Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation

N-Doped carbon nanotubes encapsulating bimetallic Fe/Mn nanoparticles (FeMn@NCNTs) were fabricated after a one-step pyrolysis and were used as the catalyst for peroxymonosulfate activation to degrade acetamiprid. The FeMn@NCNTs showed uniform nanotubes with rich N doping and the encapsulated FeMn na...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 6; no. 6; pp. 1799 - 1811
Main Authors Duan, Pijun, Ma, Tengfei, Yue, Yue, Li, Yanwei, Zhang, Xue, Shang, Yanan, Gao, Baoyu, Zhang, Qingzhu, Yue, Qinyan, Xu, Xing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract N-Doped carbon nanotubes encapsulating bimetallic Fe/Mn nanoparticles (FeMn@NCNTs) were fabricated after a one-step pyrolysis and were used as the catalyst for peroxymonosulfate activation to degrade acetamiprid. The FeMn@NCNTs showed uniform nanotubes with rich N doping and the encapsulated FeMn nanoparticles were doubly protected by both NCNTs and a clingy graphitic structure. The results indicated that the confined FeMn nanoparticles were designated as Fe 2.7 Mn 0.3 C according to the XRD pattern and elemental composition. Radical quenching indicated that SO 4 &z.rad; − and &z.rad;OH were the dominant radicals in the FeMn@NCNTs/PMS system. The indispensable roles of both radical pathways of O 2 &z.rad; − and non-radical 1 O 2 in the superior catalytic performance were also confirmed. As a result, both the embedded FeMn nanoparticles and NCNTs in FeMn@NCNTs contributed to the acetamiprid degradation with multiple degradation mechanisms. XPS results confirmed the formation of redox cycles between the multiple valence states of Mn and Fe, which ensured the superior catalytic activity of FeMn@NCNTs for PMS activation. In addition, only a small decrease in the catalytic performance from 99.5% to 90% was observed after four cycles. The catalytic activity of used FeMn@NCNTs was mostly recovered after heat regeneration (350 °C), which exhibited the excellent stability and reusability of the FeMn@NCNTs. Bimetallic Fe/Mn nanoparticles and N-doped carbon nanotubes in FeMn@NCNT synergistically activate peroxymonosulfate to form SO 4 &z.rad; − , &z.rad;OH, O 2 &z.rad; − and 1 O 2 for decomposing acetamiprid.
AbstractList N-Doped carbon nanotubes encapsulating bimetallic Fe/Mn nanoparticles (FeMn@NCNTs) were fabricated after a one-step pyrolysis and were used as the catalyst for peroxymonosulfate activation to degrade acetamiprid. The FeMn@NCNTs showed uniform nanotubes with rich N doping and the encapsulated FeMn nanoparticles were doubly protected by both NCNTs and a clingy graphitic structure. The results indicated that the confined FeMn nanoparticles were designated as Fe 2.7 Mn 0.3 C according to the XRD pattern and elemental composition. Radical quenching indicated that SO 4 &z.rad; − and &z.rad;OH were the dominant radicals in the FeMn@NCNTs/PMS system. The indispensable roles of both radical pathways of O 2 &z.rad; − and non-radical 1 O 2 in the superior catalytic performance were also confirmed. As a result, both the embedded FeMn nanoparticles and NCNTs in FeMn@NCNTs contributed to the acetamiprid degradation with multiple degradation mechanisms. XPS results confirmed the formation of redox cycles between the multiple valence states of Mn and Fe, which ensured the superior catalytic activity of FeMn@NCNTs for PMS activation. In addition, only a small decrease in the catalytic performance from 99.5% to 90% was observed after four cycles. The catalytic activity of used FeMn@NCNTs was mostly recovered after heat regeneration (350 °C), which exhibited the excellent stability and reusability of the FeMn@NCNTs. Bimetallic Fe/Mn nanoparticles and N-doped carbon nanotubes in FeMn@NCNT synergistically activate peroxymonosulfate to form SO 4 &z.rad; − , &z.rad;OH, O 2 &z.rad; − and 1 O 2 for decomposing acetamiprid.
N-Doped carbon nanotubes encapsulating bimetallic Fe/Mn nanoparticles (FeMn@NCNTs) were fabricated after a one-step pyrolysis and were used as the catalyst for peroxymonosulfate activation to degrade acetamiprid. The FeMn@NCNTs showed uniform nanotubes with rich N doping and the encapsulated FeMn nanoparticles were doubly protected by both NCNTs and a clingy graphitic structure. The results indicated that the confined FeMn nanoparticles were designated as Fe2.7Mn0.3C according to the XRD pattern and elemental composition. Radical quenching indicated that SO4·− and ·OH were the dominant radicals in the FeMn@NCNTs/PMS system. The indispensable roles of both radical pathways of O2·− and non-radical 1O2 in the superior catalytic performance were also confirmed. As a result, both the embedded FeMn nanoparticles and NCNTs in FeMn@NCNTs contributed to the acetamiprid degradation with multiple degradation mechanisms. XPS results confirmed the formation of redox cycles between the multiple valence states of Mn and Fe, which ensured the superior catalytic activity of FeMn@NCNTs for PMS activation. In addition, only a small decrease in the catalytic performance from 99.5% to 90% was observed after four cycles. The catalytic activity of used FeMn@NCNTs was mostly recovered after heat regeneration (350 °C), which exhibited the excellent stability and reusability of the FeMn@NCNTs.
N-Doped carbon nanotubes encapsulating bimetallic Fe/Mn nanoparticles (FeMn@NCNTs) were fabricated after a one-step pyrolysis and were used as the catalyst for peroxymonosulfate activation to degrade acetamiprid. The FeMn@NCNTs showed uniform nanotubes with rich N doping and the encapsulated FeMn nanoparticles were doubly protected by both NCNTs and a clingy graphitic structure. The results indicated that the confined FeMn nanoparticles were designated as Fe 2.7 Mn 0.3 C according to the XRD pattern and elemental composition. Radical quenching indicated that SO 4 ˙ − and ˙OH were the dominant radicals in the FeMn@NCNTs/PMS system. The indispensable roles of both radical pathways of O 2 ˙ − and non-radical 1 O 2 in the superior catalytic performance were also confirmed. As a result, both the embedded FeMn nanoparticles and NCNTs in FeMn@NCNTs contributed to the acetamiprid degradation with multiple degradation mechanisms. XPS results confirmed the formation of redox cycles between the multiple valence states of Mn and Fe, which ensured the superior catalytic activity of FeMn@NCNTs for PMS activation. In addition, only a small decrease in the catalytic performance from 99.5% to 90% was observed after four cycles. The catalytic activity of used FeMn@NCNTs was mostly recovered after heat regeneration (350 °C), which exhibited the excellent stability and reusability of the FeMn@NCNTs.
Author Ma, Tengfei
Li, Yanwei
Zhang, Xue
Zhang, Qingzhu
Gao, Baoyu
Xu, Xing
Yue, Yue
Yue, Qinyan
Duan, Pijun
Shang, Yanan
AuthorAffiliation Shandong Key Laboratory of Water Pollution Control and Resource Reuse
Shandong University
School of Environmental Science and Engineering
Environment Research Institute
AuthorAffiliation_xml – name: School of Environmental Science and Engineering
– name: Environment Research Institute
– name: Shandong Key Laboratory of Water Pollution Control and Resource Reuse
– name: Shandong University
Author_xml – sequence: 1
  givenname: Pijun
  surname: Duan
  fullname: Duan, Pijun
– sequence: 2
  givenname: Tengfei
  surname: Ma
  fullname: Ma, Tengfei
– sequence: 3
  givenname: Yue
  surname: Yue
  fullname: Yue, Yue
– sequence: 4
  givenname: Yanwei
  surname: Li
  fullname: Li, Yanwei
– sequence: 5
  givenname: Xue
  surname: Zhang
  fullname: Zhang, Xue
– sequence: 6
  givenname: Yanan
  surname: Shang
  fullname: Shang, Yanan
– sequence: 7
  givenname: Baoyu
  surname: Gao
  fullname: Gao, Baoyu
– sequence: 8
  givenname: Qingzhu
  surname: Zhang
  fullname: Zhang, Qingzhu
– sequence: 9
  givenname: Qinyan
  surname: Yue
  fullname: Yue, Qinyan
– sequence: 10
  givenname: Xing
  surname: Xu
  fullname: Xu, Xing
BookMark eNp9kd1LQyEYhyUWtNZuug9OdBec8uMcz7yMsT5o1U1dH5y-hmvTk7qou_70rMWCiEBR9Hle9ecu6jnvAKF9gk8IZuJUCXAYU4qftlCf4pqUI8JJbzOv2Q4axjjHGBNCa8abPno_h9MbVzjpfCdDsmoBsQCnZBdXC5lAFzbv2hT8I7hS-y6vKBlmfu2k1SzzMreig-Bf35be-WyarBZSJfsikw-FyV0qSHJpu2B1oeExSC2T9W4PbRu5iDD8Hgfo4XxyP74sp3cXV-OzaakYblJZM-CmlpRqEABaEIEVNRWtG8W5IY2oZqMRZ1gRrfFsZARnnFHaEELqpqooG6Cjdd0u-OcVxNTO_Sq4fGRLKRO04nUOaIDwmlLBxxjAtMqmr3umIO2iJbj9jLodi8ntV9TXWTn-peQnLmV4-xs-XMMhqg33829tp01mDv5j2AcmTZdp
CitedBy_id crossref_primary_10_1016_j_memsci_2020_118302
crossref_primary_10_1016_j_cej_2023_146234
crossref_primary_10_1016_j_jhazmat_2021_125305
crossref_primary_10_1016_j_seppur_2021_119796
crossref_primary_10_1016_j_apcatb_2020_118717
crossref_primary_10_1016_j_jenvman_2023_118523
crossref_primary_10_1016_j_jhazmat_2020_122434
crossref_primary_10_1007_s11356_022_18669_2
crossref_primary_10_1016_j_apcatb_2019_118302
crossref_primary_10_1016_j_solidstatesciences_2022_107048
crossref_primary_10_1007_s12274_023_5616_z
crossref_primary_10_1016_j_cej_2021_130283
crossref_primary_10_1007_s10562_021_03596_7
crossref_primary_10_1016_j_cej_2024_155599
crossref_primary_10_1016_j_jes_2019_05_022
crossref_primary_10_1007_s11356_022_21556_5
crossref_primary_10_1016_j_jhazmat_2024_134784
crossref_primary_10_1016_j_watres_2021_117676
crossref_primary_10_1016_j_diamond_2024_110975
crossref_primary_10_1016_j_apcatb_2022_121732
crossref_primary_10_1002_slct_202203454
crossref_primary_10_1016_j_cej_2022_139949
crossref_primary_10_1021_acs_iecr_0c03549
crossref_primary_10_1016_j_apcatb_2022_121695
crossref_primary_10_1016_j_seppur_2024_126768
crossref_primary_10_1038_s44221_024_00377_5
crossref_primary_10_1016_j_jcis_2020_03_041
crossref_primary_10_1016_j_cej_2023_142781
crossref_primary_10_1016_j_jece_2024_114982
crossref_primary_10_1021_acsestwater_3c00319
crossref_primary_10_1016_j_molliq_2024_125427
crossref_primary_10_1016_j_cej_2020_125921
crossref_primary_10_1016_j_cej_2020_127305
crossref_primary_10_1016_j_jhazmat_2021_125413
crossref_primary_10_1016_j_seppur_2022_122032
crossref_primary_10_1016_j_seppur_2022_121461
crossref_primary_10_1016_j_cej_2021_130850
crossref_primary_10_1016_j_jhazmat_2020_123930
crossref_primary_10_1016_j_apsusc_2021_148939
crossref_primary_10_1021_acssuschemeng_0c06845
crossref_primary_10_1016_j_scitotenv_2022_159172
crossref_primary_10_1080_10643389_2022_2146981
crossref_primary_10_1016_j_electacta_2021_139488
crossref_primary_10_1016_j_scitotenv_2019_136436
crossref_primary_10_1016_j_jallcom_2020_157244
crossref_primary_10_1016_j_scitotenv_2021_150867
crossref_primary_10_1016_j_apcatb_2021_120532
crossref_primary_10_1016_j_apsusc_2023_156958
crossref_primary_10_1016_j_cej_2021_131777
crossref_primary_10_1016_j_jhazmat_2022_129871
crossref_primary_10_1016_j_colsurfa_2019_124360
crossref_primary_10_1016_j_seppur_2022_121988
crossref_primary_10_1016_j_seppur_2023_124359
crossref_primary_10_1016_j_chemosphere_2021_133199
crossref_primary_10_1016_j_cej_2020_126400
crossref_primary_10_1021_acsami_2c03840
crossref_primary_10_1016_j_cej_2020_124864
crossref_primary_10_1016_j_envpol_2020_115438
crossref_primary_10_1016_j_cej_2023_144832
crossref_primary_10_1016_j_apcatb_2020_118850
crossref_primary_10_1016_j_apcatb_2020_119662
crossref_primary_10_1016_j_jwpe_2025_106991
crossref_primary_10_1016_j_seppur_2021_119934
crossref_primary_10_1016_j_cej_2021_128829
crossref_primary_10_1002_aoc_5073
crossref_primary_10_1021_acssuschemeng_9b02016
crossref_primary_10_1016_j_jhazmat_2019_121060
crossref_primary_10_2139_ssrn_4200306
crossref_primary_10_1016_j_colsurfa_2024_134684
crossref_primary_10_1016_j_colsurfa_2020_124831
crossref_primary_10_1016_j_cej_2020_126085
crossref_primary_10_1016_j_cclet_2020_02_033
crossref_primary_10_1016_j_cej_2019_123554
crossref_primary_10_1016_j_scitotenv_2019_133816
crossref_primary_10_2139_ssrn_4055045
crossref_primary_10_2139_ssrn_4172817
crossref_primary_10_1002_slct_202404631
crossref_primary_10_1016_j_jece_2024_113156
crossref_primary_10_1016_j_cej_2023_142525
crossref_primary_10_1016_j_jhazmat_2020_123039
crossref_primary_10_1016_j_apcata_2021_118246
crossref_primary_10_1016_j_scitotenv_2020_141634
crossref_primary_10_1016_j_cclet_2023_108971
crossref_primary_10_1021_acs_langmuir_5c00170
crossref_primary_10_1016_j_catcom_2022_106578
crossref_primary_10_1016_j_chemosphere_2022_136625
crossref_primary_10_1016_j_jphotochem_2020_112526
crossref_primary_10_1016_j_apsusc_2021_152254
crossref_primary_10_1016_j_jcis_2020_07_081
crossref_primary_10_1016_j_jhazmat_2019_121211
crossref_primary_10_1016_j_chemosphere_2020_128806
crossref_primary_10_1016_j_seppur_2021_120136
crossref_primary_10_1016_j_jclepro_2019_117984
crossref_primary_10_1007_s11270_022_05909_x
crossref_primary_10_1016_j_cej_2021_130803
crossref_primary_10_1016_j_jtice_2019_06_015
crossref_primary_10_1016_j_psep_2022_09_005
crossref_primary_10_1016_j_diamond_2023_110260
crossref_primary_10_1002_smll_202311552
crossref_primary_10_1016_j_apsusc_2023_156593
crossref_primary_10_1016_j_jhazmat_2019_121008
crossref_primary_10_1016_j_seppur_2022_121032
crossref_primary_10_1007_s11356_020_09381_0
crossref_primary_10_1016_j_scitotenv_2019_135493
crossref_primary_10_1021_acs_est_0c08552
crossref_primary_10_1016_j_apcatb_2024_123954
crossref_primary_10_1007_s10854_022_07768_y
crossref_primary_10_1089_ees_2019_0305
crossref_primary_10_1016_j_ces_2023_119069
crossref_primary_10_1016_j_seppur_2022_121717
crossref_primary_10_1002_adma_202403965
crossref_primary_10_1016_j_jhazmat_2022_128450
crossref_primary_10_1016_j_jcis_2021_07_130
crossref_primary_10_1016_j_colsurfa_2022_128795
crossref_primary_10_1016_j_apsusc_2023_156522
crossref_primary_10_1016_j_jallcom_2019_04_235
crossref_primary_10_1016_j_apcatb_2019_118232
crossref_primary_10_1016_j_seppur_2021_120197
crossref_primary_10_1016_j_jece_2024_114703
crossref_primary_10_1016_j_seppur_2021_119404
crossref_primary_10_1007_s10570_019_02653_0
crossref_primary_10_1016_j_cclet_2023_109242
crossref_primary_10_1016_j_chemosphere_2020_129286
crossref_primary_10_1016_j_chemosphere_2020_126053
crossref_primary_10_1016_j_seppur_2020_117841
crossref_primary_10_1016_j_apsusc_2024_162007
crossref_primary_10_1021_acsestengg_1c00327
crossref_primary_10_1080_09593330_2020_1716856
crossref_primary_10_1016_j_jhazmat_2020_122528
crossref_primary_10_1016_j_jhazmat_2019_121073
crossref_primary_10_1016_j_scitotenv_2020_139983
crossref_primary_10_1016_j_cej_2022_136806
crossref_primary_10_1016_j_matlet_2023_135223
crossref_primary_10_1016_j_cej_2024_150514
crossref_primary_10_1016_j_apcatb_2022_121901
crossref_primary_10_1080_10643389_2024_2309845
crossref_primary_10_1016_j_cej_2020_125119
crossref_primary_10_1002_aoc_5713
crossref_primary_10_1021_acs_iecr_3c01624
crossref_primary_10_1002_app_56292
crossref_primary_10_1016_j_ecoenv_2020_111836
crossref_primary_10_1016_j_cej_2019_122384
crossref_primary_10_1016_j_cej_2019_122780
crossref_primary_10_1016_j_jcis_2021_10_162
crossref_primary_10_1016_j_seppur_2022_122706
crossref_primary_10_1016_j_jece_2022_108937
crossref_primary_10_1007_s11356_020_08613_7
crossref_primary_10_1016_j_cej_2019_123995
crossref_primary_10_1016_j_seppur_2024_128729
crossref_primary_10_1016_j_jece_2023_109905
crossref_primary_10_1016_j_seppur_2023_125811
crossref_primary_10_1016_j_jenvman_2022_114859
crossref_primary_10_1016_j_jallcom_2019_07_329
crossref_primary_10_1016_j_watres_2022_118896
crossref_primary_10_1016_j_cej_2020_127805
crossref_primary_10_1007_s12598_024_03050_8
crossref_primary_10_3390_cryst13081248
crossref_primary_10_1016_j_jece_2022_108643
crossref_primary_10_1016_j_seppur_2024_129369
crossref_primary_10_1016_j_jece_2024_114719
crossref_primary_10_1016_j_cej_2025_159900
crossref_primary_10_1016_j_envres_2020_110564
crossref_primary_10_1016_j_apcatb_2020_118819
crossref_primary_10_1016_j_colsurfa_2022_129550
crossref_primary_10_1016_j_mtnano_2021_100116
crossref_primary_10_1016_j_cej_2019_122310
crossref_primary_10_1016_j_seppur_2023_124974
crossref_primary_10_3390_s22124653
crossref_primary_10_1007_s41742_023_00561_7
crossref_primary_10_1016_j_cej_2020_125063
Cites_doi 10.1016/j.biortech.2017.10.095
10.1016/j.apcatb.2017.11.051
10.1021/acs.est.7b05563
10.1016/j.watres.2018.01.039
10.1016/j.cej.2017.04.018
10.1016/j.cej.2018.09.093
10.1016/j.chemosphere.2014.09.046
10.1016/j.apcatb.2018.07.058
10.1016/j.apcatb.2016.01.059
10.1016/j.apsusc.2018.07.198
10.1002/anie.201003485
10.1016/j.cej.2018.07.103
10.1016/j.jelechem.2017.05.012
10.1016/j.watres.2018.08.026
10.1016/j.ecoenv.2018.11.132
10.1016/j.apcatb.2019.03.048
10.1016/j.apcatb.2018.09.056
10.1016/j.cej.2016.10.057
10.1016/j.jhazmat.2016.03.089
10.1016/j.cej.2018.11.207
10.1016/j.cej.2017.10.020
10.1016/j.envpol.2018.01.102
10.1016/j.carbon.2018.05.039
10.1016/j.watres.2017.06.037
10.1016/j.cej.2018.08.066
10.1016/j.chemosphere.2018.02.168
10.1021/acs.est.6b02841
10.1016/j.cej.2019.01.035
10.1016/j.cej.2018.07.056
10.1016/j.cej.2018.03.168
10.1016/j.apcatb.2017.11.056
10.1021/acs.accounts.7b00535
10.1016/j.apsusc.2018.05.066
10.1016/j.watres.2018.06.002
10.1039/C6TA02738E
10.1016/j.scitotenv.2018.08.065
10.1016/j.chemosphere.2017.02.133
10.1016/j.watres.2017.08.049
10.1021/acs.est.7b03007
10.1016/j.jpowsour.2015.04.021
10.1016/j.cej.2018.06.132
10.1016/j.cej.2017.08.115
10.1016/j.chemosphere.2018.10.175
10.1016/j.jhazmat.2016.08.021
10.1016/j.apcatb.2018.03.106
10.1016/j.apcatb.2018.01.004
10.1016/j.apcatb.2017.10.007
10.1016/j.jhazmat.2018.03.040
10.1021/acs.iecr.8b03661
10.1016/j.scitotenv.2018.12.304
10.1016/j.apcatb.2018.02.059
10.1016/j.scitotenv.2018.02.258
10.1016/j.cej.2017.07.149
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/c9en00220k
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 1811
ExternalDocumentID 10_1039_C9EN00220K
c9en00220k
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AFRAH
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
EJD
HZ
H~N
IPNFZ
J3I
JG
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c307t-53e6f5a22de9eed9190c2f4257c66f1794b88630c1dd0b8f96363227111574423
ISSN 2051-8153
IngestDate Mon Jun 30 11:56:10 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Tue Jul 01 02:35:35 EDT 2025
Wed Nov 11 00:29:04 EST 2020
Sat Jan 08 11:09:30 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-53e6f5a22de9eed9190c2f4257c66f1794b88630c1dd0b8f96363227111574423
Notes 10.1039/c9en00220k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7245-179X
0000-0002-0841-377X
PQID 2239246515
PQPubID 2047519
PageCount 13
ParticipantIDs proquest_journals_2239246515
crossref_citationtrail_10_1039_C9EN00220K
crossref_primary_10_1039_C9EN00220K
rsc_primary_c9en00220k
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190613
PublicationDateYYYYMMDD 2019-06-13
PublicationDate_xml – month: 6
  year: 2019
  text: 20190613
  day: 13
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Meijide (C9EN00220K-(cit56)/*[position()=1]) 2018; 808
Du (C9EN00220K-(cit22)/*[position()=1]) 2016; 320
Ahn (C9EN00220K-(cit49)/*[position()=1]) 2019; 241
Jiang (C9EN00220K-(cit6)/*[position()=1]) 2018; 201
Qi (C9EN00220K-(cit8)/*[position()=1]) 2018; 353
Xu (C9EN00220K-(cit44)/*[position()=1]) 2017; 123
Ma (C9EN00220K-(cit39)/*[position()=1]) 2019; 356
Oh (C9EN00220K-(cit31)/*[position()=1]) 2018; 233
Duan (C9EN00220K-(cit53)/*[position()=1]) 2018; 222
Hua (C9EN00220K-(cit33)/*[position()=1]) 2017; 177
Zhou (C9EN00220K-(cit10)/*[position()=1]) 2018; 142
Xu (C9EN00220K-(cit47)/*[position()=1]) 2018; 238
Peng (C9EN00220K-(cit12)/*[position()=1]) 2018; 249
Deng (C9EN00220K-(cit50)/*[position()=1]) 2017; 330
Huang (C9EN00220K-(cit19)/*[position()=1]) 2017; 51
Duan (C9EN00220K-(cit54)/*[position()=1]) 2016; 188
Liang (C9EN00220K-(cit38)/*[position()=1]) 2017; 4
Dehghani (C9EN00220K-(cit32)/*[position()=1]) 2017; 310
Chen (C9EN00220K-(cit11)/*[position()=1]) 2019; 250
Zhong (C9EN00220K-(cit27)/*[position()=1]) 2015; 286
Deng (C9EN00220K-(cit45)/*[position()=1]) 2018; 459
Zhou (C9EN00220K-(cit7)/*[position()=1]) 2017; 125
Lou (C9EN00220K-(cit42)/*[position()=1]) 2014; 117
Liu (C9EN00220K-(cit57)/*[position()=1]) 2019; 170
Wang (C9EN00220K-(cit41)/*[position()=1]) 2018; 352
Li (C9EN00220K-(cit34)/*[position()=1]) 2018; 52
Tan (C9EN00220K-(cit21)/*[position()=1]) 2018; 334
Yuan (C9EN00220K-(cit29)/*[position()=1]) 2018; 57
Zhuang (C9EN00220K-(cit25)/*[position()=1]) 2016; 4
Yang (C9EN00220K-(cit9)/*[position()=1]) 2017; 322
Yuan (C9EN00220K-(cit18)/*[position()=1]) 2018; 351
Ma (C9EN00220K-(cit36)/*[position()=1]) 2018; 137
Tian (C9EN00220K-(cit14)/*[position()=1]) 2018; 225
Ahn (C9EN00220K-(cit13)/*[position()=1]) 2016; 50
Tian (C9EN00220K-(cit43)/*[position()=1]) 2018; 331
Wu (C9EN00220K-(cit26)/*[position()=1]) 2018; 352
Yan (C9EN00220K-(cit16)/*[position()=1]) 2018; 354
Keshvardoostchokami (C9EN00220K-(cit4)/*[position()=1]) 2017; 25
Long (C9EN00220K-(cit55)/*[position()=1]) 2019; 216
Donik (C9EN00220K-(cit24)/*[position()=1]) 2018; 453
Zhuang (C9EN00220K-(cit20)/*[position()=1]) 2019; 6
Zhang (C9EN00220K-(cit23)/*[position()=1]) 2018; 133
Yang (C9EN00220K-(cit28)/*[position()=1]) 2010; 49
Yao (C9EN00220K-(cit15)/*[position()=1]) 2016; 314
Duan (C9EN00220K-(cit52)/*[position()=1]) 2018; 51
Fu (C9EN00220K-(cit35)/*[position()=1]) 2019; 360
Meng (C9EN00220K-(cit3)/*[position()=1]) 2018; 226
Wang (C9EN00220K-(cit17)/*[position()=1]) 2017; 4
Yin (C9EN00220K-(cit5)/*[position()=1]) 2018; 346
Duan (C9EN00220K-(cit51)/*[position()=1]) 2018; 224
Wang (C9EN00220K-(cit37)/*[position()=1]) 2019; 658
Nie (C9EN00220K-(cit46)/*[position()=1]) 2019; 647
Zhou (C9EN00220K-(cit48)/*[position()=1]) 2018; 145
Tang (C9EN00220K-(cit40)/*[position()=1]) 2018; 231
Diao (C9EN00220K-(cit2)/*[position()=1]) 2018; 630
Sumon (C9EN00220K-(cit1)/*[position()=1]) 2018; 236
Kang (C9EN00220K-(cit30)/*[position()=1]) 2019; 362
References_xml – volume: 249
  start-page: 924
  year: 2018
  ident: C9EN00220K-(cit12)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.095
– volume: 224
  start-page: 973
  year: 2018
  ident: C9EN00220K-(cit51)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.11.051
– volume: 52
  start-page: 2197
  year: 2018
  ident: C9EN00220K-(cit34)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05563
– volume: 133
  start-page: 227
  year: 2018
  ident: C9EN00220K-(cit23)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.039
– volume: 322
  start-page: 546
  year: 2017
  ident: C9EN00220K-(cit9)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.018
– volume: 356
  start-page: 1022
  year: 2019
  ident: C9EN00220K-(cit39)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.093
– volume: 117
  start-page: 582
  year: 2014
  ident: C9EN00220K-(cit42)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.046
– volume: 238
  start-page: 557
  year: 2018
  ident: C9EN00220K-(cit47)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.07.058
– volume: 188
  start-page: 98
  year: 2016
  ident: C9EN00220K-(cit54)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.01.059
– volume: 459
  start-page: 138
  year: 2018
  ident: C9EN00220K-(cit45)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.198
– volume: 49
  start-page: 8408
  year: 2010
  ident: C9EN00220K-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003485
– volume: 352
  start-page: 1004
  year: 2018
  ident: C9EN00220K-(cit41)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.103
– volume: 808
  start-page: 446
  year: 2018
  ident: C9EN00220K-(cit56)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.05.012
– volume: 145
  start-page: 210
  year: 2018
  ident: C9EN00220K-(cit48)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.08.026
– volume: 170
  start-page: 259
  year: 2019
  ident: C9EN00220K-(cit57)/*[position()=1]
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.11.132
– volume: 250
  start-page: 382
  year: 2019
  ident: C9EN00220K-(cit11)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.03.048
– volume: 241
  start-page: 561
  year: 2019
  ident: C9EN00220K-(cit49)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.09.056
– volume: 6
  start-page: 388
  year: 2019
  ident: C9EN00220K-(cit20)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 310
  start-page: 22
  year: 2017
  ident: C9EN00220K-(cit32)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.057
– volume: 314
  start-page: 129
  year: 2016
  ident: C9EN00220K-(cit15)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.03.089
– volume: 25
  start-page: 1
  year: 2017
  ident: C9EN00220K-(cit4)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
– volume: 360
  start-page: 157
  year: 2019
  ident: C9EN00220K-(cit35)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.207
– volume: 334
  start-page: 1006
  year: 2018
  ident: C9EN00220K-(cit21)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.020
– volume: 236
  start-page: 432
  year: 2018
  ident: C9EN00220K-(cit1)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.102
– volume: 137
  start-page: 291
  year: 2018
  ident: C9EN00220K-(cit36)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.039
– volume: 123
  start-page: 67
  year: 2017
  ident: C9EN00220K-(cit44)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.06.037
– volume: 354
  start-page: 1120
  year: 2018
  ident: C9EN00220K-(cit16)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.066
– volume: 201
  start-page: 159
  year: 2018
  ident: C9EN00220K-(cit6)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.168
– volume: 50
  start-page: 10187
  year: 2016
  ident: C9EN00220K-(cit13)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02841
– volume: 362
  start-page: 251
  year: 2019
  ident: C9EN00220K-(cit30)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.035
– volume: 353
  start-page: 490
  year: 2018
  ident: C9EN00220K-(cit8)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.056
– volume: 346
  start-page: 298
  year: 2018
  ident: C9EN00220K-(cit5)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.168
– volume: 225
  start-page: 76
  year: 2018
  ident: C9EN00220K-(cit14)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.11.056
– volume: 4
  start-page: 170
  year: 2017
  ident: C9EN00220K-(cit17)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 51
  start-page: 678
  year: 2018
  ident: C9EN00220K-(cit52)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00535
– volume: 453
  start-page: 383
  year: 2018
  ident: C9EN00220K-(cit24)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.066
– volume: 142
  start-page: 208
  year: 2018
  ident: C9EN00220K-(cit10)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.002
– volume: 4
  start-page: 10885
  year: 2016
  ident: C9EN00220K-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02738E
– volume: 647
  start-page: 734
  year: 2019
  ident: C9EN00220K-(cit46)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.065
– volume: 177
  start-page: 65
  year: 2017
  ident: C9EN00220K-(cit33)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.133
– volume: 125
  start-page: 209
  year: 2017
  ident: C9EN00220K-(cit7)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.08.049
– volume: 51
  start-page: 12611
  year: 2017
  ident: C9EN00220K-(cit19)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03007
– volume: 286
  start-page: 495
  year: 2015
  ident: C9EN00220K-(cit27)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.021
– volume: 351
  start-page: 622
  year: 2018
  ident: C9EN00220K-(cit18)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.06.132
– volume: 331
  start-page: 144
  year: 2018
  ident: C9EN00220K-(cit43)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.115
– volume: 216
  start-page: 545
  year: 2019
  ident: C9EN00220K-(cit55)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.175
– volume: 320
  start-page: 150
  year: 2016
  ident: C9EN00220K-(cit22)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.08.021
– volume: 233
  start-page: 120
  year: 2018
  ident: C9EN00220K-(cit31)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.03.106
– volume: 226
  start-page: 487
  year: 2018
  ident: C9EN00220K-(cit3)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.01.004
– volume: 4
  start-page: 315
  year: 2017
  ident: C9EN00220K-(cit38)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 222
  start-page: 176
  year: 2018
  ident: C9EN00220K-(cit53)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.10.007
– volume: 352
  start-page: 148
  year: 2018
  ident: C9EN00220K-(cit26)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.03.040
– volume: 57
  start-page: 14758
  year: 2018
  ident: C9EN00220K-(cit29)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b03661
– volume: 658
  start-page: 1367
  year: 2019
  ident: C9EN00220K-(cit37)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.304
– volume: 231
  start-page: 1
  year: 2018
  ident: C9EN00220K-(cit40)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.02.059
– volume: 630
  start-page: 487
  year: 2018
  ident: C9EN00220K-(cit2)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.258
– volume: 330
  start-page: 505
  year: 2017
  ident: C9EN00220K-(cit50)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.149
SSID ssj0001125367
Score 2.5705788
Snippet N-Doped carbon nanotubes encapsulating bimetallic Fe/Mn nanoparticles (FeMn@NCNTs) were fabricated after a one-step pyrolysis and were used as the catalyst for...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1799
SubjectTerms Activation
Bimetals
Carbon nanotubes
Catalysis
Catalysts
Catalytic activity
Chemical composition
Cycles
Degradation
Encapsulation
Free radicals
Graphitic structure
Iron
Manganese
Nanoparticles
Nanotechnology
Nanotubes
Nitrogen
Oxidoreductions
Pyrolysis
Regeneration
Stability
Sulphates
Title Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation
URI https://www.proquest.com/docview/2239246515
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA6zuy--iKKLs64S0BcZOttrpnlcZIdVd8SHWdh9KmkuUndNh9p6wwd_uidN23RwBBVKGXIj9Hxz8p2Q8wWh58AxkkhE3KOMmQCFE4_mvvB4QBc08SUjrZjO6i05v4xfXyVXk8mPcXZJnc_59515Jf9jVSgDu5os2X-w7DAoFMBvsC-8wcLw_isbLyX0XemZZhpi3-6I2wxmyCD2vWWGTBZQW9RVCWN4otxACWdVXto-dZNDewaPkS8uv36DmZfQU0HXVmXjswnJ7UFLLmv2sdhUhZgJIzAhnEn7jX2XM9dnWnI5N_67dHTZ7re-Kz40AypXLX9dS_1eyWLwQk2703rdDMC7aM8dXDP9pWvV7VWY9Cji2VRT69JCcAFeGlh54Lkcl1lJ9t4nkxH0xv7V6NeN1mqgJ8HOdcCPjIwqp1IbkuLfuNVuOIPoKvfQQQhBBnjJg9Oz9asLt0cH7C9qLyEeJt4r3Eb0xA2wzWlcoLJX9bfItGxlfQ_d7cIMfGoxcR9NpH6Afi7lyUrjLbTgMVpwAbVbaMEWLXhAC2bw4N_Qgge0YEALHqEFj9DyEF0uz9Yvz73uBg6Pg--vvSSSRCUsDIWkQKYosEceKuPmOSHK-PI8TUnk80AIP08VeHMCK8QiMBJOMTD1Q7SvSy0fIRwpP499RZM8VnEM4wkWLJgMuEoZVTSfohf9N8x4J09vbkm5zdpjEhHNjLpb-73fTNGzoe3GirLsbHXcmyLr_rSfMmDDNIwJsPgpOgTzDP2dNafoaHdFthHq6E-9HqM7DvHHaL-uGvkE-GqdP-1g9Quj45vC
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe%2FMn+nanoparticles+encapsulated+in+nitrogen-doped+carbon+nanotubes+as+a+peroxymonosulfate+activator+for+acetamiprid+degradation&rft.jtitle=Environmental+science.+Nano&rft.au=Duan%2C+Pijun&rft.au=Ma%2C+Tengfei&rft.au=Yue%2C+Yue&rft.au=Li%2C+Yanwei&rft.date=2019-06-13&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=6&rft.issue=6&rft.spage=1799&rft.epage=1811&rft_id=info:doi/10.1039%2Fc9en00220k&rft.externalDocID=c9en00220k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon