_10_1016_j_jnutbio_2022_109219
crossref_primary_10_1016_j_jchromb_2017_02_011
crossref_primary_10_3390_ijms22031384
crossref_primary_10_3390_biomedicines10123051
crossref_primary_10_3390_nu11010143
crossref_primary_10_1016_j_freeradbiomed_2014_06_011
crossref_primary_10_1002_med_21440
crossref_primary_10_1021_acs_jafc_5b04307
crossref_primary_10_1016_j_bbadis_2014_05_005
crossref_primary_10_3390_molecules25081775
crossref_primary_10_1155_2017_7351976
crossref_primary_10_1016_j_bbadis_2014_11_004
crossref_primary_10_1124_mol_120_119891
crossref_primary_10_3390_molecules22050733
crossref_primary_10_1021_acs_jafc_9b01667
crossref_primary_10_1080_10408444_2024_2311270
crossref_primary_10_1002_ptr_5302
crossref_primary_10_1039_C4FO01178C
crossref_primary_10_1080_10408398_2022_2106180
crossref_primary_10_1002_ptr_5549
crossref_primary_10_1089_ars_2015_6437
crossref_primary_10_1021_acs_jafc_9b03894
crossref_primary_10_1039_C9FO00298G
crossref_primary_10_1089_ars_2017_7404
crossref_primary_10_1002_bmc_4001
crossref_primary_10_1111_os_13560
crossref_primary_10_1002_mnfr_201900905
crossref_primary_10_1080_10408398_2018_1546669
crossref_primary_10_1002_med_21571
crossref_primary_10_1002_mnfr_201900629
crossref_primary_10_1155_2016_3128951
crossref_primary_10_1080_10408398_2018_1546668
crossref_primary_10_3892_ol_2020_11532
crossref_primary_10_3390_ijms222313099
crossref_primary_10_1016_j_phrs_2017_08_002
crossref_primary_10_1016_j_phrs_2014_08_001
crossref_primary_10_1016_j_bcp_2024_116165
crossref_primary_10_3109_00365521_2015_1107620
crossref_primary_10_1093_advances_nmz038
crossref_primary_10_3389_fimmu_2018_03149
crossref_primary_10_1038_srep15216
crossref_primary_10_1093_nutrit_nuae161
crossref_primary_10_3390_ijms25020747
crossref_primary_10_1016_j_jddst_2020_101704
crossref_primary_10_1016_j_bbadis_2014_10_016
crossref_primary_10_1126_scitranslmed_aaa7619
crossref_primary_10_14533_jbm_20_3
crossref_primary_10_23736_S2724_5683_23_06455_4
crossref_primary_10_1111_nyas_12839
crossref_primary_10_3390_biomedicines9121909
crossref_primary_10_1002_mnfr_201600111
crossref_primary_10_3177_jnsv_69_388
crossref_primary_10_3389_fendo_2019_00688
crossref_primary_10_1111_nyas_12796
crossref_primary_10_3390_nu14101994
crossref_primary_10_1002_mnfr_201801239
crossref_primary_10_1371_journal_pone_0153023
crossref_primary_10_3390_nu13051719
crossref_primary_10_1016_j_dmpk_2018_12_004
crossref_primary_10_3389_fnut_2022_912591
crossref_primary_10_1007_s00204_014_1386_4
crossref_primary_10_1016_j_cgh_2014_02_024
crossref_primary_10_1080_10408398_2022_2116558
crossref_primary_10_1093_bbb_zbae140
crossref_primary_10_1021_acs_jafc_2c02150
crossref_primary_10_3390_nu11010079
crossref_primary_10_1002_cbic_201500284
crossref_primary_10_18632_oncotarget_15041
crossref_primary_10_1002_mnfr_201500016
crossref_primary_10_1038_ijo_2014_53
crossref_primary_10_1002_mnfr_201800715
crossref_primary_10_1002_mnfr_202100163
crossref_primary_10_5650_oleoscience_17_483
crossref_primary_10_1021_acs_jafc_4c08072
crossref_primary_10_3390_cancers13184509
crossref_primary_10_17221_401_2015_CJFS
crossref_primary_10_3390_ijms15034977
crossref_primary_10_1016_j_biopha_2022_113136
crossref_primary_10_1016_j_tifs_2017_02_001
crossref_primary_10_3390_nu14142870
crossref_primary_10_1021_acs_jafc_7b02121
crossref_primary_10_1017_S095442241700021X
crossref_primary_10_1021_jf403498f
crossref_primary_10_1038_nm_3821
crossref_primary_10_1016_j_jff_2016_02_031
crossref_primary_10_1007_s11095_021_03027_7
crossref_primary_10_3390_ijms20051062
crossref_primary_10_1002_mnfr_201400244
crossref_primary_10_1007_s11064_020_03200_1
crossref_primary_10_1016_j_bbadis_2015_01_012
crossref_primary_10_1111_jphp_13037
crossref_primary_10_1007_s12640_021_00450_x
crossref_primary_10_3390_molecules25173849
crossref_primary_10_1096_fj_201902222R
crossref_primary_10_1021_acsomega_2c00116
crossref_primary_10_1039_C5FO00120J
crossref_primary_10_1080_10408444_2020_1762538
crossref_primary_10_1007_s11101_018_9578_9
crossref_primary_10_1002_jps_24605
crossref_primary_10_1093_carcin_bgu120
crossref_primary_10_1016_j_bbadis_2014_10_005
crossref_primary_10_1371_journal_pone_0090131
crossref_primary_10_1016_j_freeradbiomed_2020_04_013
crossref_primary_10_1007_s00253_017_8621_x
crossref_primary_10_1002_1873_3468_14835
crossref_primary_10_1016_j_tet_2014_09_063
crossref_primary_10_1111_jgh_13151
crossref_primary_10_1093_ajcn_nqaa414
crossref_primary_10_1038_s41467_022_30785_8
crossref_primary_10_1016_j_fct_2020_111260
crossref_primary_10_1002_mnfr_201500352
crossref_primary_10_1016_j_tifs_2020_05_017
crossref_primary_10_1007_s00204_018_2279_8
crossref_primary_10_1002_mnfr_201700122
crossref_primary_10_3390_molecules191016724
crossref_primary_10_1016_j_jnutbio_2015_08_032
crossref_primary_10_1038_nrc3773
crossref_primary_10_1186_1471_2407_14_256
crossref_primary_10_3390_molecules26102834
crossref_primary_10_1016_j_flm_2018_07_002
crossref_primary_10_1038_s41467_023_40167_3
crossref_primary_10_1039_C5FO00203F
crossref_primary_10_1002_mnfr_201700020
crossref_primary_10_1002_cbic_201600084
crossref_primary_10_52547_phypha_26_4_7
crossref_primary_10_3390_molecules28083297
crossref_primary_10_1002_jcp_29182
crossref_primary_10_1002_mnfr_202400526
crossref_primary_10_1016_j_nutres_2014_02_006
crossref_primary_10_3390_nu11030627
crossref_primary_10_1007_s11357_020_00295_w
crossref_primary_10_1042_EBC20230101
crossref_primary_10_1038_cddis_2016_114
crossref_primary_10_1002_fsn3_4653
crossref_primary_10_1007_s00109_014_1220_8
crossref_primary_10_3390_ijms20092285
crossref_primary_10_4062_biomolther_2018_176
crossref_primary_10_1002_mnfr_201400095
crossref_primary_10_3390_metabo14080418
crossref_primary_10_3390_ijms21103579
crossref_primary_10_3390_molecules191015900
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1126/scitranslmed.3005870
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1946-6242
ExternalDocumentID 24089405
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 13101
– fundername: Cancer Research UK
  grantid: C325/A6691
– fundername: Cancer Research UK
  grantid: C325/A15575
– fundername: NCI NIH HHS
  grantid: NCI-N01-CN-25025
– fundername: Medical Research Council
  grantid: MC_G0802524
GroupedDBID ---
0R~
4.4
53G
7~K
ABJNI
ACGFS
AENEX
AFQFN
AJGZS
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BKF
C45
CGR
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
OFXIZ
OVD
OVIDX
P2P
RHI
TEORI
ID FETCH-LOGICAL-c307t-805f97b3a249368f9b740ffe506dd2b1158e643c29312455e5c19e6cc2242d312
IngestDate Sat May 31 02:06:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 205
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-805f97b3a249368f9b740ffe506dd2b1158e643c29312455e5c19e6cc2242d312
PMID 24089405
ParticipantIDs pubmed_primary_24089405
PublicationCentury 2000
PublicationDate 2013-Oct-02
PublicationDateYYYYMMDD 2013-10-02
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-Oct-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science translational medicine
PublicationTitleAlternate Sci Transl Med
PublicationYear 2013
SSID ssj0068356
Score 2.4857135
Snippet The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor...
SourceID pubmed
SourceType Index Database
StartPage 205ra133
SubjectTerms Animals
Autophagy - drug effects
Cell Line, Tumor
Cell Proliferation
Cellular Senescence - drug effects
Chromatography, High Pressure Liquid
Colorectal Neoplasms - blood
Glucuronides - blood
Humans
Intracellular Space - drug effects
Intracellular Space - metabolism
Membrane Transport Proteins - metabolism
Mice
Mice, Inbred C57BL
Resveratrol
Stilbenes - blood
Stilbenes - metabolism
Stilbenes - pharmacology
Sulfates - metabolism
Title Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence
URI https://www.ncbi.nlm.nih.gov/pubmed/24089405
Volume 5
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9TQXwRv78lD76NSrclWfooog5BEVTwbSRtIoN9OTtB_y7_QO-a1HabivpSRsJCm_v1cnf93R0hRyyySknJApXA68asUIGUSgah5YkWOtY2qzN7dS1a9-zygT9UKu8l1tI41cfx25d5Jf-RKoyBXDFL9g-S_VwUBuA3yBeuIGG4_krGt-OuBVsR20CDLDGb-LnqU-uqCimM6UhhZD6jmmIzrYxUCA72C5ZSRob6Y1Z1Os05yeCgjzGDYIzlBtTjq2ewoz6MTQ4Pb8rmWiHF066bxxSnv9XfwP35BKAUvxYUYYdkhPz9iSzEIjbQST2t3zG_iw5grcEI7ji46HbyliJnPX-0-NhFzbHgnPI1Tt9GTASYolJWyLyEu3rIy-o15CNVc5UzZnV_3q3SPTc87zHW4peuMUkJDsNehgcs7hYxt_7Ps1MVufOpOTIHvgk2W8UIkTv9BVi0wqdo-uSsmdvBAtR-iSlnJjNq7lbIsvdG6ImD1iqpmP4aWbzyMlwnTx5htIQw6hFGVZ9OIIwiwiggjJYQRguEwR8S6hBGPxFGEWG0QNgGuT8_uzttBb5JRxDD8ZCChcNt1NQNBX58Q0gb6SYLrTU8FElS1-BwSANWbwxmJZiSnBse1yKDbH2QegJjm2S-P-ibbUItbAmr1xIZWsVYVNe6IZixTaWaoY1CtUO23Ga1h64SSzvfxt1vZ_bIUgG8fbJg4dU3B2BHpvowE9wHasR76A
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfate+metabolites+provide+an+intracellular+pool+for+resveratrol+generation+and+induce+autophagy+with+senescence&rft.jtitle=Science+translational+medicine&rft.au=Patel%2C+Ketan+R&rft.au=Andreadi%2C+Catherine&rft.au=Britton%2C+Robert+G&rft.au=Horner-Glister%2C+Emma&rft.date=2013-10-02&rft.eissn=1946-6242&rft.volume=5&rft.issue=205&rft.spage=205ra133&rft_id=info:doi/10.1126%2Fscitranslmed.3005870&rft_id=info%3Apmid%2F24089405&rft_id=info%3Apmid%2F24089405&rft.externalDocID=24089405