Earthfill dam seepage analysis using ensemble artificial intelligence based modeling
In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed Forward Neural Network, Support Vector Regression and Adaptive Neural Fuzzy Inference System) were employed to model seepage through the Sattar...
Saved in:
Published in | Journal of hydroinformatics Vol. 20; no. 5; pp. 1071 - 1084 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed Forward Neural Network, Support Vector Regression and Adaptive Neural Fuzzy Inference System) were employed to model seepage through the Sattarkhan earthfill dam located in northwest Iran. Three different scenarios were considered where each scenario employs a specific input combination suitable for different real world conditions. Afterwards, an ensemble method as a post-processing approach was used to improve predicting performance of the water head through the dam and the results of the models were compared and evaluated. For this purpose, three methods of model ensemble (simple linear averaging, weighted linear averaging and non-linear neural ensemble) were employed and compared. The obtained results indicated that the model ensemble could lead to a promising improvement in seepage modeling. The results indicated that the ensembling method could increase the performance of AI modeling by up to 20% in the verification step. |
---|---|
AbstractList | In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed Forward Neural Network, Support Vector Regression and Adaptive Neural Fuzzy Inference System) were employed to model seepage through the Sattarkhan earthfill dam located in northwest Iran. Three different scenarios were considered where each scenario employs a specific input combination suitable for different real world conditions. Afterwards, an ensemble method as a post-processing approach was used to improve predicting performance of the water head through the dam and the results of the models were compared and evaluated. For this purpose, three methods of model ensemble (simple linear averaging, weighted linear averaging and non-linear neural ensemble) were employed and compared. The obtained results indicated that the model ensemble could lead to a promising improvement in seepage modeling. The results indicated that the ensembling method could increase the performance of AI modeling by up to 20% in the verification step. |
Author | Sharghi, Elnaz Behfar, Nazanin Nourani, Vahid |
Author_xml | – sequence: 1 givenname: Elnaz surname: Sharghi fullname: Sharghi, Elnaz organization: Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran – sequence: 2 givenname: Vahid surname: Nourani fullname: Nourani, Vahid organization: Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran, Department of Civil Engineering, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey – sequence: 3 givenname: Nazanin surname: Behfar fullname: Behfar, Nazanin organization: Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran |
BookMark | eNp1kD1rwzAQhkVJoUnatbOgs12dJFv2WEL6AYEu6SxkSU4UFDmVlCH_vk7SqdDpjuN9jrtnhiZhCBahRyAlhbp-3p5MHEpKoCmhghs0BV5XBQjGJ5eeFwI43KFZSjtCKLAGpmi9VDFve-c9NmqPk7UHtbFYBeVPySV8TC5ssA3J7js_zmN2vdNOeexCtt67jQ3a4k4la_B-MNaP-Xt02yuf7MNvnaOv1-V68V6sPt8-Fi-rQjMiciGUENASTXvaMS1MpTjhpiWCVZ0VBkwjdA9cKeh0U2nRCj4-wxqudFdzIdgcPV33HuLwfbQpy91wjOPpSVKgbQWMEjKmymtKxyGlaHt5iG6v4kkCkWdz8mJOns3J0dwI8D-AdlllN4QclfP_YT9V9nY0 |
CitedBy_id | crossref_primary_10_1016_j_envres_2019_108852 crossref_primary_10_5004_dwt_2023_29531 crossref_primary_10_1016_j_jhydrol_2021_126266 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1016_j_engappai_2023_105839 crossref_primary_10_1080_02626667_2025_2461705 crossref_primary_10_1007_s12665_019_8755_5 crossref_primary_10_1007_s11053_018_09450_9 crossref_primary_10_3390_atmos10020080 crossref_primary_10_1108_EC_06_2021_0331 crossref_primary_10_2166_hydro_2023_197 crossref_primary_10_1109_ACCESS_2021_3056588 crossref_primary_10_1007_s40710_019_00414_6 crossref_primary_10_1016_j_scitotenv_2021_151029 crossref_primary_10_2166_ws_2022_273 crossref_primary_10_1016_j_jhydrol_2024_131704 crossref_primary_10_1007_s11356_020_09689_x crossref_primary_10_1007_s12145_023_01192_4 crossref_primary_10_1177_14759217241240130 crossref_primary_10_1007_s40808_022_01558_5 crossref_primary_10_2166_ws_2021_243 crossref_primary_10_1007_s12145_024_01342_2 crossref_primary_10_1016_j_jhydrol_2019_123962 crossref_primary_10_1007_s40996_024_01685_2 crossref_primary_10_2166_aqua_2023_235 crossref_primary_10_1007_s00477_023_02472_7 crossref_primary_10_1016_j_jclepro_2020_125772 crossref_primary_10_1007_s10706_023_02423_7 crossref_primary_10_1007_s13762_020_03002_6 crossref_primary_10_2166_aqua_2019_078 crossref_primary_10_1016_j_measurement_2021_109219 crossref_primary_10_1080_02626667_2021_1937179 crossref_primary_10_3390_w14223620 crossref_primary_10_31795_baunsobed_1545006 crossref_primary_10_3390_hydrology10080169 crossref_primary_10_1007_s40430_019_2109_9 crossref_primary_10_1016_j_dwt_2024_100188 crossref_primary_10_1088_2631_8695_acde47 crossref_primary_10_2166_aqua_2023_042 crossref_primary_10_2166_nh_2024_189 crossref_primary_10_1007_s11356_021_14133_9 crossref_primary_10_2166_hydro_2020_048 crossref_primary_10_2166_wst_2021_067 crossref_primary_10_1007_s11269_023_03629_3 crossref_primary_10_1007_s12665_023_10767_9 crossref_primary_10_1007_s40808_024_02196_9 crossref_primary_10_1016_j_eja_2024_127297 crossref_primary_10_1016_j_jhydrol_2025_132883 crossref_primary_10_1007_s12145_023_01041_4 crossref_primary_10_2166_wst_2018_477 crossref_primary_10_1016_j_advengsoft_2022_103268 crossref_primary_10_1016_j_jhydrol_2019_123958 crossref_primary_10_1155_2021_6633760 crossref_primary_10_1051_e3sconf_202449702011 crossref_primary_10_1016_j_measurement_2019_07_048 crossref_primary_10_1007_s11356_021_15029_4 crossref_primary_10_1007_s40996_023_01164_0 crossref_primary_10_1016_j_jhydrol_2019_124434 crossref_primary_10_1016_j_flowmeasinst_2025_102849 crossref_primary_10_1080_02626667_2023_2241850 crossref_primary_10_1007_s11356_022_22373_6 crossref_primary_10_1007_s40996_024_01436_3 crossref_primary_10_1007_s41062_024_01744_7 crossref_primary_10_1007_s00704_024_05040_3 crossref_primary_10_3390_diagnostics12112861 crossref_primary_10_3390_w14172598 crossref_primary_10_1016_j_rineng_2024_103377 crossref_primary_10_1007_s12145_021_00615_4 crossref_primary_10_1016_j_ejrh_2021_100804 crossref_primary_10_1016_j_jclepro_2022_134588 crossref_primary_10_1109_ACCESS_2020_3017743 crossref_primary_10_1155_2021_5571296 |
Cites_doi | 10.1016/j.jhydrol.2014.07.011 10.5430/air.v1n2p22 10.1016/S0022-1694(96)03259-3 10.2166/hydro.2013.134 10.1016/j.jhydrol.2016.11.033 10.1287/mnsc.29.9.987 10.1016/j.jenvman.2006.09.009 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1016/S0925-2312(01)00702-0 10.1016/j.jhydrol.2011.02.021 10.2166/hydro.2013.141 10.1016/S0266-352X(02)00003-4 10.2166/hydro.2009.069 10.1061/(ASCE)0733-9429(2005)131:6(431) |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Sep 2018 |
Copyright_xml | – notice: Copyright IWA Publishing Sep 2018 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
DOI | 10.2166/hydro.2018.151 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 1084 |
ExternalDocumentID | 10_2166_hydro_2018_151 |
GeographicLocations | Poland New York Iran United States--US |
GeographicLocations_xml | – name: New York – name: Iran – name: Poland – name: United States--US |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYOK AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS EJD GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c307t-7a77190c2f2b3c7d5a404d90735be7d1d87cf14aa1bc85c7974734384acb64773 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Sat Jul 26 01:02:57 EDT 2025 Thu Apr 24 22:50:18 EDT 2025 Tue Jul 01 04:10:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-7a77190c2f2b3c7d5a404d90735be7d1d87cf14aa1bc85c7974734384acb64773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/20/5/1071/656654/jh0201071.pdf |
PQID | 2129513200 |
PQPubID | 2044529 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2129513200 crossref_primary_10_2166_hydro_2018_151 crossref_citationtrail_10_2166_hydro_2018_151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2018 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | (2020032613063761300_HYDRO-D-17-00151C9) 1983; 29 (2020032613063761300_HYDRO-D-17-00151C12) 2012; 27 (2020032613063761300_HYDRO-D-17-00151C3) 2002; 29 (2020032613063761300_HYDRO-D-17-00151C22) 2013; 15 (2020032613063761300_HYDRO-D-17-00151C8) 1995; 7 ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2020032613063761300_HYDRO-D-17-00151C2) 2000; 5 (2020032613063761300_HYDRO-D-17-00151C19) 1997; 197 (2020032613063761300_HYDRO-D-17-00151C4) 2010; 12 (2020032613063761300_HYDRO-D-17-00151C1) 2007; 85 (2020032613063761300_HYDRO-D-17-00151C5) 2016; 23 (2020032613063761300_HYDRO-D-17-00151C18) 2001; 36 (2020032613063761300_HYDRO-D-17-00151C17) 1990 (2020032613063761300_HYDRO-D-17-00151C21) 1998 (2020032613063761300_HYDRO-D-17-00151C7) 1997 (2020032613063761300_HYDRO-D-17-00151C15) 2014; 519 (2020032613063761300_HYDRO-D-17-00151C14) 2012; 1 (2020032613063761300_HYDRO-D-17-00151C10) 2011; 401 (2020032613063761300_HYDRO-D-17-00151C13) 2013; 15 (2020032613063761300_HYDRO-D-17-00151C16) 2014; 12 (2020032613063761300_HYDRO-D-17-00151C6) 1994 (2020032613063761300_HYDRO-D-17-00151C11) 2017; 544 (2020032613063761300_HYDRO-D-17-00151C23) 2012; 1 (2020032613063761300_HYDRO-D-17-00151C24) 2003; 50 (2020032613063761300_HYDRO-D-17-00151C20) 2005; 131 |
References_xml | – volume-title: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence year: 1997 ident: 2020032613063761300_HYDRO-D-17-00151C7 – volume: 36 start-page: 49 issue: 1 year: 2001 ident: 2020032613063761300_HYDRO-D-17-00151C18 article-title: Artificial neural network applications in geotechnical engineering publication-title: Aust. Geomech. – volume: 7 start-page: 231 year: 1995 ident: 2020032613063761300_HYDRO-D-17-00151C8 article-title: Neural network ensembles, cross validation, and active learning publication-title: Adv. Neur. Inform. Process. Syst. – volume: 519 start-page: 177 year: 2014 ident: 2020032613063761300_HYDRO-D-17-00151C15 article-title: Unsteady 2-D seepage simulation using physical analog, case of Sattarkhan embankment dam publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.07.011 – volume-title: Statistical Learning Theory year: 1998 ident: 2020032613063761300_HYDRO-D-17-00151C21 – volume: 1 start-page: 22 issue: 2 year: 2012 ident: 2020032613063761300_HYDRO-D-17-00151C14 article-title: Integrated ANN model for earthfill dams seepage analysis: Sattarkhan Dam in Iran publication-title: Artif. Intell. Res. doi: 10.5430/air.v1n2p22 – volume: 12 start-page: 133 issue: 2 year: 2014 ident: 2020032613063761300_HYDRO-D-17-00151C16 article-title: Development of neuro-fuzzy model for dam seepage analysis publication-title: Ann. Faculty Eng. Hunedoara – volume: 23 start-page: 102 year: 2016 ident: 2020032613063761300_HYDRO-D-17-00151C5 article-title: Prediction of head loss on cascade weir using ANN and SVM publication-title: ISH J. Hydr. Eng. – volume: 197 start-page: 203 year: 1997 ident: 2020032613063761300_HYDRO-D-17-00151C19 article-title: Methods for combining the outputs of different rainfall-runoff models publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03259-3 – volume: 15 start-page: 1377 year: 2013 ident: 2020032613063761300_HYDRO-D-17-00151C22 article-title: Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD publication-title: J. Hydroinform. doi: 10.2166/hydro.2013.134 – volume-title: Neural Networks: A Comprehensive Foundation year: 1994 ident: 2020032613063761300_HYDRO-D-17-00151C6 – volume: 544 start-page: 267 year: 2017 ident: 2020032613063761300_HYDRO-D-17-00151C11 article-title: An emotional ANN (EANN) approach to modeling rainfall-runoff process publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.033 – volume: 29 start-page: 987 issue: 9 year: 1983 ident: 2020032613063761300_HYDRO-D-17-00151C9 article-title: Average of forecasts: some empirical results publication-title: Manage. Sci. doi: 10.1287/mnsc.29.9.987 – volume: 27 start-page: 183 issue: 2 year: 2012 ident: 2020032613063761300_HYDRO-D-17-00151C12 article-title: Integration of artificial neural networks with radial basis function interpolation in earthfill dam seepage modeling publication-title: J. Comput. Civil Eng. – volume: 85 start-page: 215 year: 2007 ident: 2020032613063761300_HYDRO-D-17-00151C1 article-title: Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2006.09.009 – volume: 5 start-page: 124 issue: 2 year: 2000 ident: 2020032613063761300_HYDRO-D-17-00151C2 article-title: Artificial neural networks in hydrology. 2: Hydrology applications publication-title: . J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 50 start-page: 159 year: 2003 ident: 2020032613063761300_HYDRO-D-17-00151C24 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 1 start-page: 131 year: 2012 ident: 2020032613063761300_HYDRO-D-17-00151C23 article-title: Prediction methods to determine stability of dam if there is piping publication-title: Inform. Eng. Res. Inst. Proc. – volume: 401 start-page: 177 year: 2011 ident: 2020032613063761300_HYDRO-D-17-00151C10 article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test and forward selection techniques for monthly stream flow prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.02.021 – volume: 15 start-page: 829 issue: 3 year: 2013 ident: 2020032613063761300_HYDRO-D-17-00151C13 article-title: Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling publication-title: J. Hydroinform. doi: 10.2166/hydro.2013.141 – volume: 29 start-page: 451 year: 2002 ident: 2020032613063761300_HYDRO-D-17-00151C3 article-title: A practical method for solving free-surface seepage problems publication-title: Comput. Geotech. doi: 10.1016/S0266-352X(02)00003-4 – volume: 12 start-page: 201 issue: 2 year: 2010 ident: 2020032613063761300_HYDRO-D-17-00151C4 article-title: Application of neuro-fuzzy model to estimate the characteristics of local scour downstream of stilling basins publication-title: J. Hydroinform. doi: 10.2166/hydro.2009.069 – volume: 131 start-page: 431 issue: 6 year: 2005 ident: 2020032613063761300_HYDRO-D-17-00151C20 article-title: Case study: finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland publication-title: J. Hydr. Eng. doi: 10.1061/(ASCE)0733-9429(2005)131:6(431) – volume-title: Applied Modeling of Hydrological Time Series year: 1990 ident: 2020032613063761300_HYDRO-D-17-00151C17 |
SSID | ssj0021381 |
Score | 2.4242861 |
Snippet | In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1071 |
SubjectTerms | Adaptive systems Artificial intelligence Dams Damsites Earth dams Finite element analysis Fuzzy logic Fuzzy systems Hydraulics Methods Modelling Neural networks Performance prediction Post-production processing Regression analysis Runoff Seepage Support vector machines Time series |
Title | Earthfill dam seepage analysis using ensemble artificial intelligence based modeling |
URI | https://www.proquest.com/docview/2129513200 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UDnoxPiOKpgcTTyt0293Wk1EDISYSYyDhtulrhWR5CHjg3zvtFpSD3jbb2T1805nptNP5ELqRNm4qqZOIU6EjpuFJ5EJFMs4J08wS7otoXrtpp89eBskgbLgtQlnl2id6R22m2u2RN8DFwmKAglIfZp-RY41yp6uBQmMXVWFciAqqPrW6b--blItQT1MK7sBVHTJStm2MSZo2hiszd7f_iLgjCdkOS9te2Yea9iE6CGtE_Fgq9Qjt2Mkx2gt05cPVCeq1QOHDfFQU2MgxXlgfU7AMDUawK2b_wJCg2rEq4P3cFwTBTMOjXx04sYtgBnsuHJA_Rf12q_fciQI9QqTBMJcRl5xDONdxHiuquUkkazIDyS5NlOWGGME1AC4lUVokmrvMgTIqmNTKXT-lZ6gymU7sOcKxEXlsWSrhI9ZURN0zaqyQYKFKSxPXULRGJ9Ohd7ijsCgyyCEcmplHM3NoZoBmDd1u5Gdl14w_JetrsLNgPYvsR9cX_w9fon33o7Lmq44qy_mXvYJFwlJdh5nwDbzUvVE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuNAEC1BOMBlBAwjYAL0gREnD-nF7p4DQixBYYsQChI305sJUgiZJAjlp_hGqr2wHODGzbLbLev1cy12dT2ATe1Zw2gbR5IrGwmLRypTJtIso8IKT2VeRHPeTlpX4uQ6vp6C52ovTCirrGxibqjdgw3fyLfRxGIwwHFRdwf_o6AaFf6uVhIaBS1O_eQJU7bRzvEhru8fxo6anYNWVKoKRBb5PI6klhK9oGUZM9xKF2vREA5zRB4bLx11Slp8Tq2psSq2MgTcXHAltDVh1ybHeadhRvCkwWows99sX1y-pniU57KoaH5ClaOgRZtIRpNkuztxw7DbkKq_NKYf3eBHL5C7tqN5-FHGpGSvINECTPn-IsyW8ujdyU_oNJFg3eyu1yNO35ORz30Y0WVDExKK528JJsT-3vTw_DAvQEJmk7t3HT9J8JiO5No7OH4Jrr4FuF9Q6z_0_TIQ5lTGvEg03iQahpp_gjuvNFoEY7VjKxBV6KS27FUeJDN6KeYsAc00RzMNaKaI5gpsvY4fFF06Ph1Zr8BOy7d1lL5xa_Xryxsw2-qcn6Vnx-3T3zAXJi3qzepQGw8f_RoGKGOzXrKCwM13E_EF_qj5Pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttAFL2CRCrdVDxFWgqzKGJlknk4M12gqkCipECEKpDYmXmZIIUkTVJV-TW-rnf8CLCAHTvLHo-sO8f3YZ-5B-Cb9qxhtI0jyZWNhMUjlSoTaZZSYYWnMiPRXPSanWvx6ya-WYLHci9MoFWWPjFz1G5kwzfyOrpYTAY4Lmo9LWgRl6ftH-M_UVCQCn9aSzmNHCJnfv4Py7fpUfcU13qfsXbr6qQTFQoDkUVszyKppcSIaFnKDLfSxVo0hMN6kcfGS0edkhafWWtqrIqtDMk3F1wJbU3Ywclx3mWoylAVVaB63Opd_l6Ue5RnEqnoigLjUdC8ZSSjzWa9P3eTsPOQqkMa05ch8WVEyMJcexU-Ffkp-ZkDag2W_HAdVgqp9P58A65aCLZ-ej8YEKcfyNRn8YzoorkJCUT6O4LFsX8wAzw_ychIiHJy_6z7JwnR05FMhwfHb8L1uxhuCyrD0dBvA2FOpcyLpsabRMNQ811w55VG72CsdqwGUWmdxBZ9y4N8xiDB-iVYM8msmQRrJmjNGhwsxo_zjh2vjtwpjZ0Ub-40ecLZ57cv78EHBGBy3u2dfYGPYc6cerYDldnkr_-KucrM7BagIHD73jj8D0sv_XM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Earthfill+dam+seepage+analysis+using+ensemble+artificial+intelligence+based+modeling&rft.jtitle=Journal+of+hydroinformatics&rft.au=Sharghi%2C+Elnaz&rft.au=Nourani%2C+Vahid&rft.au=Behfar%2C+Nazanin&rft.date=2018-09-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=20&rft.issue=5&rft.spage=1071&rft.epage=1084&rft_id=info:doi/10.2166%2Fhydro.2018.151&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2018_151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |