Totally isotropic subspaces, complementary subspaces, and generalized inverses

Let us fix a field F, a finite-dimensional F-vector space V, and a nondegenerate symmetric bilinear form on V, subject to the following restriction. If char( F) = 2, then the bilinear form must be selected so that the space of all isotropic vectors in V is nondegenerate. Let N be the set of all tota...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 251; pp. 239 - 248
Main Author Rieck, M.Q.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.01.1997
Online AccessGet full text
ISSN0024-3795
1873-1856
DOI10.1016/S0024-3795(96)00554-X

Cover

Loading…
Abstract Let us fix a field F, a finite-dimensional F-vector space V, and a nondegenerate symmetric bilinear form on V, subject to the following restriction. If char( F) = 2, then the bilinear form must be selected so that the space of all isotropic vectors in V is nondegenerate. Let N be the set of all totally isotropic subspaces of V. There exists a mapping p: N → N( U → U p such that U + U p is nondegenerate for all U ϵ N. From such, a construction is given for obtaining a “pseudoorthogonal” complementary subspace for any subspace of V. Based on this construction, it is shown how to construct generalized inverses of linear transformations on V whose associated projection maps are normal linear transformations. The resulting operation for obtaining a generalized inverse has the additional property that it commutes with the operation of taking adjoints. When char( F) ≠ 2, it is shown that p can be selected so as to be an involution. For this case, constructions of such p are presented. The constructions which are derived from these, as outlined above, are then also involutory. Moreover, when F is an ordered field, p may be selected so as to be an involutory automorphism of the partially ordered set ( N, ⊆).
AbstractList Let us fix a field F, a finite-dimensional F-vector space V, and a nondegenerate symmetric bilinear form on V, subject to the following restriction. If char( F) = 2, then the bilinear form must be selected so that the space of all isotropic vectors in V is nondegenerate. Let N be the set of all totally isotropic subspaces of V. There exists a mapping p: N → N( U → U p such that U + U p is nondegenerate for all U ϵ N. From such, a construction is given for obtaining a “pseudoorthogonal” complementary subspace for any subspace of V. Based on this construction, it is shown how to construct generalized inverses of linear transformations on V whose associated projection maps are normal linear transformations. The resulting operation for obtaining a generalized inverse has the additional property that it commutes with the operation of taking adjoints. When char( F) ≠ 2, it is shown that p can be selected so as to be an involution. For this case, constructions of such p are presented. The constructions which are derived from these, as outlined above, are then also involutory. Moreover, when F is an ordered field, p may be selected so as to be an involutory automorphism of the partially ordered set ( N, ⊆).
Author Rieck, M.Q.
Author_xml – sequence: 1
  givenname: M.Q.
  surname: Rieck
  fullname: Rieck, M.Q.
  email: rieck@chuma.cas.usf.edu
  organization: Department of Mathematics University of South Florida 4202 East Fowler Avenue PHY 114 Tampa, Florida 33620-5700 USA
BookMark eNqFkEtLAzEUhYNUsK3-BGGWCo4mM5PH4EKk-IKiCyt0FzLJHYlMkyGJhfrr7UNE3HR1F-d-B74zQgPnHSB0SvAlwYRdvWJcVHnJa3pWs3OMKa3y-QEaEsHLnAjKBmj4-3KERjF-YIwrjoshep75pLpuldnoU_C91Vn8bGKvNMSLTPtF38ECXFJh9TdQzmTv4CCozn6ByaxbQogQj9Fhq7oIJz93jN7u72aTx3z68vA0uZ3musQ85bRhLW8KzUTJmOCmZm1rhK6U0Bw4JZVigpUl06QoDFVcAyfGVHUlDKdFU5djdL3r1cHHGKCV2iaVrHcpKNtJguVmGrmdRm68Zc3kdho5X9P0H90Hu1gr7uVudhys1ZYWgozagtNgbACdpPF2T8M3ZP9_jw
CitedBy_id crossref_primary_10_1016_j_laa_2012_08_010
crossref_primary_10_1016_j_disc_2004_02_021
Cites_doi 10.1016/0024-3795(68)90028-1
ContentType Journal Article
Copyright 1997
Copyright_xml – notice: 1997
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0024-3795(96)00554-X
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 248
ExternalDocumentID 10_1016_S0024_3795_96_00554_X
S002437959600554X
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c307t-5b6f7b2c6836687d96ffd8c4a8c7e7514a686336c122d5a7ce71dd4948d752b93
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Thu Apr 24 23:03:41 EDT 2025
Tue Jul 01 03:52:29 EDT 2025
Fri Feb 23 02:18:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-5b6f7b2c6836687d96ffd8c4a8c7e7514a686336c122d5a7ce71dd4948d752b93
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002437959600554X
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_S0024_3795_96_00554_X
crossref_primary_10_1016_S0024_3795_96_00554_X
elsevier_sciencedirect_doi_10_1016_S0024_3795_96_00554_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-01-15
PublicationDateYYYYMMDD 1997-01-15
PublicationDate_xml – month: 01
  year: 1997
  text: 1997-01-15
  day: 15
PublicationDecade 1990
PublicationTitle Linear algebra and its applications
PublicationYear 1997
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lang (BIB5) 1971
Ben-Israel, Greville (BIB2) 1974
Artin (BIB1) 1957
Clark (BIB3) 1992; 6
Kaplansky (BIB4) 1969
Pearl (BIB6) 1968; 1
Clark (10.1016/S0024-3795(96)00554-X_BIB3) 1992; 6
Kaplansky (10.1016/S0024-3795(96)00554-X_BIB4) 1969
Lang (10.1016/S0024-3795(96)00554-X_BIB5) 1971
Pearl (10.1016/S0024-3795(96)00554-X_BIB6) 1968; 1
Ben-Israel (10.1016/S0024-3795(96)00554-X_BIB2) 1974
Artin (10.1016/S0024-3795(96)00554-X_BIB1) 1957
References_xml – year: 1974
  ident: BIB2
  article-title: Generalized Inverses, Theory and Applications
– year: 1969
  ident: BIB4
  article-title: Linear Algebra and Geometry
– volume: 1
  start-page: 571
  year: 1968
  end-page: 587
  ident: BIB6
  article-title: Generalized inverses of matrices with entries taken from an arbitrary field
  publication-title: Linear Algebra Appl.
– year: 1957
  ident: BIB1
  article-title: Geometric Algebra
– year: 1971
  ident: BIB5
  article-title: Algebra
– volume: 6
  start-page: 33
  year: 1992
  end-page: 38
  ident: BIB3
  article-title: Matching subspaces with complements in finite vector spaces
  publication-title: Bull. Inst. Combin. Appl.
– year: 1969
  ident: 10.1016/S0024-3795(96)00554-X_BIB4
– year: 1971
  ident: 10.1016/S0024-3795(96)00554-X_BIB5
– year: 1957
  ident: 10.1016/S0024-3795(96)00554-X_BIB1
– year: 1974
  ident: 10.1016/S0024-3795(96)00554-X_BIB2
– volume: 1
  start-page: 571
  year: 1968
  ident: 10.1016/S0024-3795(96)00554-X_BIB6
  article-title: Generalized inverses of matrices with entries taken from an arbitrary field
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(68)90028-1
– volume: 6
  start-page: 33
  year: 1992
  ident: 10.1016/S0024-3795(96)00554-X_BIB3
  article-title: Matching subspaces with complements in finite vector spaces
  publication-title: Bull. Inst. Combin. Appl.
SSID ssj0004702
Score 1.4814615
Snippet Let us fix a field F, a finite-dimensional F-vector space V, and a nondegenerate symmetric bilinear form on V, subject to the following restriction. If char(...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 239
Title Totally isotropic subspaces, complementary subspaces, and generalized inverses
URI https://dx.doi.org/10.1016/S0024-3795(96)00554-X
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBw8KLhtk2x2N8cqllZpTy3kFrKPSqAkoYmHevC3O5ukD0EUPGaTWcJk9psJ-823CN2anTKuBMPa1hoTrh1YUhHDgggXPj8khZJEM57Q4Yy8BF7QQE_rXhhDq6yxv8L0Eq3rkW7tzW4Wx6bHtxTT86AG70FSDEwHO2Em1jufW5oHYb1aMZxg8_S2i6eaoRy88-l9OQkOfs5POzlncIQO62LR6lfvc4waOjlBB-ON0mp-iibTFMrnxcqK87RYplksrRywIDNMqwerJIxX_PDlavdGlCjrrVKcjj-0suLE0DN0foZmg-fp0xDXZyRgCauzwJ6gcyYcSblLKWfKp_O54pJEXDLNoBqKKKeuS6XtOMqLmNTMVspowijmOcJ3z1EzSRN9gSwHAEewSFDBKZlH2tfwb2dLToViAtZpC5G1Z0JZC4ibcywW4ZYpBg4NjUND37DlwKFh0EKdjVlWKWj8ZcDXbg-_hUIIKP-76eX_Ta_QfqVMa2Pbu0bNYvmub6DeKES7DKg22uuPXocTuBoFj1-ZhNBl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1qXagL8Yn1mYULBcc2r5nJUoul1barFrILmUckUJLQxEX9eu8k6UMQBbeT3CHczJx7Qs49g9Ct_lPGJKdYmUphhykLtlRIMXe4Da8fikIpohmNSX_qvPqu30DdZS-MllXW2F9heonW9Ui7zmY7i2Pd41ua6bnAwTtQFP0ttA1sgGgD_YH_vG6OpJ3aMtzB-vZ1G081RTl455H7chbs_1ygNopO7wDt12zReKoe6BA1VHKE9kYrq9X8GI0nKfDn2cKI87SYp1ksjBzAINNSqwejVIxXAvH5YvNCmEjjvbKcjj-VNOJE6zNUfoKmvZdJt4_rQxKwgO1ZYJeTiHJLEGYTwqj0SBRJJpyQCaoo0KGQMGLbRJiWJd2QCkVNKbUpjKSuxT37FDWTNFFnyLAAcTgNOeGMOFGoPAUfd6ZghEvKYaO2kLPMTCBqB3F9kMUsWEvFIKGBTmjgabkcJDTwW-hxFZZVFhp_BbBl2oNvayEAmP899Pz_oTdopz8ZDYPhYPx2gXYrm1oTm-4lahbzD3UF5KPg1-Xi-gLEktEB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Totally+isotropic+subspaces%2C+complementary+subspaces%2C+and+generalized+inverses&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Rieck%2C+M.Q.&rft.date=1997-01-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=251&rft.spage=239&rft.epage=248&rft_id=info:doi/10.1016%2FS0024-3795%2896%2900554-X&rft.externalDocID=S002437959600554X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon