Totally isotropic subspaces, complementary subspaces, and generalized inverses
Let us fix a field F, a finite-dimensional F-vector space V, and a nondegenerate symmetric bilinear form on V, subject to the following restriction. If char( F) = 2, then the bilinear form must be selected so that the space of all isotropic vectors in V is nondegenerate. Let N be the set of all tota...
Saved in:
Published in | Linear algebra and its applications Vol. 251; pp. 239 - 248 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.01.1997
|
Online Access | Get full text |
ISSN | 0024-3795 1873-1856 |
DOI | 10.1016/S0024-3795(96)00554-X |
Cover
Loading…
Abstract | Let us fix a field
F, a finite-dimensional
F-vector space
V, and a nondegenerate symmetric bilinear form on
V, subject to the following restriction. If char(
F) = 2, then the bilinear form must be selected so that the space of all isotropic vectors in
V is nondegenerate. Let
N be the set of all totally isotropic subspaces of
V. There exists a mapping
p:
N →
N(
U →
U
p
such that
U +
U
p
is nondegenerate for all
U
ϵ
N. From such, a construction is given for obtaining a “pseudoorthogonal” complementary subspace for any subspace of
V. Based on this construction, it is shown how to construct generalized inverses of linear transformations on
V whose associated projection maps are normal linear transformations. The resulting operation for obtaining a generalized inverse has the additional property that it commutes with the operation of taking adjoints. When char(
F) ≠ 2, it is shown that
p can be selected so as to be an involution. For this case, constructions of such
p are presented. The constructions which are derived from these, as outlined above, are then also involutory. Moreover, when
F is an ordered field,
p may be selected so as to be an involutory automorphism of the partially ordered set (
N, ⊆). |
---|---|
AbstractList | Let us fix a field
F, a finite-dimensional
F-vector space
V, and a nondegenerate symmetric bilinear form on
V, subject to the following restriction. If char(
F) = 2, then the bilinear form must be selected so that the space of all isotropic vectors in
V is nondegenerate. Let
N be the set of all totally isotropic subspaces of
V. There exists a mapping
p:
N →
N(
U →
U
p
such that
U +
U
p
is nondegenerate for all
U
ϵ
N. From such, a construction is given for obtaining a “pseudoorthogonal” complementary subspace for any subspace of
V. Based on this construction, it is shown how to construct generalized inverses of linear transformations on
V whose associated projection maps are normal linear transformations. The resulting operation for obtaining a generalized inverse has the additional property that it commutes with the operation of taking adjoints. When char(
F) ≠ 2, it is shown that
p can be selected so as to be an involution. For this case, constructions of such
p are presented. The constructions which are derived from these, as outlined above, are then also involutory. Moreover, when
F is an ordered field,
p may be selected so as to be an involutory automorphism of the partially ordered set (
N, ⊆). |
Author | Rieck, M.Q. |
Author_xml | – sequence: 1 givenname: M.Q. surname: Rieck fullname: Rieck, M.Q. email: rieck@chuma.cas.usf.edu organization: Department of Mathematics University of South Florida 4202 East Fowler Avenue PHY 114 Tampa, Florida 33620-5700 USA |
BookMark | eNqFkEtLAzEUhYNUsK3-BGGWCo4mM5PH4EKk-IKiCyt0FzLJHYlMkyGJhfrr7UNE3HR1F-d-B74zQgPnHSB0SvAlwYRdvWJcVHnJa3pWs3OMKa3y-QEaEsHLnAjKBmj4-3KERjF-YIwrjoshep75pLpuldnoU_C91Vn8bGKvNMSLTPtF38ECXFJh9TdQzmTv4CCozn6ByaxbQogQj9Fhq7oIJz93jN7u72aTx3z68vA0uZ3musQ85bRhLW8KzUTJmOCmZm1rhK6U0Bw4JZVigpUl06QoDFVcAyfGVHUlDKdFU5djdL3r1cHHGKCV2iaVrHcpKNtJguVmGrmdRm68Zc3kdho5X9P0H90Hu1gr7uVudhys1ZYWgozagtNgbACdpPF2T8M3ZP9_jw |
CitedBy_id | crossref_primary_10_1016_j_laa_2012_08_010 crossref_primary_10_1016_j_disc_2004_02_021 |
Cites_doi | 10.1016/0024-3795(68)90028-1 |
ContentType | Journal Article |
Copyright | 1997 |
Copyright_xml | – notice: 1997 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/S0024-3795(96)00554-X |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 248 |
ExternalDocumentID | 10_1016_S0024_3795_96_00554_X S002437959600554X |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K T9H TN5 TWZ WH7 WUQ XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c307t-5b6f7b2c6836687d96ffd8c4a8c7e7514a686336c122d5a7ce71dd4948d752b93 |
IEDL.DBID | .~1 |
ISSN | 0024-3795 |
IngestDate | Thu Apr 24 23:03:41 EDT 2025 Tue Jul 01 03:52:29 EDT 2025 Fri Feb 23 02:18:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-5b6f7b2c6836687d96ffd8c4a8c7e7514a686336c122d5a7ce71dd4948d752b93 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S002437959600554X |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_S0024_3795_96_00554_X crossref_primary_10_1016_S0024_3795_96_00554_X elsevier_sciencedirect_doi_10_1016_S0024_3795_96_00554_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-01-15 |
PublicationDateYYYYMMDD | 1997-01-15 |
PublicationDate_xml | – month: 01 year: 1997 text: 1997-01-15 day: 15 |
PublicationDecade | 1990 |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 1997 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lang (BIB5) 1971 Ben-Israel, Greville (BIB2) 1974 Artin (BIB1) 1957 Clark (BIB3) 1992; 6 Kaplansky (BIB4) 1969 Pearl (BIB6) 1968; 1 Clark (10.1016/S0024-3795(96)00554-X_BIB3) 1992; 6 Kaplansky (10.1016/S0024-3795(96)00554-X_BIB4) 1969 Lang (10.1016/S0024-3795(96)00554-X_BIB5) 1971 Pearl (10.1016/S0024-3795(96)00554-X_BIB6) 1968; 1 Ben-Israel (10.1016/S0024-3795(96)00554-X_BIB2) 1974 Artin (10.1016/S0024-3795(96)00554-X_BIB1) 1957 |
References_xml | – year: 1974 ident: BIB2 article-title: Generalized Inverses, Theory and Applications – year: 1969 ident: BIB4 article-title: Linear Algebra and Geometry – volume: 1 start-page: 571 year: 1968 end-page: 587 ident: BIB6 article-title: Generalized inverses of matrices with entries taken from an arbitrary field publication-title: Linear Algebra Appl. – year: 1957 ident: BIB1 article-title: Geometric Algebra – year: 1971 ident: BIB5 article-title: Algebra – volume: 6 start-page: 33 year: 1992 end-page: 38 ident: BIB3 article-title: Matching subspaces with complements in finite vector spaces publication-title: Bull. Inst. Combin. Appl. – year: 1969 ident: 10.1016/S0024-3795(96)00554-X_BIB4 – year: 1971 ident: 10.1016/S0024-3795(96)00554-X_BIB5 – year: 1957 ident: 10.1016/S0024-3795(96)00554-X_BIB1 – year: 1974 ident: 10.1016/S0024-3795(96)00554-X_BIB2 – volume: 1 start-page: 571 year: 1968 ident: 10.1016/S0024-3795(96)00554-X_BIB6 article-title: Generalized inverses of matrices with entries taken from an arbitrary field publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(68)90028-1 – volume: 6 start-page: 33 year: 1992 ident: 10.1016/S0024-3795(96)00554-X_BIB3 article-title: Matching subspaces with complements in finite vector spaces publication-title: Bull. Inst. Combin. Appl. |
SSID | ssj0004702 |
Score | 1.4814615 |
Snippet | Let us fix a field
F, a finite-dimensional
F-vector space
V, and a nondegenerate symmetric bilinear form on
V, subject to the following restriction. If char(... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 239 |
Title | Totally isotropic subspaces, complementary subspaces, and generalized inverses |
URI | https://dx.doi.org/10.1016/S0024-3795(96)00554-X |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBw8KLhtk2x2N8cqllZpTy3kFrKPSqAkoYmHevC3O5ukD0EUPGaTWcJk9psJ-823CN2anTKuBMPa1hoTrh1YUhHDgggXPj8khZJEM57Q4Yy8BF7QQE_rXhhDq6yxv8L0Eq3rkW7tzW4Wx6bHtxTT86AG70FSDEwHO2Em1jufW5oHYb1aMZxg8_S2i6eaoRy88-l9OQkOfs5POzlncIQO62LR6lfvc4waOjlBB-ON0mp-iibTFMrnxcqK87RYplksrRywIDNMqwerJIxX_PDlavdGlCjrrVKcjj-0suLE0DN0foZmg-fp0xDXZyRgCauzwJ6gcyYcSblLKWfKp_O54pJEXDLNoBqKKKeuS6XtOMqLmNTMVspowijmOcJ3z1EzSRN9gSwHAEewSFDBKZlH2tfwb2dLToViAtZpC5G1Z0JZC4ibcywW4ZYpBg4NjUND37DlwKFh0EKdjVlWKWj8ZcDXbg-_hUIIKP-76eX_Ta_QfqVMa2Pbu0bNYvmub6DeKES7DKg22uuPXocTuBoFj1-ZhNBl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1qXagL8Yn1mYULBcc2r5nJUoul1barFrILmUckUJLQxEX9eu8k6UMQBbeT3CHczJx7Qs49g9Ct_lPGJKdYmUphhykLtlRIMXe4Da8fikIpohmNSX_qvPqu30DdZS-MllXW2F9heonW9Ui7zmY7i2Pd41ua6bnAwTtQFP0ttA1sgGgD_YH_vG6OpJ3aMtzB-vZ1G081RTl455H7chbs_1ygNopO7wDt12zReKoe6BA1VHKE9kYrq9X8GI0nKfDn2cKI87SYp1ksjBzAINNSqwejVIxXAvH5YvNCmEjjvbKcjj-VNOJE6zNUfoKmvZdJt4_rQxKwgO1ZYJeTiHJLEGYTwqj0SBRJJpyQCaoo0KGQMGLbRJiWJd2QCkVNKbUpjKSuxT37FDWTNFFnyLAAcTgNOeGMOFGoPAUfd6ZghEvKYaO2kLPMTCBqB3F9kMUsWEvFIKGBTmjgabkcJDTwW-hxFZZVFhp_BbBl2oNvayEAmP899Pz_oTdopz8ZDYPhYPx2gXYrm1oTm-4lahbzD3UF5KPg1-Xi-gLEktEB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Totally+isotropic+subspaces%2C+complementary+subspaces%2C+and+generalized+inverses&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Rieck%2C+M.Q.&rft.date=1997-01-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=251&rft.spage=239&rft.epage=248&rft_id=info:doi/10.1016%2FS0024-3795%2896%2900554-X&rft.externalDocID=S002437959600554X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |