Assessment of artificial intelligence models for calculating optimum properties of lined channels

Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key role in water conveyance projects, it has been considered as the prominent factor in optimum channel designs. In this study, artificial neural...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 22; no. 5; pp. 1410 - 1423
Main Author Niazkar, Majid
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.09.2020
Subjects
Online AccessGet full text
ISSN1464-7141
1465-1734
DOI10.2166/hydro.2020.050

Cover

Loading…
Abstract Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key role in water conveyance projects, it has been considered as the prominent factor in optimum channel designs. In this study, artificial neural networks (ANN) and genetic programming (GP) are used to determine optimum channel geometries for trapezoidal-family cross sections. For this purpose, the problem statement is treated as an optimization problem whose objective function and constraint are earthwork and lining costs and Manning's equation, respectively. The comparison remarkably demonstrates that the applied artificial intelligence (AI) models achieved much closer results to the numerical benchmark solutions than the available explicit equations for optimum design of lined channels with trapezoidal, rectangular and triangular sections. Also, investigating the average of absolute relative errors obtained for determination of dimensionless geometries of trapezoidal-family channels using AI models shows that this criterion will not be more than 0.0013 for the worst case, which indicates the high accuracy of AI models in optimum design of trapezoidal channels.
AbstractList Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key role in water conveyance projects, it has been considered as the prominent factor in optimum channel designs. In this study, artificial neural networks (ANN) and genetic programming (GP) are used to determine optimum channel geometries for trapezoidal-family cross sections. For this purpose, the problem statement is treated as an optimization problem whose objective function and constraint are earthwork and lining costs and Manning's equation, respectively. The comparison remarkably demonstrates that the applied artificial intelligence (AI) models achieved much closer results to the numerical benchmark solutions than the available explicit equations for optimum design of lined channels with trapezoidal, rectangular and triangular sections. Also, investigating the average of absolute relative errors obtained for determination of dimensionless geometries of trapezoidal-family channels using AI models shows that this criterion will not be more than 0.0013 for the worst case, which indicates the high accuracy of AI models in optimum design of trapezoidal channels.
Author Niazkar, Majid
Author_xml – sequence: 1
  givenname: Majid
  surname: Niazkar
  fullname: Niazkar, Majid
  organization: Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Zand Blvd., Shiraz, Iran
BookMark eNp1kLtPwzAQhy1UJNrCymyJOcGvxslYVbykSiwwR44frSvHLrYz9L_HpUxITHfDfb-7-xZg5oPXANxjVBPcNI_7k4qhJoigGq3QFZhj1qwqzCmb_fSs4pjhG7BI6YAQwbTFcyDWKemURu0zDAaKmK2x0goHrc_aObvTXmo4BqVdgiZEKIWTkxPZ-h0Mx2zHaYTHGI66oDqdQ5z1WkG5F94X6BZcG-GSvvutS_D5_PSxea227y9vm_W2khTxXDFEcWtU2xCFcCe7TkpmMFdCMYYkagwzVHGtB8o5b4ZmQKpDlGBBGs0H1dEleLjklmO-Jp1yfwhT9GVlT1hLcccYJWWKXaZkDClFbXppc3km-ByFdT1G_Vlm_yOzP8vsi8yC1X-wY7SjiKf_gG9VNHvZ
CitedBy_id crossref_primary_10_3390_agriculture13050927
crossref_primary_10_1155_2021_5547889
crossref_primary_10_1155_2021_8574063
crossref_primary_10_1109_ACCESS_2023_3302252
crossref_primary_10_1186_s41256_020_00175_y
crossref_primary_10_1155_2021_9984934
crossref_primary_10_1002_cae_22358
crossref_primary_10_3390_w15122187
crossref_primary_10_3390_w15101876
crossref_primary_10_1007_s00704_022_04274_3
crossref_primary_10_1007_s10668_023_03263_4
crossref_primary_10_1155_2021_6627011
crossref_primary_10_1155_2021_9945218
crossref_primary_10_2166_hydro_2021_050
crossref_primary_10_1007_s00704_023_04710_y
crossref_primary_10_1155_2020_7056285
crossref_primary_10_1007_s11269_022_03323_w
crossref_primary_10_3390_agronomy11091878
crossref_primary_10_1007_s12145_023_01069_6
Cites_doi 10.2166/hydro.2011.105
10.1007/s42241-018-0155-x
10.2166/hydro.2000.0004
10.1007/s11242-018-1138-7
10.2166/hydro.2004.0013
10.1007/s40996-017-0091-y
10.2166/hydro.2017.081
10.29333/ejgm/8232
10.2166/ws.2015.128
10.1002/cae.21796
10.1061/(ASCE)CR.1943-5495.0000128
10.2166/hydro.2017.125
10.1007/s11269-018-2141-z
10.1007/s11269-009-9444-z
10.1007/s11269-009-9548-5
10.1007/s11269-016-1225-x
10.1061/(ASCE)0733-9437(2008)134:3(405)
10.1061/(ASCE)0733-9437(2007)133:4(323)
10.1007/s12205-019-0988-z
10.1061/(ASCE)0733-9437(2006)132:5(513)
10.1007/s11269-016-1449-9
10.3826/jhr.2009.3468
10.1061/(ASCE)HE.1943-5584.0000385
10.1080/15715124.2011.565771
10.1061/(ASCE)IR.1943-4774.0001059
10.1023/A:1008198602337
10.1007/s11269-015-0919-9
10.1007/s12205-017-0652-4
10.2166/hydro.2010.189
10.1061/(ASCE)IR.1943-4774.0000334
10.1007/s11269-019-02384-8
10.1007/s12205-019-2217-1
10.1139/l06-008
10.1061/(ASCE)0733-9437(2007)133:1(53)
10.1016/j.aej.2017.05.004
10.1007/s11269-014-0652-9
10.1002/cae.21786
ContentType Journal Article
Copyright Copyright IWA Publishing Sep 2020
Copyright_xml – notice: Copyright IWA Publishing Sep 2020
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOI 10.2166/hydro.2020.050
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 1423
ExternalDocumentID 10_2166_hydro_2020_050
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c307t-40318fd862d019c99cc4f17dad440c06f4f3d7eeb37776b6b0d90321a26e7bd93
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Fri Jul 04 21:50:44 EDT 2025
Tue Jul 01 04:10:33 EDT 2025
Thu Apr 24 22:57:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-40318fd862d019c99cc4f17dad440c06f4f3d7eeb37776b6b0d90321a26e7bd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf
PQID 2483194432
PQPubID 2044529
PageCount 14
ParticipantIDs proquest_journals_2483194432
crossref_citationtrail_10_2166_hydro_2020_050
crossref_primary_10_2166_hydro_2020_050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2020
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References (2020100510385245100_HYDRO-D-20-00050C2) 2000; 2
(2020100510385245100_HYDRO-D-20-00050C5) 2008; 134
(2020100510385245100_HYDRO-D-20-00050C19) 2015; 29
(2020100510385245100_HYDRO-D-20-00050C6) 2007; 133
(2020100510385245100_HYDRO-D-20-00050C24) 2017; 21
(2020100510385245100_HYDRO-D-20-00050C20) 2016; 30
(2020100510385245100_HYDRO-D-20-00050C33) 2017; 19
(2020100510385245100_HYDRO-D-20-00050C41) 2011; 16
(2020100510385245100_HYDRO-D-20-00050C25) 2020; 17
(2020100510385245100_HYDRO-D-20-00050C22) 2017; 25
(2020100510385245100_HYDRO-D-20-00050C29) 2019; 33
(2020100510385245100_HYDRO-D-20-00050C38) 2000; 14
(2020100510385245100_HYDRO-D-20-00050C36) 2017; 19
Yurish (2020100510385245100_HYDRO-D-20-00050C8) 2018
(2020100510385245100_HYDRO-D-20-00050C21) 2017; 25
(2020100510385245100_HYDRO-D-20-00050C35) 2012; 14
(2020100510385245100_HYDRO-D-20-00050C37) 2015
(2020100510385245100_HYDRO-D-20-00050C17) 2019; 23
(2020100510385245100_HYDRO-D-20-00050C4) 2007; 133
(2020100510385245100_HYDRO-D-20-00050C32) 2016; 142
(2020100510385245100_HYDRO-D-20-00050C30) 2020
(2020100510385245100_HYDRO-D-20-00050C7) 2010; 24
(2020100510385245100_HYDRO-D-20-00050C15) 2016; 16
(2020100510385245100_HYDRO-D-20-00050C11) 2011; 137
(2020100510385245100_HYDRO-D-20-00050C1) 2006; 33
(2020100510385245100_HYDRO-D-20-00050C27) 2019; 33
(2020100510385245100_HYDRO-D-20-00050C10) 1998
(2020100510385245100_HYDRO-D-20-00050C12) 2004; 6
(2020100510385245100_HYDRO-D-20-00050C18) 2014; 20
(2020100510385245100_HYDRO-D-20-00050C26) 2018; 42
(2020100510385245100_HYDRO-D-20-00050C23) 2017; 48
(2020100510385245100_HYDRO-D-20-00050C28) 2019; 23
(2020100510385245100_HYDRO-D-20-00050C39) 2016; 30
(2020100510385245100_HYDRO-D-20-00050C9) 2011; 9
(2020100510385245100_HYDRO-D-20-00050C3) 2006; 132
(2020100510385245100_HYDRO-D-20-00050C42) 2011; 13
(2020100510385245100_HYDRO-D-20-00050C16) 2018; 125
(2020100510385245100_HYDRO-D-20-00050C31) 2009; 47
(2020100510385245100_HYDRO-D-20-00050C40) 2014; 28
(2020100510385245100_HYDRO-D-20-00050C14) 2019; 31
(2020100510385245100_HYDRO-D-20-00050C34) 2010; 24
(2020100510385245100_HYDRO-D-20-00050C13) 2017; 31
(2020100510385245100_HYDRO-D-20-00050C25a) 2018; 57
References_xml – volume: 14
  start-page: 108
  issue: 1
  year: 2012
  ident: 2020100510385245100_HYDRO-D-20-00050C35
  article-title: Rainfall–runoff modelling using genetic programming
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2011.105
– volume: 31
  start-page: 1034
  issue: 5
  year: 2019
  ident: 2020100510385245100_HYDRO-D-20-00050C14
  article-title: General explicit solutions of most economic sections and applications for trapezoidal and parabolic channels
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0155-x
– volume: 2
  start-page: 35
  issue: 1
  year: 2000
  ident: 2020100510385245100_HYDRO-D-20-00050C2
  article-title: Genetic programming as a model induction engine
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2000.0004
– volume: 125
  start-page: 543
  issue: 3
  year: 2018
  ident: 2020100510385245100_HYDRO-D-20-00050C16
  article-title: Application of RBF-DQ method to time-dependent analysis of unsaturated seepage
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-018-1138-7
– volume: 6
  start-page: 157
  issue: 3
  year: 2004
  ident: 2020100510385245100_HYDRO-D-20-00050C12
  article-title: Using genetic programming to determine Chezy resistance coefficient in corrugated channels
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2004.0013
– volume-title: Discipulus Owner's Manual
  year: 1998
  ident: 2020100510385245100_HYDRO-D-20-00050C10
– volume: 42
  start-page: 133
  issue: 2
  year: 2018
  ident: 2020100510385245100_HYDRO-D-20-00050C26
  article-title: Deriving explicit equations for optimum design of a circular channel incorporating a variable roughness
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
  doi: 10.1007/s40996-017-0091-y
– volume: 48
  start-page: 1253
  issue: 4
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C23
  article-title: Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method
  publication-title: Hydrol. Res.
– volume: 19
  start-page: 456
  issue: 3
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C36
  article-title: A cost model with several hydraulic constraints for optimizing in practice a trapezoidal cross section
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2017.081
– volume: 17
  start-page: em247
  issue: 5
  year: 2020
  ident: 2020100510385245100_HYDRO-D-20-00050C25
  article-title: COVID-19 Outbreak: application of multi-gene genetic programming to country-based prediction models
  publication-title: Electron. J. Gen. Med.
  doi: 10.29333/ejgm/8232
– volume: 16
  start-page: 219
  issue: 1
  year: 2016
  ident: 2020100510385245100_HYDRO-D-20-00050C15
  article-title: Optimizing channel cross-section based on cat swarm optimization
  publication-title: Water Sci. Technol. Water Supply
  doi: 10.2166/ws.2015.128
– volume: 25
  start-page: 277
  issue: 2
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C22
  article-title: Analysis of water distribution networks using MATLAB and Excel spreadsheet: Q-based methods
  publication-title: Comput. Appl. Eng. Edu.
  doi: 10.1002/cae.21796
– volume: 31
  start-page: 06017001
  issue: 3
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C13
  article-title: Optimal hydraulic section of ice-covered open trapezoidal channel
  publication-title: J. Cold Reg. Eng.
  doi: 10.1061/(ASCE)CR.1943-5495.0000128
– volume: 19
  start-page: 349
  issue: 3
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C33
  article-title: Predicting scour depth at seawalls using GP and ANNs
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2017.125
– volume: 33
  start-page: 757
  issue: 2
  year: 2019
  ident: 2020100510385245100_HYDRO-D-20-00050C27
  article-title: Novel grain and form roughness estimator scheme incorporating artificial intelligence models
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-018-2141-z
– volume: 24
  start-page: 193
  issue: 2
  year: 2010
  ident: 2020100510385245100_HYDRO-D-20-00050C7
  article-title: Cost and flooding probability minimization based design of HBPS channel
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-009-9444-z
– volume: 20
  start-page: 04014055
  issue: 4
  year: 2014
  ident: 2020100510385245100_HYDRO-D-20-00050C18
  article-title: Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models
  publication-title: J. Hydrol. Eng.
– volume: 24
  start-page: 2221
  issue: 10
  year: 2010
  ident: 2020100510385245100_HYDRO-D-20-00050C34
  article-title: Chance constrained optimal design of composite channels using meta-heuristic techniques
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-009-9548-5
– volume: 30
  start-page: 1271
  issue: 3
  year: 2016
  ident: 2020100510385245100_HYDRO-D-20-00050C39
  article-title: The integrated approach of simulation and optimization in determining the optimum dimensions of canal for seepage control
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1225-x
– volume: 134
  start-page: 405
  issue: 3
  year: 2008
  ident: 2020100510385245100_HYDRO-D-20-00050C5
  article-title: Flooding probability-based optimal design of trapezoidal open channel using freeboard as a design variable
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2008)134:3(405)
– volume: 133
  start-page: 323
  issue: 4
  year: 2007
  ident: 2020100510385245100_HYDRO-D-20-00050C4
  article-title: Optimal design of a stable trapezoidal channel section using hybrid optimization techniques
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(323)
– volume: 23
  start-page: 2108
  issue: 5
  year: 2019
  ident: 2020100510385245100_HYDRO-D-20-00050C28
  article-title: Development of a new flow-dependent scheme for calculating grain and form roughness coefficients
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-0988-z
– volume: 132
  start-page: 513
  issue: 5
  year: 2006
  ident: 2020100510385245100_HYDRO-D-20-00050C3
  article-title: Optimal design of open channel section incorporating critical flow condition
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2006)132:5(513)
– year: 2020
  ident: 2020100510385245100_HYDRO-D-20-00050C30
  article-title: Bridge backwater estimation: a comparison between artificial intelligence models and explicit equations
  publication-title: Sci. Iran
– volume: 30
  start-page: 4713
  issue: 13
  year: 2016
  ident: 2020100510385245100_HYDRO-D-20-00050C20
  article-title: Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1449-9
– volume: 47
  start-page: 656
  issue: 5
  year: 2009
  ident: 2020100510385245100_HYDRO-D-20-00050C31
  article-title: Application of ant colony optimization to optimal design of open channels
  publication-title: J. Hydraul. Res.
  doi: 10.3826/jhr.2009.3468
– volume: 16
  start-page: 960
  issue: 11
  year: 2011
  ident: 2020100510385245100_HYDRO-D-20-00050C41
  article-title: Simplified accurate solution for design of erodible trapezoidal channels
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000385
– volume: 9
  start-page: 85
  issue: 2
  year: 2011
  ident: 2020100510385245100_HYDRO-D-20-00050C9
  article-title: A simplified direct method for finding optimal stable trapezoidal channels
  publication-title: Int. J. River Basin Manage.
  doi: 10.1080/15715124.2011.565771
– volume: 142
  start-page: 06016008
  issue: 10
  year: 2016
  ident: 2020100510385245100_HYDRO-D-20-00050C32
  article-title: Shuffled frog-leaping algorithm for optimal design of open channels
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0001059
– volume: 14
  start-page: 1
  issue: 1
  year: 2000
  ident: 2020100510385245100_HYDRO-D-20-00050C38
  article-title: Minimum cost design of lined canal sections
  publication-title: Water Resour. Manage.
  doi: 10.1023/A:1008198602337
– volume-title: Advances in Measurements and Instrumentation: Reviews
  year: 2018
  ident: 2020100510385245100_HYDRO-D-20-00050C8
  article-title: Open channel cross section design: review of recent developments, Chapter 6
– volume: 29
  start-page: 1921
  issue: 6
  year: 2015
  ident: 2020100510385245100_HYDRO-D-20-00050C19
  article-title: Optimum design of lined channel sections
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-015-0919-9
– volume: 21
  start-page: 2958
  issue: 7
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C24
  article-title: New nonlinear variable-parameter Muskingum models
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-0652-4
– volume: 13
  start-page: 419
  issue: 3
  year: 2011
  ident: 2020100510385245100_HYDRO-D-20-00050C42
  article-title: Application of genetic programming to modeling pipe failures in water distribution systems
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2010.189
– volume: 137
  start-page: 585
  issue: 9
  year: 2011
  ident: 2020100510385245100_HYDRO-D-20-00050C11
  article-title: Most hydraulically efficient riprap-lined drainage channels
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000334
– volume: 33
  start-page: 4599
  issue: 13
  year: 2019
  ident: 2020100510385245100_HYDRO-D-20-00050C29
  article-title: One dimensional hydraulic flow routing incorporating a variable grain roughness coefficient
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-019-02384-8
– volume: 23
  start-page: 4311
  issue: 10
  year: 2019
  ident: 2020100510385245100_HYDRO-D-20-00050C17
  article-title: Revisiting the estimation of Colebrook friction factor: a comparison between artificial intelligence models and C-W based explicit equations
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-2217-1
– volume-title: Design of Canals
  year: 2015
  ident: 2020100510385245100_HYDRO-D-20-00050C37
– volume: 33
  start-page: 535
  issue: 5
  year: 2006
  ident: 2020100510385245100_HYDRO-D-20-00050C1
  article-title: Optimal lined channel design
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/l06-008
– volume: 133
  start-page: 53
  issue: 1
  year: 2007
  ident: 2020100510385245100_HYDRO-D-20-00050C6
  article-title: Flooding probability constrained optimal design of trapezoidal channels
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:1(53)
– volume: 57
  start-page: 1741
  issue: 3
  year: 2018
  ident: 2020100510385245100_HYDRO-D-20-00050C25a
  article-title: Application of new hybrid method in developing a new semicircular-weir discharge model
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2017.05.004
– volume: 28
  start-page: 3019
  issue: 10
  year: 2014
  ident: 2020100510385245100_HYDRO-D-20-00050C40
  article-title: Optimal design of concrete canal section for minimizing costs of water loss, lining and earthworks
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-014-0652-9
– volume: 25
  start-page: 129
  issue: 1
  year: 2017
  ident: 2020100510385245100_HYDRO-D-20-00050C21
  article-title: Analysis of water distribution networks using MATLAB and Excel spreadsheet: h-based methods
  publication-title: Comput. Appl. Eng. Educ.
  doi: 10.1002/cae.21786
SSID ssj0021381
Score 2.3346307
Snippet Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1410
SubjectTerms Artificial intelligence
Artificial neural networks
Canals
Channels
Construction costs
Design optimization
Genetic algorithms
Hydraulics
Lagrange multiplier
Model accuracy
Neural networks
Objective function
Optimization
Optimization algorithms
Optimization techniques
Trapezoidal channels
Water conveyance
Title Assessment of artificial intelligence models for calculating optimum properties of lined channels
URI https://www.proquest.com/docview/2483194432
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHPRifEYUzR5MPK30sd12TwYNhJhIjJGEW7OPVkykII8D_96ZdkE86LnbOcx0nt35PkJurE10mMuEmcAYxhNpGNJZMaGU5pE0PMpw3vHcF70BfxpGQzdwm7trleuYWAZqOzE4I28FHGRIzsPgfvrFkDUK_646Co1dUocQnEDzVX_o9F9eNy2XH5Y0pRAO8NYh9yvYxsAXojVa2Rlu_wXenYdb99tp6XdULlNN95AcuBqRtiujHpGdrDgme46ufLQ6Iaq9wdOkk5yi9SsgCPqxhbBJS5abOYWylIIlTEnUVbzTCUSJ8XJMpziHnyGgKgrBctNS3AMu4KVTMuh23h57zHElMANeuoA2EJwzt9CfWCjajJTG8NyPrbKce8YTOc9DG2fQOsdxLLTQnpVeGPgqEFmsrQzPSK2YFNk5oZnGpG81WpFLq8DDY6WCPBQ8j3gWNghbqyo1Dkgc-Sw-U2goULVpqdoUVZuCahvkdnN-WkFo_HmyudZ86lxpnv4Y_uL_x5dkHwVVF8CapLaYLbMrqBgW-tp9Ft-ZmcLR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2h9gAXxCrK6gOIUyBxXKc5IFSgqECpEAKJW0hshyJBWroI9af4RmaylHKAW89xfHh-Gc84nvcA9rWuRW7s1yzFlbJEzVcW2VlZMgwjUfWVqBo677hty-ajuH6qPs3BV9ELQ9cqi5iYBmrdVXRGfswFzuEL4fLT3odFrlH0d7Ww0MhocWPGn1iyDU6uLnB9Dzi_bDycN63cVcBSyOchFkxI41hjJq8xvVG-r5SIHU-HWghb2TIWsas9g0Wm53kykpGtfdvlTsil8SJN4ksY8svCxVKmBOWzRvvuflLiOW5qi4rhh245CieTieSOlMedse5TtyG3j2zq8p_eBn_vAunWdrkEi3lOyuoZiZZhziQrMJ_bo3fGqxDWJ_qdrBszYlsmPMFepxQ9WeqqM2CYBjNceZUagyUvrItR6X30znp07t8nAVeahNJbzajvOMGX1uBxJiiuQynpJmYDmIkoydARsUb4OsSI4oUhj10p4qowbgWsAqpA5cLl5J_xFmABQ9AGKbQBQRsgtBU4nIzvZZIdf47cLpAP8k93EPwQbfP_x3sw33y4bQWtq_bNFizQpNnls20oDfsjs4PZyjDazSnC4HnWrPwGxef_dg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLVQKwEXxCoKBeYA4hSaTKaT5oAQW8VaIQQSt5DMAkiQlrYI9df4OuwsBQ5w45yJD86Lx56x3wPY1LqV-DZsOYor5YhWqBySs3JkHCeiGSrRNHTecdmRJ7fi7K55NwEf5SwMtVWWMTEL1Lqr6Iy8wQXaCIXwecMWbRFXR-293qtDClJ001rKaeQQOTejdyzfBrunR_ittzhvH98cnjiFwoCjENtDLJ4Q0lZjVq8x1VFhqJSwXqBjLYSrXGmF9XVgsOAMgkAmMnF16Prci7k0QaKJiAnDfzXAqsitQPXguHN1PS73PD-TSMVQRB2PwsspI7knZeNxpPs0ecjdHZcm_r9viT93hGyba8_CTJGfsv0cUHMwYdJ5mCqk0h9HCxDvj7k8WdcyQl5OQsGevrF7skxhZ8AwJWaIApWJhKUPrIsR6uXthfXoDqBPZK5khFJdzWgGOcWXFuH2X7y4BJW0m5plYCahhEMnhCAR6hijSxDH3PpS2KYwfg2c0lWRKkjMSUvjOcJihlwbZa6NyLURurYG2-P1vZy-49eV9dLzUfEbD6Iv0K38_XgDJhGN0cVp53wVpslm3odWh8qw_2bWMHEZJusFQhjc_zcoPwFHQAO6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+artificial+intelligence+models+for+calculating+optimum+properties+of+lined+channels&rft.jtitle=Journal+of+hydroinformatics&rft.au=Niazkar%2C+Majid&rft.date=2020-09-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=22&rft.issue=5&rft.spage=1410&rft_id=info:doi/10.2166%2Fhydro.2020.050&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon