Earthfill dam seepage analysis using ensemble artificial intelligence based modeling

In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed Forward Neural Network, Support Vector Regression and Adaptive Neural Fuzzy Inference System) were employed to model seepage through the Sattar...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 20; no. 5; pp. 1071 - 1084
Main Authors Sharghi, Elnaz, Nourani, Vahid, Behfar, Nazanin
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed Forward Neural Network, Support Vector Regression and Adaptive Neural Fuzzy Inference System) were employed to model seepage through the Sattarkhan earthfill dam located in northwest Iran. Three different scenarios were considered where each scenario employs a specific input combination suitable for different real world conditions. Afterwards, an ensemble method as a post-processing approach was used to improve predicting performance of the water head through the dam and the results of the models were compared and evaluated. For this purpose, three methods of model ensemble (simple linear averaging, weighted linear averaging and non-linear neural ensemble) were employed and compared. The obtained results indicated that the model ensemble could lead to a promising improvement in seepage modeling. The results indicated that the ensembling method could increase the performance of AI modeling by up to 20% in the verification step.
AbstractList In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed Forward Neural Network, Support Vector Regression and Adaptive Neural Fuzzy Inference System) were employed to model seepage through the Sattarkhan earthfill dam located in northwest Iran. Three different scenarios were considered where each scenario employs a specific input combination suitable for different real world conditions. Afterwards, an ensemble method as a post-processing approach was used to improve predicting performance of the water head through the dam and the results of the models were compared and evaluated. For this purpose, three methods of model ensemble (simple linear averaging, weighted linear averaging and non-linear neural ensemble) were employed and compared. The obtained results indicated that the model ensemble could lead to a promising improvement in seepage modeling. The results indicated that the ensembling method could increase the performance of AI modeling by up to 20% in the verification step.
Author Sharghi, Elnaz
Behfar, Nazanin
Nourani, Vahid
Author_xml – sequence: 1
  givenname: Elnaz
  surname: Sharghi
  fullname: Sharghi, Elnaz
  organization: Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
– sequence: 2
  givenname: Vahid
  surname: Nourani
  fullname: Nourani, Vahid
  organization: Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran, Department of Civil Engineering, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
– sequence: 3
  givenname: Nazanin
  surname: Behfar
  fullname: Behfar, Nazanin
  organization: Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
BookMark eNp1kD1rwzAQhkVJoUnatbOgs12dJFv2WEL6AYEu6SxkSU4UFDmVlCH_vk7SqdDpjuN9jrtnhiZhCBahRyAlhbp-3p5MHEpKoCmhghs0BV5XBQjGJ5eeFwI43KFZSjtCKLAGpmi9VDFve-c9NmqPk7UHtbFYBeVPySV8TC5ssA3J7js_zmN2vdNOeexCtt67jQ3a4k4la_B-MNaP-Xt02yuf7MNvnaOv1-V68V6sPt8-Fi-rQjMiciGUENASTXvaMS1MpTjhpiWCVZ0VBkwjdA9cKeh0U2nRCj4-wxqudFdzIdgcPV33HuLwfbQpy91wjOPpSVKgbQWMEjKmymtKxyGlaHt5iG6v4kkCkWdz8mJOns3J0dwI8D-AdlllN4QclfP_YT9V9nY0
CitedBy_id crossref_primary_10_1016_j_envres_2019_108852
crossref_primary_10_5004_dwt_2023_29531
crossref_primary_10_1016_j_jhydrol_2021_126266
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1016_j_engappai_2023_105839
crossref_primary_10_1080_02626667_2025_2461705
crossref_primary_10_1007_s12665_019_8755_5
crossref_primary_10_1007_s11053_018_09450_9
crossref_primary_10_3390_atmos10020080
crossref_primary_10_1108_EC_06_2021_0331
crossref_primary_10_2166_hydro_2023_197
crossref_primary_10_1109_ACCESS_2021_3056588
crossref_primary_10_1007_s40710_019_00414_6
crossref_primary_10_1016_j_scitotenv_2021_151029
crossref_primary_10_2166_ws_2022_273
crossref_primary_10_1016_j_jhydrol_2024_131704
crossref_primary_10_1007_s11356_020_09689_x
crossref_primary_10_1007_s12145_023_01192_4
crossref_primary_10_1177_14759217241240130
crossref_primary_10_1007_s40808_022_01558_5
crossref_primary_10_2166_ws_2021_243
crossref_primary_10_1007_s12145_024_01342_2
crossref_primary_10_1016_j_jhydrol_2019_123962
crossref_primary_10_1007_s40996_024_01685_2
crossref_primary_10_2166_aqua_2023_235
crossref_primary_10_1007_s00477_023_02472_7
crossref_primary_10_1016_j_jclepro_2020_125772
crossref_primary_10_1007_s10706_023_02423_7
crossref_primary_10_1007_s13762_020_03002_6
crossref_primary_10_2166_aqua_2019_078
crossref_primary_10_1016_j_measurement_2021_109219
crossref_primary_10_1080_02626667_2021_1937179
crossref_primary_10_3390_w14223620
crossref_primary_10_31795_baunsobed_1545006
crossref_primary_10_3390_hydrology10080169
crossref_primary_10_1007_s40430_019_2109_9
crossref_primary_10_1016_j_dwt_2024_100188
crossref_primary_10_1088_2631_8695_acde47
crossref_primary_10_2166_aqua_2023_042
crossref_primary_10_2166_nh_2024_189
crossref_primary_10_1007_s11356_021_14133_9
crossref_primary_10_2166_hydro_2020_048
crossref_primary_10_2166_wst_2021_067
crossref_primary_10_1007_s11269_023_03629_3
crossref_primary_10_1007_s12665_023_10767_9
crossref_primary_10_1007_s40808_024_02196_9
crossref_primary_10_1016_j_eja_2024_127297
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_1007_s12145_023_01041_4
crossref_primary_10_2166_wst_2018_477
crossref_primary_10_1016_j_advengsoft_2022_103268
crossref_primary_10_1016_j_jhydrol_2019_123958
crossref_primary_10_1155_2021_6633760
crossref_primary_10_1051_e3sconf_202449702011
crossref_primary_10_1016_j_measurement_2019_07_048
crossref_primary_10_1007_s11356_021_15029_4
crossref_primary_10_1007_s40996_023_01164_0
crossref_primary_10_1016_j_jhydrol_2019_124434
crossref_primary_10_1016_j_flowmeasinst_2025_102849
crossref_primary_10_1080_02626667_2023_2241850
crossref_primary_10_1007_s11356_022_22373_6
crossref_primary_10_1007_s40996_024_01436_3
crossref_primary_10_1007_s41062_024_01744_7
crossref_primary_10_1007_s00704_024_05040_3
crossref_primary_10_3390_diagnostics12112861
crossref_primary_10_3390_w14172598
crossref_primary_10_1016_j_rineng_2024_103377
crossref_primary_10_1007_s12145_021_00615_4
crossref_primary_10_1016_j_ejrh_2021_100804
crossref_primary_10_1016_j_jclepro_2022_134588
crossref_primary_10_1109_ACCESS_2020_3017743
crossref_primary_10_1155_2021_5571296
Cites_doi 10.1016/j.jhydrol.2014.07.011
10.5430/air.v1n2p22
10.1016/S0022-1694(96)03259-3
10.2166/hydro.2013.134
10.1016/j.jhydrol.2016.11.033
10.1287/mnsc.29.9.987
10.1016/j.jenvman.2006.09.009
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1016/S0925-2312(01)00702-0
10.1016/j.jhydrol.2011.02.021
10.2166/hydro.2013.141
10.1016/S0266-352X(02)00003-4
10.2166/hydro.2009.069
10.1061/(ASCE)0733-9429(2005)131:6(431)
ContentType Journal Article
Copyright Copyright IWA Publishing Sep 2018
Copyright_xml – notice: Copyright IWA Publishing Sep 2018
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOI 10.2166/hydro.2018.151
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 1084
ExternalDocumentID 10_2166_hydro_2018_151
GeographicLocations Poland
New York
Iran
United States--US
GeographicLocations_xml – name: New York
– name: Iran
– name: Poland
– name: United States--US
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYOK
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
EJD
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c307t-7a77190c2f2b3c7d5a404d90735be7d1d87cf14aa1bc85c7974734384acb64773
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Sat Jul 26 01:02:57 EDT 2025
Thu Apr 24 22:50:18 EDT 2025
Tue Jul 01 04:10:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-7a77190c2f2b3c7d5a404d90735be7d1d87cf14aa1bc85c7974734384acb64773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/20/5/1071/656654/jh0201071.pdf
PQID 2129513200
PQPubID 2044529
PageCount 14
ParticipantIDs proquest_journals_2129513200
crossref_primary_10_2166_hydro_2018_151
crossref_citationtrail_10_2166_hydro_2018_151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2018
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2020032613063761300_HYDRO-D-17-00151C9) 1983; 29
(2020032613063761300_HYDRO-D-17-00151C12) 2012; 27
(2020032613063761300_HYDRO-D-17-00151C3) 2002; 29
(2020032613063761300_HYDRO-D-17-00151C22) 2013; 15
(2020032613063761300_HYDRO-D-17-00151C8) 1995; 7
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2020032613063761300_HYDRO-D-17-00151C2) 2000; 5
(2020032613063761300_HYDRO-D-17-00151C19) 1997; 197
(2020032613063761300_HYDRO-D-17-00151C4) 2010; 12
(2020032613063761300_HYDRO-D-17-00151C1) 2007; 85
(2020032613063761300_HYDRO-D-17-00151C5) 2016; 23
(2020032613063761300_HYDRO-D-17-00151C18) 2001; 36
(2020032613063761300_HYDRO-D-17-00151C17) 1990
(2020032613063761300_HYDRO-D-17-00151C21) 1998
(2020032613063761300_HYDRO-D-17-00151C7) 1997
(2020032613063761300_HYDRO-D-17-00151C15) 2014; 519
(2020032613063761300_HYDRO-D-17-00151C14) 2012; 1
(2020032613063761300_HYDRO-D-17-00151C10) 2011; 401
(2020032613063761300_HYDRO-D-17-00151C13) 2013; 15
(2020032613063761300_HYDRO-D-17-00151C16) 2014; 12
(2020032613063761300_HYDRO-D-17-00151C6) 1994
(2020032613063761300_HYDRO-D-17-00151C11) 2017; 544
(2020032613063761300_HYDRO-D-17-00151C23) 2012; 1
(2020032613063761300_HYDRO-D-17-00151C24) 2003; 50
(2020032613063761300_HYDRO-D-17-00151C20) 2005; 131
References_xml – volume-title: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
  year: 1997
  ident: 2020032613063761300_HYDRO-D-17-00151C7
– volume: 36
  start-page: 49
  issue: 1
  year: 2001
  ident: 2020032613063761300_HYDRO-D-17-00151C18
  article-title: Artificial neural network applications in geotechnical engineering
  publication-title: Aust. Geomech.
– volume: 7
  start-page: 231
  year: 1995
  ident: 2020032613063761300_HYDRO-D-17-00151C8
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Adv. Neur. Inform. Process. Syst.
– volume: 519
  start-page: 177
  year: 2014
  ident: 2020032613063761300_HYDRO-D-17-00151C15
  article-title: Unsteady 2-D seepage simulation using physical analog, case of Sattarkhan embankment dam
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.07.011
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 2020032613063761300_HYDRO-D-17-00151C21
– volume: 1
  start-page: 22
  issue: 2
  year: 2012
  ident: 2020032613063761300_HYDRO-D-17-00151C14
  article-title: Integrated ANN model for earthfill dams seepage analysis: Sattarkhan Dam in Iran
  publication-title: Artif. Intell. Res.
  doi: 10.5430/air.v1n2p22
– volume: 12
  start-page: 133
  issue: 2
  year: 2014
  ident: 2020032613063761300_HYDRO-D-17-00151C16
  article-title: Development of neuro-fuzzy model for dam seepage analysis
  publication-title: Ann. Faculty Eng. Hunedoara
– volume: 23
  start-page: 102
  year: 2016
  ident: 2020032613063761300_HYDRO-D-17-00151C5
  article-title: Prediction of head loss on cascade weir using ANN and SVM
  publication-title: ISH J. Hydr. Eng.
– volume: 197
  start-page: 203
  year: 1997
  ident: 2020032613063761300_HYDRO-D-17-00151C19
  article-title: Methods for combining the outputs of different rainfall-runoff models
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(96)03259-3
– volume: 15
  start-page: 1377
  year: 2013
  ident: 2020032613063761300_HYDRO-D-17-00151C22
  article-title: Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2013.134
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: 2020032613063761300_HYDRO-D-17-00151C6
– volume: 544
  start-page: 267
  year: 2017
  ident: 2020032613063761300_HYDRO-D-17-00151C11
  article-title: An emotional ANN (EANN) approach to modeling rainfall-runoff process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.033
– volume: 29
  start-page: 987
  issue: 9
  year: 1983
  ident: 2020032613063761300_HYDRO-D-17-00151C9
  article-title: Average of forecasts: some empirical results
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.29.9.987
– volume: 27
  start-page: 183
  issue: 2
  year: 2012
  ident: 2020032613063761300_HYDRO-D-17-00151C12
  article-title: Integration of artificial neural networks with radial basis function interpolation in earthfill dam seepage modeling
  publication-title: J. Comput. Civil Eng.
– volume: 85
  start-page: 215
  year: 2007
  ident: 2020032613063761300_HYDRO-D-17-00151C1
  article-title: Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2006.09.009
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  ident: 2020032613063761300_HYDRO-D-17-00151C2
  article-title: Artificial neural networks in hydrology. 2: Hydrology applications
  publication-title: . J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 50
  start-page: 159
  year: 2003
  ident: 2020032613063761300_HYDRO-D-17-00151C24
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 1
  start-page: 131
  year: 2012
  ident: 2020032613063761300_HYDRO-D-17-00151C23
  article-title: Prediction methods to determine stability of dam if there is piping
  publication-title: Inform. Eng. Res. Inst. Proc.
– volume: 401
  start-page: 177
  year: 2011
  ident: 2020032613063761300_HYDRO-D-17-00151C10
  article-title: Assessment of input variables determination on the SVM model performance using PCA, gamma test and forward selection techniques for monthly stream flow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.02.021
– volume: 15
  start-page: 829
  issue: 3
  year: 2013
  ident: 2020032613063761300_HYDRO-D-17-00151C13
  article-title: Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall–runoff modeling
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2013.141
– volume: 29
  start-page: 451
  year: 2002
  ident: 2020032613063761300_HYDRO-D-17-00151C3
  article-title: A practical method for solving free-surface seepage problems
  publication-title: Comput. Geotech.
  doi: 10.1016/S0266-352X(02)00003-4
– volume: 12
  start-page: 201
  issue: 2
  year: 2010
  ident: 2020032613063761300_HYDRO-D-17-00151C4
  article-title: Application of neuro-fuzzy model to estimate the characteristics of local scour downstream of stilling basins
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2009.069
– volume: 131
  start-page: 431
  issue: 6
  year: 2005
  ident: 2020032613063761300_HYDRO-D-17-00151C20
  article-title: Case study: finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland
  publication-title: J. Hydr. Eng.
  doi: 10.1061/(ASCE)0733-9429(2005)131:6(431)
– volume-title: Applied Modeling of Hydrological Time Series
  year: 1990
  ident: 2020032613063761300_HYDRO-D-17-00151C17
SSID ssj0021381
Score 2.4242861
Snippet In this paper, an ensemble artificial intelligence (AI) based model is proposed for seepage modeling. For this purpose, firstly several AI models (i.e. Feed...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1071
SubjectTerms Adaptive systems
Artificial intelligence
Dams
Damsites
Earth dams
Finite element analysis
Fuzzy logic
Fuzzy systems
Hydraulics
Methods
Modelling
Neural networks
Performance prediction
Post-production processing
Regression analysis
Runoff
Seepage
Support vector machines
Time series
Title Earthfill dam seepage analysis using ensemble artificial intelligence based modeling
URI https://www.proquest.com/docview/2129513200
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UDnoxPiOKpgcTTyt0293Wk1EDISYSYyDhtulrhWR5CHjg3zvtFpSD3jbb2T1805nptNP5ELqRNm4qqZOIU6EjpuFJ5EJFMs4J08wS7otoXrtpp89eBskgbLgtQlnl2id6R22m2u2RN8DFwmKAglIfZp-RY41yp6uBQmMXVWFciAqqPrW6b--blItQT1MK7sBVHTJStm2MSZo2hiszd7f_iLgjCdkOS9te2Yea9iE6CGtE_Fgq9Qjt2Mkx2gt05cPVCeq1QOHDfFQU2MgxXlgfU7AMDUawK2b_wJCg2rEq4P3cFwTBTMOjXx04sYtgBnsuHJA_Rf12q_fciQI9QqTBMJcRl5xDONdxHiuquUkkazIDyS5NlOWGGME1AC4lUVokmrvMgTIqmNTKXT-lZ6gymU7sOcKxEXlsWSrhI9ZURN0zaqyQYKFKSxPXULRGJ9Ohd7ijsCgyyCEcmplHM3NoZoBmDd1u5Gdl14w_JetrsLNgPYvsR9cX_w9fon33o7Lmq44qy_mXvYJFwlJdh5nwDbzUvVE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTuNAEC1BOMBlBAwjYAL0gREnD-nF7p4DQixBYYsQChI305sJUgiZJAjlp_hGqr2wHODGzbLbLev1cy12dT2ATe1Zw2gbR5IrGwmLRypTJtIso8IKT2VeRHPeTlpX4uQ6vp6C52ovTCirrGxibqjdgw3fyLfRxGIwwHFRdwf_o6AaFf6uVhIaBS1O_eQJU7bRzvEhru8fxo6anYNWVKoKRBb5PI6klhK9oGUZM9xKF2vREA5zRB4bLx11Slp8Tq2psSq2MgTcXHAltDVh1ybHeadhRvCkwWows99sX1y-pniU57KoaH5ClaOgRZtIRpNkuztxw7DbkKq_NKYf3eBHL5C7tqN5-FHGpGSvINECTPn-IsyW8ujdyU_oNJFg3eyu1yNO35ORz30Y0WVDExKK528JJsT-3vTw_DAvQEJmk7t3HT9J8JiO5No7OH4Jrr4FuF9Q6z_0_TIQ5lTGvEg03iQahpp_gjuvNFoEY7VjKxBV6KS27FUeJDN6KeYsAc00RzMNaKaI5gpsvY4fFF06Ph1Zr8BOy7d1lL5xa_Xryxsw2-qcn6Vnx-3T3zAXJi3qzepQGw8f_RoGKGOzXrKCwM13E_EF_qj5Pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttAFL2CRCrdVDxFWgqzKGJlknk4M12gqkCipECEKpDYmXmZIIUkTVJV-TW-rnf8CLCAHTvLHo-sO8f3YZ-5B-Cb9qxhtI0jyZWNhMUjlSoTaZZSYYWnMiPRXPSanWvx6ya-WYLHci9MoFWWPjFz1G5kwzfyOrpYTAY4Lmo9LWgRl6ftH-M_UVCQCn9aSzmNHCJnfv4Py7fpUfcU13qfsXbr6qQTFQoDkUVszyKppcSIaFnKDLfSxVo0hMN6kcfGS0edkhafWWtqrIqtDMk3F1wJbU3Ywclx3mWoylAVVaB63Opd_l6Ue5RnEqnoigLjUdC8ZSSjzWa9P3eTsPOQqkMa05ch8WVEyMJcexU-Ffkp-ZkDag2W_HAdVgqp9P58A65aCLZ-ej8YEKcfyNRn8YzoorkJCUT6O4LFsX8wAzw_ychIiHJy_6z7JwnR05FMhwfHb8L1uxhuCyrD0dBvA2FOpcyLpsabRMNQ811w55VG72CsdqwGUWmdxBZ9y4N8xiDB-iVYM8msmQRrJmjNGhwsxo_zjh2vjtwpjZ0Ub-40ecLZ57cv78EHBGBy3u2dfYGPYc6cerYDldnkr_-KucrM7BagIHD73jj8D0sv_XM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Earthfill+dam+seepage+analysis+using+ensemble+artificial+intelligence+based+modeling&rft.jtitle=Journal+of+hydroinformatics&rft.au=Sharghi%2C+Elnaz&rft.au=Nourani%2C+Vahid&rft.au=Behfar%2C+Nazanin&rft.date=2018-09-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=20&rft.issue=5&rft.spage=1071&rft.epage=1084&rft_id=info:doi/10.2166%2Fhydro.2018.151&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2018_151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon