Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome
The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle character...
Saved in:
Published in | Current biology Vol. 35; no. 10; pp. 2282 - 2294.e11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
19.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001–0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.
[Display omitted]
•The human gut contains a high density of phage genomes but few phage particles•Most gut phage utilize a temperate or otherwise host-associated lifestyle•Phage induction occurs at a low frequency, implying a low fitness cost to bacteria•Current computational methods overestimate the prevalence of lytic gut phage
Lopez et al. combine multiple classes of data and mathematical modeling to provide a quantitative view of gut virome ecology. They find an ecosystem dominated largely by quiescent phage that exist within host bacteria, in strong contrast to more lytic ecosystems such as the surface ocean. |
---|---|
AbstractList | The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health. The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001–0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health. [Display omitted] •The human gut contains a high density of phage genomes but few phage particles•Most gut phage utilize a temperate or otherwise host-associated lifestyle•Phage induction occurs at a low frequency, implying a low fitness cost to bacteria•Current computational methods overestimate the prevalence of lytic gut phage Lopez et al. combine multiple classes of data and mathematical modeling to provide a quantitative view of gut virome ecology. They find an ecosystem dominated largely by quiescent phage that exist within host bacteria, in strong contrast to more lytic ecosystems such as the surface ocean. The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health.The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only beginning to be uncovered. Here, we combine multiple types of data to quantitatively estimate gut phage population dynamics and lifestyle characteristics in human subjects. Unifying results from previous studies, we show that an average human gut contains a low ratio of phage particles to bacterial cells (∼1:100) but a much larger ratio of phage genomes to bacterial genomes (∼4:1), implying that most gut phage are effectively temperate (e.g., integrated prophage and phage-plasmids). By integrating imaging and sequencing data with a generalized model of temperate phage dynamics, we estimate that phage induction and lysis occur at a low average rate (∼0.001-0.01 per bacterium per day), imposing only a modest fitness burden on their bacterial hosts. Consistent with these estimates, we find that the phage composition of a diverse synthetic community in gnotobiotic mice can be quantitatively predicted from bacterial abundances alone while still exhibiting phage diversity comparable to native human microbiomes. These results provide a foundation for interpreting existing and future studies on links between the gut virome and human health. |
Author | Lopez, Jamie Alcira Good, Benjamin H. Nguyen, Taylor H. McKeithen-Mead, Saria Huang, Kerwyn Casey Shi, Handuo |
Author_xml | – sequence: 1 givenname: Jamie Alcira surname: Lopez fullname: Lopez, Jamie Alcira organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 2 givenname: Saria surname: McKeithen-Mead fullname: McKeithen-Mead, Saria organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 3 givenname: Handuo surname: Shi fullname: Shi, Handuo organization: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 4 givenname: Taylor H. surname: Nguyen fullname: Nguyen, Taylor H. organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Kerwyn Casey orcidid: 0000-0002-8043-8138 surname: Huang fullname: Huang, Kerwyn Casey email: kchuang@stanford.edu organization: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA – sequence: 6 givenname: Benjamin H. surname: Good fullname: Good, Benjamin H. email: bhgood@stanford.edu organization: Department of Applied Physics, Stanford University, Stanford, CA 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40300605$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMFu2zAMhoUhw5qme4BdBh13sUtJthRjp6DY1gIFeunOqiTTiQJb7iS7Rd5-StLt2BMJ8PsJ8rskizAGJOQLg5IBk9f70s225MDrEkQJSnwgS7ZWTQFVVS_IEhoJRbPm_IJcprQHYHzdyE_kogIBIKFekqeNnUNrgkM6oElzxAHDlGjEFzQ9nXZIrelPc4vTK2Kg_SH5RE1oj924xXCgPpzI3TyYQLfzRAfv4mj9OOAV-diZPuHnt7oiv3_-eLy5Le4fft3dbO4LJ0BNhcSOWw7Kqa7lnbSMW1tZkQ-uaofOKDBScY5YW-gUOmm5VVUFtkawnWBiRb6d9z7H8c-MadKDTw77fDuOc9KCNUpWWUGd0a9v6GwHbPVz9IOJB_3PSgbYGchPpBSx-48w0Efzeq-zeX00r0HobD5nvp8zmJ988Rh1ch6zt9ZHdJNuR_9O-i-bb4vx |
Cites_doi | 10.1073/pnas.1906958116 10.1038/nature17193 10.1126/sciimmunol.abn6660 10.7554/eLife.87192 10.1128/msystems.00326-22 10.1016/j.cell.2023.05.046 10.1371/journal.pbio.1002533 10.1371/journal.pgen.1005861 10.1080/19490976.2019.1701353 10.1073/pnas.1319470110 10.1016/0040-5809(84)90026-1 10.1053/j.gastro.2021.06.056 10.1128/msystems.00084-22 10.1038/s41467-024-51913-6 10.1093/bib/bbac487 10.1016/j.chom.2024.04.001 10.1073/pnas.1619598114 10.1038/s41467-022-31390-5 10.1126/science.aaf8451 10.1093/ve/veaa042 10.1371/journal.pbio.2005971 10.1038/s41586-023-05989-7 10.1186/s40168-018-0446-z 10.4319/lo.2000.45.6.1320 10.3389/fmicb.2021.785634 10.1128/AEM.01922-19 10.1038/s41586-020-2192-1 10.1038/nrmicro3552 10.1007/BF00166813 10.1038/s41564-022-01178-w 10.7554/eLife.46923 10.1098/rstb.1989.0106 10.1016/j.isci.2023.106007 10.1016/j.cell.2012.10.052 10.1186/s40168-021-01036-7 10.1038/ncomms1146 10.1086/605375 10.1126/science.abb1083 10.1038/s41564-023-01348-4 10.1038/s41564-021-00928-6 10.1099/00221287-143-1-179 10.1186/s12915-021-01084-3 10.1126/science.aan3706 10.1038/s41587-023-01799-4 10.1038/nature09199 10.1038/ismej.2016.79 10.1016/j.isci.2021.102900 10.1016/j.chom.2023.03.013 10.1038/npjbiofilms.2016.10 10.1002/hep.31459 10.1128/AEM.06331-11 10.1038/s41467-018-07225-7 10.1073/pnas.2114931119 10.1016/j.tim.2012.10.005 10.1016/S2666-5247(22)00203-8 10.1016/j.chom.2019.09.009 10.1016/j.cell.2022.08.003 10.1186/s40168-022-01275-2 10.1038/srep39642 10.1038/s41598-020-75490-y 10.1016/j.cell.2021.01.029 10.1371/journal.ppat.1004810 10.1093/ve/veae104 10.1093/ve/veae028 10.1038/s41396-021-01107-5 10.3390/v13030455 10.1103/PhysRevE.82.011918 10.1038/ismej.2011.101 10.1038/nature23295 10.1053/j.gastro.2016.11.010 10.1186/1471-2180-11-174 10.1038/s41587-023-01953-y 10.1073/pnas.1305923110 10.1038/s41564-023-01370-6 10.1038/21119 10.1093/nar/gks251 10.7717/peerj.11396 10.1186/s40168-018-0507-3 10.1038/nrmicro1750 10.1093/gigascience/giaa008 10.1038/s41587-020-0603-3 10.5056/jnm.2014.20.2.265 10.1038/s41564-018-0166-y 10.1038/s43018-023-00669-x 10.1038/s41591-019-0458-7 10.1073/pnas.1701670114 10.1038/s41467-024-45257-4 10.1085/jgp.22.3.365 10.1016/j.resmic.2014.10.006 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cub.2025.03.073 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 2294.e11 |
ExternalDocumentID | 40300605 10_1016_j_cub_2025_03_073 S0960982225003896 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM146949 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 4.4 457 4G. 5GY 62- 6J9 7-5 AAEDT AAEDW AAFWJ AAKRW AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ADBBV ADEZE AEFWE AENEX AFTJW AGCQF AGHSJ AGKMS AGUBO AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P ROL RPZ SCP SDG SES SEW SSZ TR2 29F 2WC 53G 5VS AAIKJ AAQFI AAQXK AAYXX ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AEXQZ AFPUW AGHFR AGQPQ AHHHB AIGII AKBMS AKYEP ASPBG AVWKF CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- RIG UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c307t-6ef2b207c7fd2f6b12bb4b312845ceca70a6722ee5b0f7ec6b2b7440b5e0bf313 |
ISSN | 0960-9822 1879-0445 |
IngestDate | Wed Jul 02 04:52:28 EDT 2025 Mon Jul 21 02:03:49 EDT 2025 Sun Jul 06 05:07:53 EDT 2025 Sat Jun 14 16:52:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | virome gut microbiome induction metagenomics mathematical modeling microbial ecology bacteriophage virus virus-to-microbe ratio population dynamics |
Language | English |
License | Copyright © 2025 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-6ef2b207c7fd2f6b12bb4b312845ceca70a6722ee5b0f7ec6b2b7440b5e0bf313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8043-8138 |
PMID | 40300605 |
PQID | 3197640015 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3197640015 pubmed_primary_40300605 crossref_primary_10_1016_j_cub_2025_03_073 elsevier_sciencedirect_doi_10_1016_j_cub_2025_03_073 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-19 |
PublicationDateYYYYMMDD | 2025-05-19 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Diard, Bakkeren, Cornuault, Moor, Hausmann, Sellin, Loverdo, Aertsen, Ackermann, De Paepe (bib73) 2017; 355 Almeida, Nayfach, Boland, Strozzi, Beracochea, Shi, Pollard, Sakharova, Parks, Hugenholtz (bib35) 2021; 39 Suttle (bib18) 2007; 5 De Paepe, Tournier, Moncaut, Son, Langella, Petit (bib94) 2016; 12 Dennehy, Wang (bib52) 2011; 11 Jiang, Lang, Duan, Zhang, Gao, Chopyk, Schwanemann, Ventura-Cots, Bataller, Bosques-Padilla (bib70) 2020; 72 Oh, Lin, Zhang, Tollenaar, Özçam, Dunphy, Walter, Van Pijkeren (bib67) 2019; 86 Berngruber, Lion, Gandon (bib62) 2015; 11 Fuhrman (bib17) 1999; 399 Sutcliffe, Reyes, Maurice (bib60) 2023; 26 Breitbart, Bonnain, Malki, Sawaya (bib21) 2018; 3 Maurice, Haiser, Turnbaugh (bib96) 2013; 152 Wu, Fu, Hou, Wang, Ji, Xue, Ren, Dai, Barr, Tang (bib77) 2024; 15 Ghosh, Good (bib80) 2022; 119 Wang, Kim, Ma, Hong, Pokusaeva, Sturino, Wood (bib38) 2010; 1 Shalon, Culver, Grembi, Folz, Treit, Shi, Rosenberger, Dethlefsen, Meng, Yaffe (bib54) 2023; 617 Reyes, Wu, McNulty, Rohwer, Gordon (bib8) 2013; 110 Browne, Nielsen, Kot, Aggerholm, Gilbert, Puetz, Rasmussen, Zervas, Hansen (bib97) 2020; 9 Shkoporov, Khokhlova, Stephens, Hueston, Seymour, Hryckowian, Scholz, Ross, Hill (bib29) 2021; 19 Donaldson, Lee, Mazmanian (bib79) 2016; 14 Stewart, Levin (bib41) 1984; 26 Messinger, Ostling (bib63) 2009; 174 Lucia-Sanz, Peng, Leung, Gupta, Meyer, Weitz (bib84) 2024; 10 Yachida, Mizutani, Shiroma, Shiba, Nakajima, Sakamoto, Watanabe, Masuda, Nishimoto, Kubo (bib93) 2019; 25 Camargo, Roux, Schulz, Babinski, Xu, Hu, Chain, Nayfach, Kyrpides (bib89) 2024; 42 Lee, Erdogan, Rao (bib46) 2014; 20 Shkoporov, Khokhlova, Fitzgerald, Stockdale, Draper, Ross, Hill (bib48) 2018; 9 Wilde, Boyes, Robinson, Daisley, Botschner, Brettingham, Macpherson, Mallory, Allen-Vercoe (bib56) 2024; 32 Parsons, Breitbart, Lomas, Carlson (bib49) 2012; 6 Knowles, Silveira, Bailey, Barott, Cantu, Cobián-Güemes, Coutinho, Dinsdale, Felts, Furby (bib65) 2016; 531 Maslov, Sneppen (bib23) 2017; 7 Kieft, Anantharaman (bib43) 2022; 7 Carter, Olm, Merrill, Dahan, Tripathi, Spencer, Yu, Jain, Neff, Jha (bib72) 2023; 186 Kim, Park, Roh, Bae (bib27) 2011; 77 Mahmoudabadi, Milo, Phillips (bib53) 2017; 114 Routy, Le Chatelier, Derosa, Duong, Alou, Daillère, Fluckiger, Messaoudene, Rauber, Roberti (bib1) 2018; 359 McLaren, Willis, Callahan (bib39) 2019; 8 Hussain, Dubert, Elsherbini, Murphy, VanInsberghe, Arevalo, Kauffman, Rodino-Janeiro, Gavin, Gomez (bib20) 2021; 374 Johansen, Atarashi, Arai, Hirose, Sørensen, Vatanen, Knip, Honda, Xavier, Rasmussen (bib12) 2023; 8 Ramos-Barbero, Gómez-Gómez, Sala-Comorera, Rodríguez-Rubio, Morales-Cortes, Mendoza-Barberá, Vique, Toribio-Avedillo, Blanch, Ballesté (bib47) 2023; 14 Wang, Goldenfeld (bib45) 2010; 82 Reyes, Haynes, Hanson, Angly, Heath, Rohwer, Gordon (bib59) 2010; 466 Chaudhry, Pleška, Shah, Weiss, McCall, Meyer, Gupta, Guet, Levin (bib83) 2018; 16 Adiliaghdam, Amatullah, Digumarthi, Saunders, Rahman, Wong, Sadreyev, Droit, Paquette, Goyette (bib16) 2022; 7 Angly, Willner, Rohwer, Hugenholtz, Tyson (bib87) 2012; 40 Hu, Ye, Wang, Wang, Han (bib75) 2021; 12 Bushnell, B. (2022). BBMap. sourceforge.net/projects/bbmap de Jonge, Wortelboer, Scheithauer, van den Born, Zwinderman, Nobrega, Dutilh, Nieuwdorp, Herrema (bib69) 2022; 13 Hadas, Einav, Fishov, Zaritsky (bib51) 1997; 143 Garmaeva, Sinha, Gulyaeva, Kuzub, Spreckels, Andreu-Sánchez, Gacesa, Vich Vila, Brushett, Kruk (bib82) 2024; 15 Geng, Nguyen, Homaee, Golding (bib42) 2024; 15 Shang, Tang, Sun (bib58) 2023; 24 Liang, Zhao, Zhang, Mattei, Sherrill-Mix, Bittinger, Kessler, Wu, Baldassano, DeRusso (bib24) 2020; 581 McNulty, Sritharan, Pahng, Meisch, Liu, Brennan, Saxer, Hormoz, Rosenthal (bib85) 2023; 8 Sender, Fuchs, Milo (bib30) 2016; 14 Yang, Niu, Zuo, Sun, Xu, Tang, Liu, Zhang, Ng, Wong (bib68) 2021; 161 Nayfach, Páez-Espino, Call, Low, Sberro, Ivanova, Proal, Fischbach, Bhatt, Hugenholtz (bib4) 2021; 6 Dahlman, Avellaneda-Franco, Kett, Subedi, Young, Gould, Rutten, Gilliver, Turkington, Nezam-Abadi (bib28) 2023 Parras-Moltó, Rodríguez-Galet, Suárez-Rodríguez, López-Bueno (bib31) 2018; 6 Pinto, Chakraborty, Jain, Bhatt (bib25) 2024; 42 Brunse, Deng, Pan, Hui, Castro-Mejía, Kot, Nguyen, Secher, Nielsen, Thymann (bib13) 2022; 16 López-Leal, Camelo-Valera, Hurtado-Ramírez, Verleyen, Castillo-Ramírez, Reyes-Muñoz (bib36) 2022; 7 Schmidtke, Hickey, Liachko, Sherlock, Bhatt (bib37) 2024 Roughgarden (bib64) 2024; 10 Hockenberry, Wilke (bib57) 2021; 9 Acosta, Little, Bratton, Lopez, Mao, Payne, Donia, Devenport, Gitai (bib95) 2023; 12 Guerin, Shkoporov, Stockdale, Comas, Khokhlova, Clooney, Daly, Draper, Stephens, Scholz (bib6) 2021; 9 Shkoporov, Clooney, Sutton, Ryan, Daly, Nolan, McDonnell, Khokhlova, Draper, Forde (bib26) 2019; 26 Sinha, Li, Mirzaei, Shamash, Samadfam, King, Maurice (bib15) 2022; 10 Ott, Waetzig, Rehman, Moltzau-Anderson, Bharti, Grasis, Cassidy, Tholey, Fickenscher, Seegert (bib14) 2017; 152 Camarillo-Guerrero, Almeida, Rangel-Pineros, Finn, Lawley (bib5) 2021; 184 Kaletta, Pickl, Griebler, Klingl, Kurmayer, Deng (bib33) 2020; 10 Forterre, Soler, Krupovic, Marguet, Ackermann (bib32) 2013; 21 Shkoporov, Ryan, Draper, Forde, Stockdale, Daly, McDonnell, Nolan, Sutton, Dalmasso (bib34) 2018; 6 Frazão, Sousa, Lässig, Gordo (bib11) 2019; 116 Weitz, Beckett, Brum, Cael, Dushoff (bib66) 2017; 549 Li, Cortez, Dushoff, Weitz (bib40) 2020; 6 Thingstad (bib22) 2000; 45 Sutcliffe, Shamash, Hynes, Maurice (bib9) 2021; 13 Silveira, Rohwer (bib61) 2016; 2 Ellis, Delbrück (bib50) 1939; 22 Cheng, Ho, Aranda-Díaz, Jain, Yu, Meng, Wang, Iakiviak, Nagashima, Zhao (bib55) 2022; 185 Boling, Cuevas, Grasis, Kang, Knowles, Levi, Maughan, McNair, Rojas, Sanchez (bib74) 2020; 11 Terzian, Olo Ndela, Galiez, Lossouarn, Pérez Bucio, Mom, Toussaint, Petit, Enault (bib88) 2021; 3 Zhang, Aschenbrenner, Yoo, Zuo (bib3) 2022; 3 Shen, Zhang, Mo, Li, Li, Li, Kuang, Tao, Qu, Wu (bib7) 2023; 31 Suttle (bib19) 1994; 28 Barr, Auro, Furlan, Whiteson, Erb, Pogliano, Stotland, Wolkowicz, Cutting, Doran (bib78) 2013; 110 Thiele Orberg, Meedt, Hiergeist, Xue, Heinrich, Ru, Ghimire, Miltiadous, Lindner, Tiefgraber (bib2) 2024; 5 Bondy-Denomy, Qian, Westra, Buckling, Guttman, Davidson, Maxwell (bib44) 2016; 10 Grafen (bib71) 1989; 326 Cremer, Arnoldini, Hwa (bib81) 2017; 114 Hoyles, McCartney, Neve, Gibson, Sanderson, Heller, van Sinderen (bib92) 2014; 165 Borodovich, Shkoporov, Ross, Hill (bib10) 2022; 10 Bikel, López-Leal, Cornejo-Granados, Gallardo-Becerra, García-López, Sánchez, Equihua-Medina, Ochoa-Romo, López-Contreras, Canizales-Quinteros (bib91) 2021; 24 San Millan, Peña-Miller, Toll-Riera, Halbert, McLean, Cooper, MacLean (bib90) 2014; 5 Shkoporov, Stockdale, Lavelle, Kondova, Heuston, Upadrasta, Khokhlova, Van Der Kamp, Ouwerling, Draper (bib76) 2022; 7 Kaletta (10.1016/j.cub.2025.03.073_bib33) 2020; 10 Liang (10.1016/j.cub.2025.03.073_bib24) 2020; 581 Zhang (10.1016/j.cub.2025.03.073_bib3) 2022; 3 Lee (10.1016/j.cub.2025.03.073_bib46) 2014; 20 Wu (10.1016/j.cub.2025.03.073_bib77) 2024; 15 McNulty (10.1016/j.cub.2025.03.073_bib85) 2023; 8 Berngruber (10.1016/j.cub.2025.03.073_bib62) 2015; 11 Thingstad (10.1016/j.cub.2025.03.073_bib22) 2000; 45 Lucia-Sanz (10.1016/j.cub.2025.03.073_bib84) 2024; 10 Hadas (10.1016/j.cub.2025.03.073_bib51) 1997; 143 Angly (10.1016/j.cub.2025.03.073_bib87) 2012; 40 Browne (10.1016/j.cub.2025.03.073_bib97) 2020; 9 Parsons (10.1016/j.cub.2025.03.073_bib49) 2012; 6 Guerin (10.1016/j.cub.2025.03.073_bib6) 2021; 9 Shalon (10.1016/j.cub.2025.03.073_bib54) 2023; 617 Maslov (10.1016/j.cub.2025.03.073_bib23) 2017; 7 Donaldson (10.1016/j.cub.2025.03.073_bib79) 2016; 14 de Jonge (10.1016/j.cub.2025.03.073_bib69) 2022; 13 Wang (10.1016/j.cub.2025.03.073_bib45) 2010; 82 Forterre (10.1016/j.cub.2025.03.073_bib32) 2013; 21 Fuhrman (10.1016/j.cub.2025.03.073_bib17) 1999; 399 10.1016/j.cub.2025.03.073_bib86 Terzian (10.1016/j.cub.2025.03.073_bib88) 2021; 3 Sutcliffe (10.1016/j.cub.2025.03.073_bib9) 2021; 13 Shang (10.1016/j.cub.2025.03.073_bib58) 2023; 24 Frazão (10.1016/j.cub.2025.03.073_bib11) 2019; 116 Hussain (10.1016/j.cub.2025.03.073_bib20) 2021; 374 Yang (10.1016/j.cub.2025.03.073_bib68) 2021; 161 Li (10.1016/j.cub.2025.03.073_bib40) 2020; 6 Roughgarden (10.1016/j.cub.2025.03.073_bib64) 2024; 10 Almeida (10.1016/j.cub.2025.03.073_bib35) 2021; 39 Schmidtke (10.1016/j.cub.2025.03.073_bib37) 2024 Hoyles (10.1016/j.cub.2025.03.073_bib92) 2014; 165 Dahlman (10.1016/j.cub.2025.03.073_bib28) 2023 Shkoporov (10.1016/j.cub.2025.03.073_bib76) 2022; 7 Silveira (10.1016/j.cub.2025.03.073_bib61) 2016; 2 Knowles (10.1016/j.cub.2025.03.073_bib65) 2016; 531 Weitz (10.1016/j.cub.2025.03.073_bib66) 2017; 549 Shen (10.1016/j.cub.2025.03.073_bib7) 2023; 31 Bondy-Denomy (10.1016/j.cub.2025.03.073_bib44) 2016; 10 Grafen (10.1016/j.cub.2025.03.073_bib71) 1989; 326 López-Leal (10.1016/j.cub.2025.03.073_bib36) 2022; 7 Suttle (10.1016/j.cub.2025.03.073_bib18) 2007; 5 Mahmoudabadi (10.1016/j.cub.2025.03.073_bib53) 2017; 114 Camargo (10.1016/j.cub.2025.03.073_bib89) 2024; 42 Bikel (10.1016/j.cub.2025.03.073_bib91) 2021; 24 Suttle (10.1016/j.cub.2025.03.073_bib19) 1994; 28 Shkoporov (10.1016/j.cub.2025.03.073_bib26) 2019; 26 Shkoporov (10.1016/j.cub.2025.03.073_bib34) 2018; 6 Messinger (10.1016/j.cub.2025.03.073_bib63) 2009; 174 Brunse (10.1016/j.cub.2025.03.073_bib13) 2022; 16 Oh (10.1016/j.cub.2025.03.073_bib67) 2019; 86 Carter (10.1016/j.cub.2025.03.073_bib72) 2023; 186 Routy (10.1016/j.cub.2025.03.073_bib1) 2018; 359 Kieft (10.1016/j.cub.2025.03.073_bib43) 2022; 7 Parras-Moltó (10.1016/j.cub.2025.03.073_bib31) 2018; 6 Garmaeva (10.1016/j.cub.2025.03.073_bib82) 2024; 15 Sutcliffe (10.1016/j.cub.2025.03.073_bib60) 2023; 26 Chaudhry (10.1016/j.cub.2025.03.073_bib83) 2018; 16 Wilde (10.1016/j.cub.2025.03.073_bib56) 2024; 32 Maurice (10.1016/j.cub.2025.03.073_bib96) 2013; 152 Reyes (10.1016/j.cub.2025.03.073_bib8) 2013; 110 Ramos-Barbero (10.1016/j.cub.2025.03.073_bib47) 2023; 14 Johansen (10.1016/j.cub.2025.03.073_bib12) 2023; 8 De Paepe (10.1016/j.cub.2025.03.073_bib94) 2016; 12 McLaren (10.1016/j.cub.2025.03.073_bib39) 2019; 8 Diard (10.1016/j.cub.2025.03.073_bib73) 2017; 355 Ott (10.1016/j.cub.2025.03.073_bib14) 2017; 152 Adiliaghdam (10.1016/j.cub.2025.03.073_bib16) 2022; 7 Dennehy (10.1016/j.cub.2025.03.073_bib52) 2011; 11 Cremer (10.1016/j.cub.2025.03.073_bib81) 2017; 114 Sinha (10.1016/j.cub.2025.03.073_bib15) 2022; 10 Hockenberry (10.1016/j.cub.2025.03.073_bib57) 2021; 9 Thiele Orberg (10.1016/j.cub.2025.03.073_bib2) 2024; 5 Breitbart (10.1016/j.cub.2025.03.073_bib21) 2018; 3 Pinto (10.1016/j.cub.2025.03.073_bib25) 2024; 42 Geng (10.1016/j.cub.2025.03.073_bib42) 2024; 15 Sender (10.1016/j.cub.2025.03.073_bib30) 2016; 14 Acosta (10.1016/j.cub.2025.03.073_bib95) 2023; 12 Borodovich (10.1016/j.cub.2025.03.073_bib10) 2022; 10 Kim (10.1016/j.cub.2025.03.073_bib27) 2011; 77 Hu (10.1016/j.cub.2025.03.073_bib75) 2021; 12 Jiang (10.1016/j.cub.2025.03.073_bib70) 2020; 72 Yachida (10.1016/j.cub.2025.03.073_bib93) 2019; 25 Boling (10.1016/j.cub.2025.03.073_bib74) 2020; 11 San Millan (10.1016/j.cub.2025.03.073_bib90) 2014; 5 Wang (10.1016/j.cub.2025.03.073_bib38) 2010; 1 Stewart (10.1016/j.cub.2025.03.073_bib41) 1984; 26 Barr (10.1016/j.cub.2025.03.073_bib78) 2013; 110 Shkoporov (10.1016/j.cub.2025.03.073_bib29) 2021; 19 Shkoporov (10.1016/j.cub.2025.03.073_bib48) 2018; 9 Ghosh (10.1016/j.cub.2025.03.073_bib80) 2022; 119 Ellis (10.1016/j.cub.2025.03.073_bib50) 1939; 22 Nayfach (10.1016/j.cub.2025.03.073_bib4) 2021; 6 Reyes (10.1016/j.cub.2025.03.073_bib59) 2010; 466 Camarillo-Guerrero (10.1016/j.cub.2025.03.073_bib5) 2021; 184 Cheng (10.1016/j.cub.2025.03.073_bib55) 2022; 185 39386523 - bioRxiv. 2024 Dec 11:2024.09.27.614587. doi: 10.1101/2024.09.27.614587. |
References_xml | – volume: 20 start-page: 265 year: 2014 end-page: 270 ident: bib46 article-title: How to assess regional and whole gut transit time with wireless motility capsule publication-title: J. Neurogastroenterol. Motil. – volume: 152 start-page: 39 year: 2013 end-page: 50 ident: bib96 article-title: Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome publication-title: Cell – volume: 10 year: 2024 ident: bib64 article-title: Lytic/Lysogenic Transition as a Life-History Switch publication-title: Virus Evol. – volume: 24 year: 2021 ident: bib91 article-title: Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome publication-title: iScience – volume: 359 start-page: 91 year: 2018 end-page: 97 ident: bib1 article-title: Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors publication-title: Science – volume: 7 year: 2022 ident: bib16 article-title: Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation publication-title: Sci. Immunol. – volume: 3 start-page: 754 year: 2018 end-page: 766 ident: bib21 article-title: Phage puppet masters of the marine microbial realm publication-title: Nat. Microbiol. – volume: 161 start-page: 1257 year: 2021 end-page: 1269.e13 ident: bib68 article-title: Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus publication-title: Gastroenterology – volume: 581 start-page: 470 year: 2020 end-page: 474 ident: bib24 article-title: The stepwise assembly of the neonatal virome is modulated by breastfeeding publication-title: Nature – volume: 14 year: 2016 ident: bib30 article-title: Revised estimates for the number of human and bacteria cells in the body publication-title: PLoS Biol. – volume: 6 start-page: 119 year: 2018 ident: bib31 article-title: Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses publication-title: Microbiome – volume: 19 start-page: 163 year: 2021 ident: bib29 article-title: Long-term persistence of crAss-like phage crAss001 is associated with phase variation in publication-title: BMC Biol. – volume: 8 year: 2019 ident: bib39 article-title: Consistent and correctable bias in metagenomic sequencing experiments publication-title: eLife – volume: 152 start-page: 799 year: 2017 end-page: 811.e7 ident: bib14 article-title: Efficacy of sterile fecal filtrate transfer for treating patients with publication-title: Gastroenterology – volume: 14 start-page: 20 year: 2016 end-page: 32 ident: bib79 article-title: Gut biogeography of the bacterial microbiota publication-title: Nat. Rev. Microbiol. – volume: 10 start-page: 105 year: 2022 ident: bib15 article-title: Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis publication-title: Microbiome – volume: 6 start-page: 68 year: 2018 ident: bib34 article-title: Reproducible protocols for metagenomic analysis of human faecal phageomes publication-title: Microbiome – year: 2023 ident: bib28 article-title: Temperate gut phages are prevalent, diverse, and predominantly inactive publication-title: bioRxiv – volume: 26 start-page: 93 year: 1984 end-page: 117 ident: bib41 article-title: The population biology of bacterial viruses: why be temperate publication-title: Theor. Popul. Biol. – volume: 12 year: 2021 ident: bib75 article-title: Prophage activation in the intestine: insights into functions and possible applications publication-title: Front. Microbiol. – volume: 531 start-page: 466 year: 2016 end-page: 470 ident: bib65 article-title: Lytic to temperate switching of viral communities publication-title: Nature – volume: 40 year: 2012 ident: bib87 article-title: Grinder: a versatile amplicon and shotgun sequence simulator publication-title: Nucleic Acids Res. – volume: 2 year: 2016 ident: bib61 article-title: Piggyback-the-Winner in host-associated microbial communities publication-title: NPJ Biofilms Microbiomes – volume: 26 start-page: 527 year: 2019 end-page: 541.e5 ident: bib26 article-title: The human gut virome is highly diverse, stable, and individual specific publication-title: Cell Host Microbe – volume: 42 start-page: 651 year: 2024 end-page: 662 ident: bib25 article-title: Phage-inclusive profiling of human gut microbiomes with Phanta publication-title: Nat. Biotechnol. – volume: 9 start-page: 89 year: 2021 ident: bib6 article-title: Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects publication-title: Microbiome – volume: 10 year: 2024 ident: bib84 article-title: Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics publication-title: Virus Evol. – volume: 9 year: 2021 ident: bib57 article-title: BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains publication-title: PeerJ – volume: 6 year: 2020 ident: bib40 article-title: When to be temperate: on the fitness benefits of lysis vs. lysogeny publication-title: Virus Evol. – reference: Bushnell, B. (2022). BBMap. sourceforge.net/projects/bbmap – volume: 5 year: 2014 ident: bib90 article-title: Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids publication-title: Nat. Commun. – volume: 26 year: 2023 ident: bib60 article-title: Bacteriophages playing nice: Lysogenic bacteriophage replication stable in the human gut microbiota publication-title: iScience – volume: 3 year: 2021 ident: bib88 article-title: PHROG: families of prokaryotic virus proteins clustered using remote homology publication-title: NAR Genom. Bioinform. – volume: 32 start-page: 768 year: 2024 end-page: 778.e9 ident: bib56 article-title: Assessing phage-host population dynamics by reintroducing virulent viruses to synthetic microbiomes publication-title: Cell Host Microbe – volume: 184 start-page: 1098 year: 2021 end-page: 1109.e9 ident: bib5 article-title: Massive expansion of human gut bacteriophage diversity publication-title: Cell – volume: 13 start-page: 455 year: 2021 ident: bib9 article-title: Common oral medications lead to prophage induction in bacterial isolates from the human gut publication-title: Viruses – volume: 3 start-page: e969 year: 2022 end-page: e983 ident: bib3 article-title: The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly publication-title: Lancet Microbe – volume: 119 year: 2022 ident: bib80 article-title: Emergent evolutionary forces in spatial models of luminal growth and their application to the human gut microbiota publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 year: 2015 ident: bib62 article-title: Spatial structure, transmission modes and the evolution of viral exploitation strategies publication-title: PLoS Pathog. – volume: 6 start-page: 273 year: 2012 end-page: 284 ident: bib49 article-title: Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea publication-title: ISME J. – volume: 1 year: 2010 ident: bib38 article-title: Cryptic prophages help bacteria cope with adverse environments publication-title: Nat. Commun. – volume: 8 start-page: 934 year: 2023 end-page: 945 ident: bib85 article-title: Probe-based bacterial single-cell RNA sequencing predicts toxin regulation publication-title: Nat. Microbiol. – volume: 374 start-page: 488 year: 2021 end-page: 492 ident: bib20 article-title: Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages publication-title: Science – year: 2024 ident: bib37 article-title: Analysis and culturing of the prototypic crAssphage reveals a phage-plasmid lifestyle publication-title: bioRxiv – volume: 28 start-page: 237 year: 1994 end-page: 243 ident: bib19 article-title: The significance of viruses to mortality in aquatic microbial communities publication-title: Microb. Ecol. – volume: 355 start-page: 1211 year: 2017 end-page: 1215 ident: bib73 article-title: Inflammation boosts bacteriophage transfer between publication-title: Science – volume: 7 start-page: 1301 year: 2022 end-page: 1311 ident: bib76 article-title: Viral biogeography of the mammalian gut and parenchymal organs publication-title: Nat. Microbiol. – volume: 39 start-page: 105 year: 2021 end-page: 114 ident: bib35 article-title: A unified catalog of 204,938 reference genomes from the human gut microbiome publication-title: Nat. Biotechnol. – volume: 110 start-page: 20236 year: 2013 end-page: 20241 ident: bib8 article-title: Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 2854 year: 2016 end-page: 2866 ident: bib44 article-title: Prophages mediate defense against phage infection through diverse mechanisms publication-title: ISME J. – volume: 10 year: 2020 ident: bib33 article-title: A rigorous assessment and comparison of enumeration methods for environmental viruses publication-title: Sci. Rep. – volume: 116 start-page: 17906 year: 2019 end-page: 17915 ident: bib11 article-title: Horizontal gene transfer overrides mutation in publication-title: Proc. Natl. Acad. Sci. USA – volume: 617 start-page: 581 year: 2023 end-page: 591 ident: bib54 article-title: Profiling the human intestinal environment under physiological conditions publication-title: Nature – volume: 25 start-page: 968 year: 2019 end-page: 976 ident: bib93 article-title: Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer publication-title: Nat. Med. – volume: 143 start-page: 179 year: 1997 end-page: 185 ident: bib51 article-title: Bacteriophage T4 development depends on the physiology of its host publication-title: Microbiology (Reading) – volume: 185 start-page: 3617 year: 2022 end-page: 3636.e19 ident: bib55 article-title: Design, construction, and publication-title: Cell – volume: 45 start-page: 1320 year: 2000 end-page: 1328 ident: bib22 article-title: Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems publication-title: Limnol. Oceanogr. – volume: 24 year: 2023 ident: bib58 article-title: PhaTYP: predicting the lifestyle for bacteriophages using BERT publication-title: Brief. Bioinform. – volume: 5 start-page: 801 year: 2007 end-page: 812 ident: bib18 article-title: Marine viruses — major players in the global ecosystem publication-title: Nat. Rev. Microbiol. – volume: 7 year: 2022 ident: bib43 article-title: Deciphering active prophages from metagenomes publication-title: mSystems – volume: 549 start-page: E1 year: 2017 end-page: E3 ident: bib66 article-title: Lysis, lysogeny and virus–microbe ratios publication-title: Nature – volume: 5 start-page: 187 year: 2024 end-page: 208 ident: bib2 article-title: Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation publication-title: Nat. Cancer – volume: 8 start-page: 1064 year: 2023 end-page: 1078 ident: bib12 article-title: Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan publication-title: Nat. Microbiol. – volume: 114 start-page: E4324 year: 2017 end-page: E4333 ident: bib53 article-title: Energetic cost of building a virus publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2020 ident: bib97 article-title: GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms publication-title: GigaScience – volume: 186 start-page: 3111 year: 2023 end-page: 3124.e13 ident: bib72 article-title: Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes publication-title: Cell – volume: 12 year: 2016 ident: bib94 article-title: Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine publication-title: PLoS Genet. – volume: 110 start-page: 10771 year: 2013 end-page: 10776 ident: bib78 article-title: Bacteriophage adhering to mucus provide a non–host-derived immunity publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 960 year: 2021 end-page: 970 ident: bib4 article-title: Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome publication-title: Nat. Microbiol. – volume: 16 year: 2018 ident: bib83 article-title: Leaky resistance and the conditions for the existence of lytic bacteriophage publication-title: PLoS Biol. – volume: 16 start-page: 686 year: 2022 end-page: 694 ident: bib13 article-title: Fecal filtrate transplantation protects against necrotizing enterocolitis publication-title: ISME J. – volume: 174 start-page: 441 year: 2009 end-page: 454 ident: bib63 article-title: The consequences of spatial structure for the evolution of pathogen transmission rate and virulence publication-title: Am. Nat. – volume: 165 start-page: 803 year: 2014 end-page: 812 ident: bib92 article-title: Characterization of virus-like particles associated with the human faecal and caecal microbiota publication-title: Res. Microbiol. – volume: 7 year: 2022 ident: bib36 article-title: Mining of thousands of prokaryotic genomes reveals high abundance of prophages with a strictly narrow host range publication-title: mSystems – volume: 15 year: 2024 ident: bib82 article-title: Transmission and dynamics of mother-infant gut viruses during pregnancy and early life publication-title: Nat. Commun. – volume: 14 year: 2023 ident: bib47 article-title: Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution publication-title: Nat. Commun. – volume: 22 start-page: 365 year: 1939 end-page: 384 ident: bib50 article-title: The growth of bacteriophage publication-title: J. Gen. Physiol. – volume: 86 year: 2019 ident: bib67 article-title: Prophages in publication-title: Appl. Environ. Microbiol. – volume: 10 year: 2022 ident: bib10 article-title: Phage-mediated horizontal gene transfer and its implications for the human gut microbiome publication-title: Gastroenterol. Rep. (Oxf) – volume: 13 year: 2022 ident: bib69 article-title: Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome publication-title: Nat. Commun. – volume: 72 start-page: 2182 year: 2020 end-page: 2196 ident: bib70 article-title: Intestinal Virome in Patients With Alcoholic Hepatitis publication-title: Hepatology – volume: 15 year: 2024 ident: bib42 article-title: Using bacterial population dynamics to count phages and their lysogens publication-title: Nat. Commun. – volume: 11 start-page: 174 year: 2011 ident: bib52 article-title: Factors influencing lysis time stochasticity in bacteriophage λ publication-title: BMC Microbiol. – volume: 114 start-page: 6438 year: 2017 end-page: 6443 ident: bib81 article-title: Effect of water flow and chemical environment on microbiota growth and composition in the human colon publication-title: Proc. Natl. Acad. Sci. USA – volume: 77 start-page: 8062 year: 2011 end-page: 8070 ident: bib27 article-title: Diversity and abundance of single-stranded DNA viruses in human feces publication-title: Appl. Environ. Microbiol. – volume: 31 start-page: 665 year: 2023 end-page: 677.e7 ident: bib7 article-title: Large-scale phage cultivation for commensal human gut bacteria publication-title: Cell Host Microbe – volume: 15 year: 2024 ident: bib77 article-title: Bacteriophage defends murine gut from publication-title: Nat. Commun. – volume: 21 start-page: 1 year: 2013 end-page: 5 ident: bib32 article-title: Fake virus particles generated by fluorescence microscopy publication-title: Trends Microbiol. – volume: 326 start-page: 119 year: 1989 end-page: 157 ident: bib71 article-title: The phylogenetic regression publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 9 year: 2018 ident: bib48 article-title: ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects publication-title: Nat. Commun. – volume: 42 start-page: 1303 year: 2024 end-page: 1312 ident: bib89 article-title: Identification of mobile genetic elements with geNomad publication-title: Nat. Biotechnol. – volume: 82 year: 2010 ident: bib45 article-title: Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – volume: 466 start-page: 334 year: 2010 end-page: 338 ident: bib59 article-title: Viruses in the faecal microbiota of monozygotic twins and their mothers publication-title: Nature – volume: 12 year: 2023 ident: bib95 article-title: Bacterial DNA on the skin surface overrepresents the viable skin microbiome publication-title: eLife – volume: 399 start-page: 541 year: 1999 end-page: 548 ident: bib17 article-title: Marine viruses and their biogeochemical and ecological effects publication-title: Nature – volume: 11 start-page: 721 year: 2020 end-page: 734 ident: bib74 article-title: Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome publication-title: Gut Microbes – volume: 7 year: 2017 ident: bib23 article-title: Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems publication-title: Sci. Rep. – volume: 116 start-page: 17906 year: 2019 ident: 10.1016/j.cub.2025.03.073_bib11 article-title: Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906958116 – volume: 531 start-page: 466 year: 2016 ident: 10.1016/j.cub.2025.03.073_bib65 article-title: Lytic to temperate switching of viral communities publication-title: Nature doi: 10.1038/nature17193 – volume: 7 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib16 article-title: Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abn6660 – volume: 12 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib95 article-title: Bacterial DNA on the skin surface overrepresents the viable skin microbiome publication-title: eLife doi: 10.7554/eLife.87192 – volume: 7 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib36 article-title: Mining of thousands of prokaryotic genomes reveals high abundance of prophages with a strictly narrow host range publication-title: mSystems doi: 10.1128/msystems.00326-22 – volume: 186 start-page: 3111 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib72 article-title: Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes publication-title: Cell doi: 10.1016/j.cell.2023.05.046 – volume: 14 year: 2016 ident: 10.1016/j.cub.2025.03.073_bib30 article-title: Revised estimates for the number of human and bacteria cells in the body publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002533 – volume: 12 year: 2016 ident: 10.1016/j.cub.2025.03.073_bib94 article-title: Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005861 – volume: 11 start-page: 721 year: 2020 ident: 10.1016/j.cub.2025.03.073_bib74 article-title: Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome publication-title: Gut Microbes doi: 10.1080/19490976.2019.1701353 – volume: 110 start-page: 20236 year: 2013 ident: 10.1016/j.cub.2025.03.073_bib8 article-title: Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1319470110 – volume: 26 start-page: 93 year: 1984 ident: 10.1016/j.cub.2025.03.073_bib41 article-title: The population biology of bacterial viruses: why be temperate publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(84)90026-1 – volume: 161 start-page: 1257 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib68 article-title: Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus publication-title: Gastroenterology doi: 10.1053/j.gastro.2021.06.056 – volume: 7 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib43 article-title: Deciphering active prophages from metagenomes publication-title: mSystems doi: 10.1128/msystems.00084-22 – volume: 15 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib42 article-title: Using bacterial population dynamics to count phages and their lysogens publication-title: Nat. Commun. doi: 10.1038/s41467-024-51913-6 – volume: 24 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib58 article-title: PhaTYP: predicting the lifestyle for bacteriophages using BERT publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac487 – volume: 32 start-page: 768 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib56 article-title: Assessing phage-host population dynamics by reintroducing virulent viruses to synthetic microbiomes publication-title: Cell Host Microbe doi: 10.1016/j.chom.2024.04.001 – volume: 114 start-page: 6438 year: 2017 ident: 10.1016/j.cub.2025.03.073_bib81 article-title: Effect of water flow and chemical environment on microbiota growth and composition in the human colon publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1619598114 – volume: 13 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib69 article-title: Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome publication-title: Nat. Commun. doi: 10.1038/s41467-022-31390-5 – volume: 355 start-page: 1211 year: 2017 ident: 10.1016/j.cub.2025.03.073_bib73 article-title: Inflammation boosts bacteriophage transfer between Salmonella spp publication-title: Science doi: 10.1126/science.aaf8451 – volume: 6 year: 2020 ident: 10.1016/j.cub.2025.03.073_bib40 article-title: When to be temperate: on the fitness benefits of lysis vs. lysogeny publication-title: Virus Evol. doi: 10.1093/ve/veaa042 – volume: 14 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib47 article-title: Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution publication-title: Nat. Commun. – volume: 16 year: 2018 ident: 10.1016/j.cub.2025.03.073_bib83 article-title: Leaky resistance and the conditions for the existence of lytic bacteriophage publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005971 – volume: 617 start-page: 581 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib54 article-title: Profiling the human intestinal environment under physiological conditions publication-title: Nature doi: 10.1038/s41586-023-05989-7 – volume: 15 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib77 article-title: Bacteriophage defends murine gut from Escherichia coli invasion via mucosal adherence publication-title: Nat. Commun. – volume: 6 start-page: 68 year: 2018 ident: 10.1016/j.cub.2025.03.073_bib34 article-title: Reproducible protocols for metagenomic analysis of human faecal phageomes publication-title: Microbiome doi: 10.1186/s40168-018-0446-z – volume: 45 start-page: 1320 year: 2000 ident: 10.1016/j.cub.2025.03.073_bib22 article-title: Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2000.45.6.1320 – volume: 12 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib75 article-title: Prophage activation in the intestine: insights into functions and possible applications publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.785634 – volume: 86 year: 2019 ident: 10.1016/j.cub.2025.03.073_bib67 article-title: Prophages in Lactobacillus reuteri are associated with fitness trade-offs but can increase competitiveness in the gut ecosystem publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01922-19 – volume: 581 start-page: 470 year: 2020 ident: 10.1016/j.cub.2025.03.073_bib24 article-title: The stepwise assembly of the neonatal virome is modulated by breastfeeding publication-title: Nature doi: 10.1038/s41586-020-2192-1 – volume: 14 start-page: 20 year: 2016 ident: 10.1016/j.cub.2025.03.073_bib79 article-title: Gut biogeography of the bacterial microbiota publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3552 – volume: 28 start-page: 237 year: 1994 ident: 10.1016/j.cub.2025.03.073_bib19 article-title: The significance of viruses to mortality in aquatic microbial communities publication-title: Microb. Ecol. doi: 10.1007/BF00166813 – volume: 10 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib10 article-title: Phage-mediated horizontal gene transfer and its implications for the human gut microbiome publication-title: Gastroenterol. Rep. (Oxf) – volume: 7 start-page: 1301 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib76 article-title: Viral biogeography of the mammalian gut and parenchymal organs publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01178-w – volume: 8 year: 2019 ident: 10.1016/j.cub.2025.03.073_bib39 article-title: Consistent and correctable bias in metagenomic sequencing experiments publication-title: eLife doi: 10.7554/eLife.46923 – volume: 326 start-page: 119 year: 1989 ident: 10.1016/j.cub.2025.03.073_bib71 article-title: The phylogenetic regression publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1989.0106 – volume: 26 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib60 article-title: Bacteriophages playing nice: Lysogenic bacteriophage replication stable in the human gut microbiota publication-title: iScience doi: 10.1016/j.isci.2023.106007 – volume: 152 start-page: 39 year: 2013 ident: 10.1016/j.cub.2025.03.073_bib96 article-title: Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome publication-title: Cell doi: 10.1016/j.cell.2012.10.052 – volume: 9 start-page: 89 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib6 article-title: Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens publication-title: Microbiome doi: 10.1186/s40168-021-01036-7 – volume: 1 year: 2010 ident: 10.1016/j.cub.2025.03.073_bib38 article-title: Cryptic prophages help bacteria cope with adverse environments publication-title: Nat. Commun. doi: 10.1038/ncomms1146 – volume: 174 start-page: 441 year: 2009 ident: 10.1016/j.cub.2025.03.073_bib63 article-title: The consequences of spatial structure for the evolution of pathogen transmission rate and virulence publication-title: Am. Nat. doi: 10.1086/605375 – volume: 374 start-page: 488 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib20 article-title: Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages publication-title: Science doi: 10.1126/science.abb1083 – volume: 8 start-page: 934 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib85 article-title: Probe-based bacterial single-cell RNA sequencing predicts toxin regulation publication-title: Nat. Microbiol. doi: 10.1038/s41564-023-01348-4 – volume: 6 start-page: 960 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib4 article-title: Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00928-6 – volume: 143 start-page: 179 year: 1997 ident: 10.1016/j.cub.2025.03.073_bib51 article-title: Bacteriophage T4 development depends on the physiology of its host Escherichia coli publication-title: Microbiology (Reading) doi: 10.1099/00221287-143-1-179 – volume: 19 start-page: 163 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib29 article-title: Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis publication-title: BMC Biol. doi: 10.1186/s12915-021-01084-3 – volume: 359 start-page: 91 year: 2018 ident: 10.1016/j.cub.2025.03.073_bib1 article-title: Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors publication-title: Science doi: 10.1126/science.aan3706 – year: 2024 ident: 10.1016/j.cub.2025.03.073_bib37 article-title: Analysis and culturing of the prototypic crAssphage reveals a phage-plasmid lifestyle publication-title: bioRxiv – volume: 42 start-page: 651 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib25 article-title: Phage-inclusive profiling of human gut microbiomes with Phanta publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01799-4 – volume: 466 start-page: 334 year: 2010 ident: 10.1016/j.cub.2025.03.073_bib59 article-title: Viruses in the faecal microbiota of monozygotic twins and their mothers publication-title: Nature doi: 10.1038/nature09199 – volume: 10 start-page: 2854 year: 2016 ident: 10.1016/j.cub.2025.03.073_bib44 article-title: Prophages mediate defense against phage infection through diverse mechanisms publication-title: ISME J. doi: 10.1038/ismej.2016.79 – volume: 24 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib91 article-title: Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome publication-title: iScience doi: 10.1016/j.isci.2021.102900 – volume: 31 start-page: 665 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib7 article-title: Large-scale phage cultivation for commensal human gut bacteria publication-title: Cell Host Microbe doi: 10.1016/j.chom.2023.03.013 – volume: 2 year: 2016 ident: 10.1016/j.cub.2025.03.073_bib61 article-title: Piggyback-the-Winner in host-associated microbial communities publication-title: NPJ Biofilms Microbiomes doi: 10.1038/npjbiofilms.2016.10 – volume: 72 start-page: 2182 year: 2020 ident: 10.1016/j.cub.2025.03.073_bib70 article-title: Intestinal Virome in Patients With Alcoholic Hepatitis publication-title: Hepatology doi: 10.1002/hep.31459 – volume: 77 start-page: 8062 year: 2011 ident: 10.1016/j.cub.2025.03.073_bib27 article-title: Diversity and abundance of single-stranded DNA viruses in human feces publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06331-11 – volume: 9 year: 2018 ident: 10.1016/j.cub.2025.03.073_bib48 article-title: ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis publication-title: Nat. Commun. doi: 10.1038/s41467-018-07225-7 – volume: 119 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib80 article-title: Emergent evolutionary forces in spatial models of luminal growth and their application to the human gut microbiota publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2114931119 – volume: 21 start-page: 1 year: 2013 ident: 10.1016/j.cub.2025.03.073_bib32 article-title: Fake virus particles generated by fluorescence microscopy publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.10.005 – volume: 3 start-page: e969 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib3 article-title: The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly publication-title: Lancet Microbe doi: 10.1016/S2666-5247(22)00203-8 – volume: 26 start-page: 527 year: 2019 ident: 10.1016/j.cub.2025.03.073_bib26 article-title: The human gut virome is highly diverse, stable, and individual specific publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.09.009 – volume: 185 start-page: 3617 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib55 article-title: Design, construction, and in vivo augmentation of a complex gut microbiome publication-title: Cell doi: 10.1016/j.cell.2022.08.003 – volume: 10 start-page: 105 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib15 article-title: Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis publication-title: Microbiome doi: 10.1186/s40168-022-01275-2 – volume: 3 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib88 article-title: PHROG: families of prokaryotic virus proteins clustered using remote homology publication-title: NAR Genom. Bioinform. – volume: 7 year: 2017 ident: 10.1016/j.cub.2025.03.073_bib23 article-title: Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems publication-title: Sci. Rep. doi: 10.1038/srep39642 – volume: 10 year: 2020 ident: 10.1016/j.cub.2025.03.073_bib33 article-title: A rigorous assessment and comparison of enumeration methods for environmental viruses publication-title: Sci. Rep. doi: 10.1038/s41598-020-75490-y – volume: 184 start-page: 1098 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib5 article-title: Massive expansion of human gut bacteriophage diversity publication-title: Cell doi: 10.1016/j.cell.2021.01.029 – volume: 11 year: 2015 ident: 10.1016/j.cub.2025.03.073_bib62 article-title: Spatial structure, transmission modes and the evolution of viral exploitation strategies publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004810 – volume: 10 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib84 article-title: Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics publication-title: Virus Evol. doi: 10.1093/ve/veae104 – volume: 10 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib64 article-title: Lytic/Lysogenic Transition as a Life-History Switch publication-title: Virus Evol. doi: 10.1093/ve/veae028 – volume: 16 start-page: 686 year: 2022 ident: 10.1016/j.cub.2025.03.073_bib13 article-title: Fecal filtrate transplantation protects against necrotizing enterocolitis publication-title: ISME J. doi: 10.1038/s41396-021-01107-5 – ident: 10.1016/j.cub.2025.03.073_bib86 – volume: 13 start-page: 455 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib9 article-title: Common oral medications lead to prophage induction in bacterial isolates from the human gut publication-title: Viruses doi: 10.3390/v13030455 – volume: 82 year: 2010 ident: 10.1016/j.cub.2025.03.073_bib45 article-title: Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.82.011918 – volume: 6 start-page: 273 year: 2012 ident: 10.1016/j.cub.2025.03.073_bib49 article-title: Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea publication-title: ISME J. doi: 10.1038/ismej.2011.101 – volume: 549 start-page: E1 year: 2017 ident: 10.1016/j.cub.2025.03.073_bib66 article-title: Lysis, lysogeny and virus–microbe ratios publication-title: Nature doi: 10.1038/nature23295 – volume: 152 start-page: 799 year: 2017 ident: 10.1016/j.cub.2025.03.073_bib14 article-title: Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.11.010 – volume: 11 start-page: 174 year: 2011 ident: 10.1016/j.cub.2025.03.073_bib52 article-title: Factors influencing lysis time stochasticity in bacteriophage λ publication-title: BMC Microbiol. doi: 10.1186/1471-2180-11-174 – volume: 42 start-page: 1303 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib89 article-title: Identification of mobile genetic elements with geNomad publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01953-y – volume: 110 start-page: 10771 year: 2013 ident: 10.1016/j.cub.2025.03.073_bib78 article-title: Bacteriophage adhering to mucus provide a non–host-derived immunity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1305923110 – volume: 8 start-page: 1064 year: 2023 ident: 10.1016/j.cub.2025.03.073_bib12 article-title: Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan publication-title: Nat. Microbiol. doi: 10.1038/s41564-023-01370-6 – volume: 399 start-page: 541 year: 1999 ident: 10.1016/j.cub.2025.03.073_bib17 article-title: Marine viruses and their biogeochemical and ecological effects publication-title: Nature doi: 10.1038/21119 – volume: 40 year: 2012 ident: 10.1016/j.cub.2025.03.073_bib87 article-title: Grinder: a versatile amplicon and shotgun sequence simulator publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks251 – volume: 9 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib57 article-title: BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains publication-title: PeerJ doi: 10.7717/peerj.11396 – year: 2023 ident: 10.1016/j.cub.2025.03.073_bib28 article-title: Temperate gut phages are prevalent, diverse, and predominantly inactive publication-title: bioRxiv – volume: 6 start-page: 119 year: 2018 ident: 10.1016/j.cub.2025.03.073_bib31 article-title: Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses publication-title: Microbiome doi: 10.1186/s40168-018-0507-3 – volume: 5 start-page: 801 year: 2007 ident: 10.1016/j.cub.2025.03.073_bib18 article-title: Marine viruses — major players in the global ecosystem publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1750 – volume: 9 year: 2020 ident: 10.1016/j.cub.2025.03.073_bib97 article-title: GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms publication-title: GigaScience doi: 10.1093/gigascience/giaa008 – volume: 5 year: 2014 ident: 10.1016/j.cub.2025.03.073_bib90 article-title: Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids publication-title: Nat. Commun. – volume: 39 start-page: 105 year: 2021 ident: 10.1016/j.cub.2025.03.073_bib35 article-title: A unified catalog of 204,938 reference genomes from the human gut microbiome publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0603-3 – volume: 20 start-page: 265 year: 2014 ident: 10.1016/j.cub.2025.03.073_bib46 article-title: How to assess regional and whole gut transit time with wireless motility capsule publication-title: J. Neurogastroenterol. Motil. doi: 10.5056/jnm.2014.20.2.265 – volume: 3 start-page: 754 year: 2018 ident: 10.1016/j.cub.2025.03.073_bib21 article-title: Phage puppet masters of the marine microbial realm publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0166-y – volume: 5 start-page: 187 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib2 article-title: Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation publication-title: Nat. Cancer doi: 10.1038/s43018-023-00669-x – volume: 25 start-page: 968 year: 2019 ident: 10.1016/j.cub.2025.03.073_bib93 article-title: Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer publication-title: Nat. Med. doi: 10.1038/s41591-019-0458-7 – volume: 114 start-page: E4324 year: 2017 ident: 10.1016/j.cub.2025.03.073_bib53 article-title: Energetic cost of building a virus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1701670114 – volume: 15 year: 2024 ident: 10.1016/j.cub.2025.03.073_bib82 article-title: Transmission and dynamics of mother-infant gut viruses during pregnancy and early life publication-title: Nat. Commun. doi: 10.1038/s41467-024-45257-4 – volume: 22 start-page: 365 year: 1939 ident: 10.1016/j.cub.2025.03.073_bib50 article-title: The growth of bacteriophage publication-title: J. Gen. Physiol. doi: 10.1085/jgp.22.3.365 – volume: 165 start-page: 803 year: 2014 ident: 10.1016/j.cub.2025.03.073_bib92 article-title: Characterization of virus-like particles associated with the human faecal and caecal microbiota publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2014.10.006 – reference: 39386523 - bioRxiv. 2024 Dec 11:2024.09.27.614587. doi: 10.1101/2024.09.27.614587. |
SSID | ssj0012896 |
Score | 2.482624 |
Snippet | The human gut contains diverse communities of bacteriophage, whose interactions with the broader microbiome and potential roles in human health are only... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2282 |
SubjectTerms | Animals Bacteria - genetics Bacteria - virology bacteriophage Bacteriophages - genetics Bacteriophages - physiology Gastrointestinal Microbiome - physiology gut microbiome Humans induction Lysogeny mathematical modeling metagenomics Mice microbial ecology population dynamics Virome virus virus-to-microbe ratio |
Title | Abundance measurements reveal the balance between lysis and lysogeny in the human gut microbiome |
URI | https://dx.doi.org/10.1016/j.cub.2025.03.073 https://www.ncbi.nlm.nih.gov/pubmed/40300605 https://www.proquest.com/docview/3197640015 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcEG9SHlokTkS2Npu1jY8RAkWNwoG2ojfj2ayrVMSuil0pXPjrzHh3XRMogl4sy8_VzOfxvPZbxl6bBDD0ETpYiVQGSkV5kIJIAglqlZpYQSpoNvLyYzw_Vgcn0clg8KPXtdTUEOrvf5xXchOt4jHUK82S_Q_Ndg_FA7iP-sUtahi3_6TjGdA8Dvo0N1epPqoDXBJdMLmUQJ2LeN63Y1kCEkqW416FD976Rke7WN9pU483a0vOtENj4IicHGtT18hTndsc9EG-WZvx7KteX3SWfqkXhuZ8lMHSQekwt23NjhbSLpmNw2mqLit92mytKbTJhPE87GcmZERF9Z7966bM_NLRSSFTQKSBfRNsGUs81ETfoEq7NpH7OUuZqtBY8_yb8bd5iLNQNxDSeFr2WrtQyg6n9mFLtEe-UUSl0TS-xfYkxhlyyPZmi0-fF10hCuPRttztR-0L422L4M6LrnNtrgtdWhfm6B6762IPPrNAus8GpnzAbtvVSLcP2ZcOTrwPJ27hxFGP3MGJOzjxFk4c9cc9nPi6bK9s4cQRTvwKTo_Y8Yf3R-_mgVuAI9Bo-usgNoUEKRKdFCtZxDCRAAqm5NJE2ug8EXmMQjMmAlEkRscggQgnITICiulk-pgNy6o0T4kaAJ1DdPZRyLkCSFN4S0X5CV660vkkGrE3XnbZueVZyXwD4lmGgs5I0JmYZijoEVNeuplzFK0DmCEU_nbbK6-JDI0oVcby0lTNtwz_Q0msKH4YsSdWRd0oFI5TYNC_f7OXPmN3_LchJs_ZsL5ozAv0Y2t46bD2EzBMnwE |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abundance+measurements+reveal+the+balance+between+lysis+and+lysogeny+in+the+human+gut+microbiome&rft.jtitle=Current+biology&rft.au=Lopez%2C+Jamie+Alcira&rft.au=McKeithen-Mead%2C+Saria&rft.au=Shi%2C+Handuo&rft.au=Nguyen%2C+Taylor+H.&rft.date=2025-05-19&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.volume=35&rft.issue=10&rft.spage=2282&rft.epage=2294.e11&rft_id=info:doi/10.1016%2Fj.cub.2025.03.073&rft.externalDocID=S0960982225003896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |