A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations

Recently,it has been generally claimed that a low order post-Newtonian(PN) Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 65; no. 3; pp. 321 - 328
Main Author 陈荣超 伍歆
Format Journal Article
LanguageEnglish
Published 01.03.2016
Subjects
Online AccessGet full text
ISSN0253-6102
1572-9494
DOI10.1088/0253-6102/65/3/321

Cover

Abstract Recently,it has been generally claimed that a low order post-Newtonian(PN) Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown.However,there is no difficulty in some cases.In fact,this claim is shown analytically by means of a special first-order post-Newtonian(1PN) Lagrangian formulation of relativistic circular restricted three-body problem,where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders,but have converged functions.It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.
AbstractList Recently,it has been generally claimed that a low order post-Newtonian(PN) Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown.However,there is no difficulty in some cases.In fact,this claim is shown analytically by means of a special first-order post-Newtonian(1PN) Lagrangian formulation of relativistic circular restricted three-body problem,where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders,but have converged functions.It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.
Recently, it has been generally claimed that a low order post-Newtonian (PN) Lagrangian formulation, whose Euler-Lagrange equations are up to an infinite PN order, can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view. In general, this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown. However, there is no difficulty in some cases. In fact, this claim is shown analytically by means of a special first-order post-Newtonian (1PN) Lagrangian formulation of relativistic circular restricted three-body problem, where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders, but have converged functions. It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.
Author 陈荣超 伍歆
AuthorAffiliation Department of Physics and Institute of Astronomy, Nanchang University, Nanchang 330031, China
Author_xml – sequence: 1
  fullname: 陈荣超 伍歆
BookMark eNp9kE1PAjEQhhuDiYD-AU8bT15W-r3lSAiICUET9dwM3S7ULC1si8Z_LyuEgwdPnXTeZybz9FDHB28RuiX4gWClBpgKlkuC6UCKARswSi5Ql4iC5kM-5B3UPQeuUC_GD4wxLSTpotdRtgjJZsFnaW2zyW7vPqG23hy-quwlxJQv7FcK3oHP5rBqwK_aEnyZzWDj6lNrGprNvobkgo_X6LKCOtqb09tH79PJ23iWz58fn8ajeW4YLlLOh4oaAMpFyXFVkkoJYlUpliUVZAlL4JLIYogrVXBrCsWINEZRZqCqgFPO-uj-OHfbhN3exqQ3Lhpb1-Bt2EdNFJFYYCnaKD1GTRNibGylt43bQPOtCdatQd0K0q0gLYVm-mDwAKk_kHHp98TUgKv_R-9O6Dr41c751XmhlEpgIYqC_QBmKIJ8
CitedBy_id crossref_primary_10_1140_epjc_s10052_016_4339_7
crossref_primary_10_3390_sym13040584
crossref_primary_10_1007_s10509_017_3076_1
crossref_primary_10_1088_0253_6102_69_3_233
crossref_primary_10_1103_PhysRevD_104_044055
crossref_primary_10_1093_mnras_stw807
crossref_primary_10_1103_PhysRevD_104_044039
crossref_primary_10_3847_1538_4357_ada5fc
crossref_primary_10_1007_s10509_018_3265_6
crossref_primary_10_1093_mnras_staa3733
crossref_primary_10_3847_1538_4357_834_1_64
crossref_primary_10_1007_s10701_024_00799_x
crossref_primary_10_1103_PhysRevD_107_074008
crossref_primary_10_1088_0253_6102_68_3_375
crossref_primary_10_1140_epjc_s10052_018_6291_1
Cites_doi 10.1103/PhysRevD.63.044021
10.1103/PhysRevLett.89.179001
10.1007/s10509-015-2614-y
10.1103/PhysRevD.82.124040
10.1140/epjc/s10052-014-3012-2
10.1086/591730
10.1016/S0375-9601(03)00720-5
10.1103/PhysRevD.91.024042
10.1086/516827
10.1103/PhysRevD.67.044013
10.1103/PhysRevD.68.024004
10.1023/A:1008276418601
10.1103/PhysRevD.77.103012
10.1103/PhysRevD.72.121501
10.1140/epjc/s10052-013-2413-y
10.1093/mnras/stt1441
10.1093/mnras/stv1485
10.1103/PhysRevD.81.084045
10.1103/PhysRevLett.84.3515
10.1103/PhysRevLett.87.121101
10.1103/PhysRevD.81.104037
10.1088/1674-4527/14/10/011
10.1103/PhysRevD.74.083001
10.1088/1475-7516/2014/12/003
10.1088/0253-6102/64/2/159
10.1103/PhysRevD.76.124004
10.1088/0264-9381/18/5/301
10.1103/PhysRevD.89.124034
10.1103/PhysRevD.74.124027
10.1103/PhysRevD.71.024039
10.1103/PhysRevD.71.024027
10.1007/s10569-015-9628-1
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/0253-6102/65/3/321
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations
EISSN 1572-9494
EndPage 328
ExternalDocumentID 10_1088_0253_6102_65_3_321
668505577
GroupedDBID 02O
042
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ADEQX
AOAED
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c307t-4982caa245d40fd1f851e8d5bd251baba4616790f874ec78316cc823caffa4243
ISSN 0253-6102
IngestDate Fri Sep 05 07:12:22 EDT 2025
Tue Jul 01 01:36:01 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
Wed Feb 14 10:19:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-4982caa245d40fd1f851e8d5bd251baba4616790f874ec78316cc823caffa4243
Notes post-Newtonian approximation; Lagrangian and Hamiltonian mechanics; circular restricted threebody problem; chaos
Rong-Chao Chen,Xin Wu( Department of Physics and Institute of Astronomy, Nanchang University, Nanchang 330031, China)
Recently,it has been generally claimed that a low order post-Newtonian(PN) Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown.However,there is no difficulty in some cases.In fact,this claim is shown analytically by means of a special first-order post-Newtonian(1PN) Lagrangian formulation of relativistic circular restricted three-body problem,where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders,but have converged functions.It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.
11-2592/O3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816050654
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1816050654
crossref_primary_10_1088_0253_6102_65_3_321
crossref_citationtrail_10_1088_0253_6102_65_3_321
chongqing_primary_668505577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Communications in Theoretical Physics
PublicationYear 2016
References Wang H. (9) 2015; 64
23
24
de Andrade V.C. (2) 2001; 18
25
26
27
29
Levi M. (3) 2014; 12
30
31
10
32
11
12
13
14
15
16
17
18
19
Wu X. (21) 2007; 133
Ni X. (28) 2014; 14
1
4
5
6
7
8
Ma D.Z. (22) 2008; 687
20
References_xml – ident: 1
  doi: 10.1103/PhysRevD.63.044021
– ident: 14
  doi: 10.1103/PhysRevLett.89.179001
– ident: 32
  doi: 10.1007/s10509-015-2614-y
– ident: 25
  doi: 10.1103/PhysRevD.82.124040
– ident: 19
  doi: 10.1140/epjc/s10052-014-3012-2
– volume: 687
  start-page: 1294
  issn: 0004-637X
  year: 2008
  ident: 22
  publication-title: Astrophys. J.
  doi: 10.1086/591730
– ident: 29
  doi: 10.1016/S0375-9601(03)00720-5
– ident: 8
  doi: 10.1103/PhysRevD.91.024042
– volume: 133
  start-page: 2643
  issn: 0004-6256
  year: 2007
  ident: 21
  publication-title: Astron. J.
  doi: 10.1086/516827
– ident: 4
  doi: 10.1103/PhysRevD.67.044013
– ident: 15
  doi: 10.1103/PhysRevD.68.024004
– ident: 30
  doi: 10.1023/A:1008276418601
– ident: 18
  doi: 10.1103/PhysRevD.77.103012
– ident: 6
  doi: 10.1103/PhysRevD.72.121501
– ident: 26
  doi: 10.1140/epjc/s10052-013-2413-y
– ident: 27
  doi: 10.1093/mnras/stt1441
– ident: 10
  doi: 10.1093/mnras/stv1485
– ident: 11
  doi: 10.1103/PhysRevD.81.084045
– ident: 12
  doi: 10.1103/PhysRevLett.84.3515
– ident: 13
  doi: 10.1103/PhysRevLett.87.121101
– ident: 23
  doi: 10.1103/PhysRevD.81.104037
– volume: 14
  start-page: 1329
  issn: 1674-4527
  year: 2014
  ident: 28
  publication-title: Research in Astron. Astrophys.
  doi: 10.1088/1674-4527/14/10/011
– ident: 31
  doi: 10.1103/PhysRevD.74.083001
– volume: 12
  start-page: 003
  issn: 1475-7516
  year: 2014
  ident: 3
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/12/003
– volume: 64
  start-page: 159
  issn: 0253-6102
  year: 2015
  ident: 9
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/64/2/159
– ident: 17
  doi: 10.1103/PhysRevD.76.124004
– volume: 18
  start-page: 753
  issn: 0264-9381
  year: 2001
  ident: 2
  publication-title: Classical Quantum Gravity
  doi: 10.1088/0264-9381/18/5/301
– ident: 20
  doi: 10.1103/PhysRevD.89.124034
– ident: 7
  doi: 10.1103/PhysRevD.74.124027
– ident: 5
  doi: 10.1103/PhysRevD.71.024039
– ident: 16
  doi: 10.1103/PhysRevD.71.024027
– ident: 24
  doi: 10.1007/s10569-015-9628-1
SSID ssj0002761
Score 2.139559
Snippet Recently,it has been generally claimed that a low order post-Newtonian(PN) Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN...
Recently, it has been generally claimed that a low order post-Newtonian (PN) Lagrangian formulation, whose Euler-Lagrange equations are up to an infinite PN...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 321
SubjectTerms Circularity
Equivalence
Euler-Lagrange equation
Hamilton
Hamiltonian functions
Mathematical analysis
Mathematical models
Theoretical physics
拉格朗日公式
欧拉-拉格朗日方程
注记
牛顿方法
等价性
等效哈密顿量
限制性三体问题
Title A Note on the Equivalence of Post-Newtonian Lagrangian and Hamiltonian Formulations
URI http://lib.cqvip.com/qk/83837X/201603/668505577.html
https://www.proquest.com/docview/1816050654
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9MwHA_zRLwXf5zKzVOJ4NtR1zZJmz3JGBtTxu7QDfYWkjbZCdJ6tn3xr_ebNss6FDl9KSFtU-jnm08-Sb7fbxB6RxPDcqlIkLE8DGjGVKCUGQeRNErp0Ogwbx1kV8liQz9t2XYw-NDzWmpq9T77-ce4kv9BFeoAVxsl-w_I-kahAsqAL1wBYbjeCePJ5aq02_ydq-LstvkKrbddtfVsq-oAOAzEne3ES7mDYWlni3atfGEXNtytOehWd4pX1RerR8EjlfOI9GGP3ZqIl-RTF-bxuSx2wfRGlp7uG1u9dRm-3QJDlBw8rBwPxYzADDPsSFM7nkzjYEy784n3RNod-uAMhvRYkXRB0G6AJV00-G_cDXzXprlwX4NyYvNe2MQSvoF-uuzVlZhvlkuxnm3X99D9OE3bffqPV9d-KI7TNmGub9NFTcGXRr5ulLARGRGbLPYhjDjF7hY0w7FKOR6kW-WxfoIeuSkDnnT4P0UDXZyhx276gB05V2fowXWHyDP0ZYKtYeCywIAY7hkGLg0-Ngx8MAwMhoF7hoH7hvEcbeaz9XQRuNMzggx4uw7omMeZlDFlOQ1NHhnQ1prnTOUgaZVUkiZ2Cy40PKU6SzmJkizjMcmkMZLGlLxAJ0VZ6HOEYxUTEmnNU86o1IwTlebMimNJONF0iC78nxPfuywpIkk4swne0iGK9v9SZC7xvD3_5JtoHSA4FxYLYbEQCRNEABZDdOnf2Tf4t6ff7iESwI52y0sWumwqAfoV5us2gPrlHZ65QKeHDvAKndQ_Gv0aNGet3rR29Quf1H4R
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Note+on+the+Equivalence+of+Post-Newtonian+Lagrangian+and+Hamiltonian+Formulations&rft.jtitle=Communications+in+theoretical+physics&rft.au=Chen%2C+Rong-Chao&rft.au=Wu%2C+Xin&rft.date=2016-03-01&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=65&rft.issue=3&rft.spage=321&rft.epage=328&rft_id=info:doi/10.1088%2F0253-6102%2F65%2F3%2F321&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg