Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence
The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of th...
Saved in:
Published in | Science translational medicine Vol. 5; no. 205; p. 205ra133 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
02.10.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of the parent compound. We present quantitation of sulfate and glucuronide conjugates of resveratrol in human plasma and tissue after repeated ingestion of resveratrol by volunteers and cancer patients, respectively. Subsequent pharmacokinetic characterization of a mixture of resveratrol-3-O-sulfate and resveratrol-4'-O-sulfate in mice showed that these metabolites are absorbed orally but have low bioavailabilities of ~14 and 3%, respectively. Sulfate hydrolysis in vivo liberated free resveratrol, which accounted for ~2% of the total resveratrol species present in mouse plasma. Monosulfate metabolites were also converted to the parent in human colorectal cells. The extent of cellular uptake was dependent on specific membrane transporters and dictated antiproliferative activity. Sulfate metabolites induced autophagy and senescence in human cancer cells; these effects were abrogated by inclusion of a sulfatase inhibitor, which reduced intracellular resveratrol. Together, our findings suggest that resveratrol is delivered to target tissues in a stable sulfate-conjugated form and that the parent compound is gradually regenerated in selected cells and may give rise to the beneficial effects in vivo. At doses considered to be safe in humans, resveratrol generated via this route may be of greater importance than the unmetabolized form. |
---|---|
AbstractList | The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor bioavailability may limit translation of these effects to humans. Resveratrol metabolites might contribute to in vivo activity through regeneration of the parent compound. We present quantitation of sulfate and glucuronide conjugates of resveratrol in human plasma and tissue after repeated ingestion of resveratrol by volunteers and cancer patients, respectively. Subsequent pharmacokinetic characterization of a mixture of resveratrol-3-O-sulfate and resveratrol-4'-O-sulfate in mice showed that these metabolites are absorbed orally but have low bioavailabilities of ~14 and 3%, respectively. Sulfate hydrolysis in vivo liberated free resveratrol, which accounted for ~2% of the total resveratrol species present in mouse plasma. Monosulfate metabolites were also converted to the parent in human colorectal cells. The extent of cellular uptake was dependent on specific membrane transporters and dictated antiproliferative activity. Sulfate metabolites induced autophagy and senescence in human cancer cells; these effects were abrogated by inclusion of a sulfatase inhibitor, which reduced intracellular resveratrol. Together, our findings suggest that resveratrol is delivered to target tissues in a stable sulfate-conjugated form and that the parent compound is gradually regenerated in selected cells and may give rise to the beneficial effects in vivo. At doses considered to be safe in humans, resveratrol generated via this route may be of greater importance than the unmetabolized form. |
Author | Brown, Karen Sale, Stewart Patel, Ketan R Horner-Glister, Emma Brown, Victoria A Karmokar, Ankur Britton, Robert G Brenner, Dean E Steward, William P Gescher, Andreas J Andreadi, Catherine Singh, Rajinder |
Author_xml | – sequence: 1 givenname: Ketan R surname: Patel fullname: Patel, Ketan R organization: Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK – sequence: 2 givenname: Catherine surname: Andreadi fullname: Andreadi, Catherine – sequence: 3 givenname: Robert G surname: Britton fullname: Britton, Robert G – sequence: 4 givenname: Emma surname: Horner-Glister fullname: Horner-Glister, Emma – sequence: 5 givenname: Ankur surname: Karmokar fullname: Karmokar, Ankur – sequence: 6 givenname: Stewart surname: Sale fullname: Sale, Stewart – sequence: 7 givenname: Victoria A surname: Brown fullname: Brown, Victoria A – sequence: 8 givenname: Dean E surname: Brenner fullname: Brenner, Dean E – sequence: 9 givenname: Rajinder surname: Singh fullname: Singh, Rajinder – sequence: 10 givenname: William P surname: Steward fullname: Steward, William P – sequence: 11 givenname: Andreas J surname: Gescher fullname: Gescher, Andreas J – sequence: 12 givenname: Karen surname: Brown fullname: Brown, Karen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24089405$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kN1OxCAQhYnRuD_6BsbwAlWgQNtLs_Ev2cQL9XpD6bCLYaECXbNvL0a9mnMm853kzAKd-uABoStKbihl8jZpm6Pyye1huKkJEW1DTtCcdlxWknE2Q4uUPgiRbS3kOZoxTtqOEzFHn6-TMyoD3kNWfXA2Q8JjDAc7AFYeW1-CNTg3ORXxGILDJkQcIR0gqhyL34L_kTb4AgyFGCZd2CmHcae2R_xl8w6ncpQ0eA0X6Mwol-Dyby7R-8P92-qpWr88Pq_u1pWuSZOrlgjTNX2tGO9q2ZqubzgxBgSRw8B6SkULkteadTVlXAgQmnYgtWal71B2S3T9mztOfXnLZox2r-Jx89-dfQOzL2Dn |
CitedBy_id | crossref_primary_10_1080_03602532_2024_2402751 crossref_primary_10_1016_j_phymed_2022_154288 crossref_primary_10_1016_j_lfs_2018_06_028 crossref_primary_10_1016_j_crfs_2025_100972 crossref_primary_10_3390_nu14051013 crossref_primary_10_2217_nnm_2020_0289 crossref_primary_10_1016_j_hermed_2017_09_002 crossref_primary_10_3390_nu6020844 crossref_primary_10_1016_j_bcp_2021_114481 crossref_primary_10_3390_molecules25225319 crossref_primary_10_1039_C9FO03008E crossref_primary_10_1097_QAD_0000000000000168 crossref_primary_10_3390_molecules191117154 crossref_primary_10_1021_acs_jafc_8b03100 crossref_primary_10_1002_pros_23006 crossref_primary_10_3390_foods13182886 crossref_primary_10_1002_prp2_294 crossref_primary_10_1016_j_jnutbio_2022_109219 crossref_primary_10_1016_j_jchromb_2017_02_011 crossref_primary_10_3390_ijms22031384 crossref_primary_10_3390_biomedicines10123051 crossref_primary_10_3390_nu11010143 crossref_primary_10_1016_j_freeradbiomed_2014_06_011 crossref_primary_10_1002_med_21440 crossref_primary_10_1021_acs_jafc_5b04307 crossref_primary_10_1016_j_bbadis_2014_05_005 crossref_primary_10_3390_molecules25081775 crossref_primary_10_1155_2017_7351976 crossref_primary_10_1016_j_bbadis_2014_11_004 crossref_primary_10_1124_mol_120_119891 crossref_primary_10_3390_molecules22050733 crossref_primary_10_1021_acs_jafc_9b01667 crossref_primary_10_1080_10408444_2024_2311270 crossref_primary_10_1002_ptr_5302 crossref_primary_10_1039_C4FO01178C crossref_primary_10_1080_10408398_2022_2106180 crossref_primary_10_1002_ptr_5549 crossref_primary_10_1089_ars_2015_6437 crossref_primary_10_1021_acs_jafc_9b03894 crossref_primary_10_1039_C9FO00298G crossref_primary_10_1089_ars_2017_7404 crossref_primary_10_1002_bmc_4001 crossref_primary_10_1111_os_13560 crossref_primary_10_1002_mnfr_201900905 crossref_primary_10_1080_10408398_2018_1546669 crossref_primary_10_1002_med_21571 crossref_primary_10_1002_mnfr_201900629 crossref_primary_10_1155_2016_3128951 crossref_primary_10_1080_10408398_2018_1546668 crossref_primary_10_3892_ol_2020_11532 crossref_primary_10_3390_ijms222313099 crossref_primary_10_1016_j_phrs_2017_08_002 crossref_primary_10_1016_j_phrs_2014_08_001 crossref_primary_10_1016_j_bcp_2024_116165 crossref_primary_10_3109_00365521_2015_1107620 crossref_primary_10_1093_advances_nmz038 crossref_primary_10_3389_fimmu_2018_03149 crossref_primary_10_1038_srep15216 crossref_primary_10_1093_nutrit_nuae161 crossref_primary_10_3390_ijms25020747 crossref_primary_10_1016_j_jddst_2020_101704 crossref_primary_10_1016_j_bbadis_2014_10_016 crossref_primary_10_1126_scitranslmed_aaa7619 crossref_primary_10_14533_jbm_20_3 crossref_primary_10_23736_S2724_5683_23_06455_4 crossref_primary_10_1111_nyas_12839 crossref_primary_10_3390_biomedicines9121909 crossref_primary_10_1002_mnfr_201600111 crossref_primary_10_3177_jnsv_69_388 crossref_primary_10_3389_fendo_2019_00688 crossref_primary_10_1111_nyas_12796 crossref_primary_10_3390_nu14101994 crossref_primary_10_1002_mnfr_201801239 crossref_primary_10_1371_journal_pone_0153023 crossref_primary_10_3390_nu13051719 crossref_primary_10_1016_j_dmpk_2018_12_004 crossref_primary_10_3389_fnut_2022_912591 crossref_primary_10_1007_s00204_014_1386_4 crossref_primary_10_1016_j_cgh_2014_02_024 crossref_primary_10_1080_10408398_2022_2116558 crossref_primary_10_1093_bbb_zbae140 crossref_primary_10_1021_acs_jafc_2c02150 crossref_primary_10_3390_nu11010079 crossref_primary_10_1002_cbic_201500284 crossref_primary_10_18632_oncotarget_15041 crossref_primary_10_1002_mnfr_201500016 crossref_primary_10_1038_ijo_2014_53 crossref_primary_10_1002_mnfr_201800715 crossref_primary_10_1002_mnfr_202100163 crossref_primary_10_5650_oleoscience_17_483 crossref_primary_10_1021_acs_jafc_4c08072 crossref_primary_10_3390_cancers13184509 crossref_primary_10_17221_401_2015_CJFS crossref_primary_10_3390_ijms15034977 crossref_primary_10_1016_j_biopha_2022_113136 crossref_primary_10_1016_j_tifs_2017_02_001 crossref_primary_10_3390_nu14142870 crossref_primary_10_1021_acs_jafc_7b02121 crossref_primary_10_1017_S095442241700021X crossref_primary_10_1021_jf403498f crossref_primary_10_1038_nm_3821 crossref_primary_10_1016_j_jff_2016_02_031 crossref_primary_10_1007_s11095_021_03027_7 crossref_primary_10_3390_ijms20051062 crossref_primary_10_1002_mnfr_201400244 crossref_primary_10_1007_s11064_020_03200_1 crossref_primary_10_1016_j_bbadis_2015_01_012 crossref_primary_10_1111_jphp_13037 crossref_primary_10_1007_s12640_021_00450_x crossref_primary_10_3390_molecules25173849 crossref_primary_10_1096_fj_201902222R crossref_primary_10_1021_acsomega_2c00116 crossref_primary_10_1039_C5FO00120J crossref_primary_10_1080_10408444_2020_1762538 crossref_primary_10_1007_s11101_018_9578_9 crossref_primary_10_1002_jps_24605 crossref_primary_10_1093_carcin_bgu120 crossref_primary_10_1016_j_bbadis_2014_10_005 crossref_primary_10_1371_journal_pone_0090131 crossref_primary_10_1016_j_freeradbiomed_2020_04_013 crossref_primary_10_1007_s00253_017_8621_x crossref_primary_10_1002_1873_3468_14835 crossref_primary_10_1016_j_tet_2014_09_063 crossref_primary_10_1111_jgh_13151 crossref_primary_10_1093_ajcn_nqaa414 crossref_primary_10_1038_s41467_022_30785_8 crossref_primary_10_1016_j_fct_2020_111260 crossref_primary_10_1002_mnfr_201500352 crossref_primary_10_1016_j_tifs_2020_05_017 crossref_primary_10_1007_s00204_018_2279_8 crossref_primary_10_1002_mnfr_201700122 crossref_primary_10_3390_molecules191016724 crossref_primary_10_1016_j_jnutbio_2015_08_032 crossref_primary_10_1038_nrc3773 crossref_primary_10_1186_1471_2407_14_256 crossref_primary_10_3390_molecules26102834 crossref_primary_10_1016_j_flm_2018_07_002 crossref_primary_10_1038_s41467_023_40167_3 crossref_primary_10_1039_C5FO00203F crossref_primary_10_1002_mnfr_201700020 crossref_primary_10_1002_cbic_201600084 crossref_primary_10_52547_phypha_26_4_7 crossref_primary_10_3390_molecules28083297 crossref_primary_10_1002_jcp_29182 crossref_primary_10_1002_mnfr_202400526 crossref_primary_10_1016_j_nutres_2014_02_006 crossref_primary_10_3390_nu11030627 crossref_primary_10_1007_s11357_020_00295_w crossref_primary_10_1042_EBC20230101 crossref_primary_10_1038_cddis_2016_114 crossref_primary_10_1002_fsn3_4653 crossref_primary_10_1007_s00109_014_1220_8 crossref_primary_10_3390_ijms20092285 crossref_primary_10_4062_biomolther_2018_176 crossref_primary_10_1002_mnfr_201400095 crossref_primary_10_3390_metabo14080418 crossref_primary_10_3390_ijms21103579 crossref_primary_10_3390_molecules191015900 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1126/scitranslmed.3005870 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1946-6242 |
ExternalDocumentID | 24089405 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 13101 – fundername: Cancer Research UK grantid: C325/A6691 – fundername: Cancer Research UK grantid: C325/A15575 – fundername: NCI NIH HHS grantid: NCI-N01-CN-25025 – fundername: Medical Research Council grantid: MC_G0802524 |
GroupedDBID | --- 0R~ 4.4 53G 7~K ABJNI ACGFS AENEX AFQFN AJGZS AJWWR ALMA_UNASSIGNED_HOLDINGS BKF C45 CGR CUY CVF DU5 EBS ECM EIF EJD EMOBN F5P HZ~ NPM O9- OFXIZ OVD OVIDX P2P RHI TEORI |
ID | FETCH-LOGICAL-c307t-805f97b3a249368f9b740ffe506dd2b1158e643c29312455e5c19e6cc2242d312 |
IngestDate | Sat May 31 02:06:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 205 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-805f97b3a249368f9b740ffe506dd2b1158e643c29312455e5c19e6cc2242d312 |
PMID | 24089405 |
ParticipantIDs | pubmed_primary_24089405 |
PublicationCentury | 2000 |
PublicationDate | 2013-Oct-02 |
PublicationDateYYYYMMDD | 2013-10-02 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-Oct-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science translational medicine |
PublicationTitleAlternate | Sci Transl Med |
PublicationYear | 2013 |
SSID | ssj0068356 |
Score | 2.4857135 |
Snippet | The phytochemical resveratrol has been shown to exert numerous health benefits in preclinical studies, but its rapid metabolism and resulting poor... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 205ra133 |
SubjectTerms | Animals Autophagy - drug effects Cell Line, Tumor Cell Proliferation Cellular Senescence - drug effects Chromatography, High Pressure Liquid Colorectal Neoplasms - blood Glucuronides - blood Humans Intracellular Space - drug effects Intracellular Space - metabolism Membrane Transport Proteins - metabolism Mice Mice, Inbred C57BL Resveratrol Stilbenes - blood Stilbenes - metabolism Stilbenes - pharmacology Sulfates - metabolism |
Title | Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24089405 |
Volume | 5 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9TQXwRv78lD76NSrclWfooog5BEVTwbSRtIoN9OTtB_y7_QO-a1HabivpSRsJCm_v1cnf93R0hRyyySknJApXA68asUIGUSgah5YkWOtY2qzN7dS1a9-zygT9UKu8l1tI41cfx25d5Jf-RKoyBXDFL9g-S_VwUBuA3yBeuIGG4_krGt-OuBVsR20CDLDGb-LnqU-uqCimM6UhhZD6jmmIzrYxUCA72C5ZSRob6Y1Z1Os05yeCgjzGDYIzlBtTjq2ewoz6MTQ4Pb8rmWiHF066bxxSnv9XfwP35BKAUvxYUYYdkhPz9iSzEIjbQST2t3zG_iw5grcEI7ji46HbyliJnPX-0-NhFzbHgnPI1Tt9GTASYolJWyLyEu3rIy-o15CNVc5UzZnV_3q3SPTc87zHW4peuMUkJDsNehgcs7hYxt_7Ps1MVufOpOTIHvgk2W8UIkTv9BVi0wqdo-uSsmdvBAtR-iSlnJjNq7lbIsvdG6ImD1iqpmP4aWbzyMlwnTx5htIQw6hFGVZ9OIIwiwiggjJYQRguEwR8S6hBGPxFGEWG0QNgGuT8_uzttBb5JRxDD8ZCChcNt1NQNBX58Q0gb6SYLrTU8FElS1-BwSANWbwxmJZiSnBse1yKDbH2QegJjm2S-P-ibbUItbAmr1xIZWsVYVNe6IZixTaWaoY1CtUO23Ga1h64SSzvfxt1vZ_bIUgG8fbJg4dU3B2BHpvowE9wHasR76A |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfate+metabolites+provide+an+intracellular+pool+for+resveratrol+generation+and+induce+autophagy+with+senescence&rft.jtitle=Science+translational+medicine&rft.au=Patel%2C+Ketan+R&rft.au=Andreadi%2C+Catherine&rft.au=Britton%2C+Robert+G&rft.au=Horner-Glister%2C+Emma&rft.date=2013-10-02&rft.eissn=1946-6242&rft.volume=5&rft.issue=205&rft.spage=205ra133&rft_id=info:doi/10.1126%2Fscitranslmed.3005870&rft_id=info%3Apmid%2F24089405&rft_id=info%3Apmid%2F24089405&rft.externalDocID=24089405 |