Assessment of artificial intelligence models for calculating optimum properties of lined channels
Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key role in water conveyance projects, it has been considered as the prominent factor in optimum channel designs. In this study, artificial neural...
Saved in:
Published in | Journal of hydroinformatics Vol. 22; no. 5; pp. 1410 - 1423 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1464-7141 1465-1734 |
DOI | 10.2166/hydro.2020.050 |
Cover
Loading…
Abstract | Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key role in water conveyance projects, it has been considered as the prominent factor in optimum channel designs. In this study, artificial neural networks (ANN) and genetic programming (GP) are used to determine optimum channel geometries for trapezoidal-family cross sections. For this purpose, the problem statement is treated as an optimization problem whose objective function and constraint are earthwork and lining costs and Manning's equation, respectively. The comparison remarkably demonstrates that the applied artificial intelligence (AI) models achieved much closer results to the numerical benchmark solutions than the available explicit equations for optimum design of lined channels with trapezoidal, rectangular and triangular sections. Also, investigating the average of absolute relative errors obtained for determination of dimensionless geometries of trapezoidal-family channels using AI models shows that this criterion will not be more than 0.0013 for the worst case, which indicates the high accuracy of AI models in optimum design of trapezoidal channels. |
---|---|
AbstractList | Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key role in water conveyance projects, it has been considered as the prominent factor in optimum channel designs. In this study, artificial neural networks (ANN) and genetic programming (GP) are used to determine optimum channel geometries for trapezoidal-family cross sections. For this purpose, the problem statement is treated as an optimization problem whose objective function and constraint are earthwork and lining costs and Manning's equation, respectively. The comparison remarkably demonstrates that the applied artificial intelligence (AI) models achieved much closer results to the numerical benchmark solutions than the available explicit equations for optimum design of lined channels with trapezoidal, rectangular and triangular sections. Also, investigating the average of absolute relative errors obtained for determination of dimensionless geometries of trapezoidal-family channels using AI models shows that this criterion will not be more than 0.0013 for the worst case, which indicates the high accuracy of AI models in optimum design of trapezoidal channels. |
Author | Niazkar, Majid |
Author_xml | – sequence: 1 givenname: Majid surname: Niazkar fullname: Niazkar, Majid organization: Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Zand Blvd., Shiraz, Iran |
BookMark | eNp1kLtPwzAQhy1UJNrCymyJOcGvxslYVbykSiwwR44frSvHLrYz9L_HpUxITHfDfb-7-xZg5oPXANxjVBPcNI_7k4qhJoigGq3QFZhj1qwqzCmb_fSs4pjhG7BI6YAQwbTFcyDWKemURu0zDAaKmK2x0goHrc_aObvTXmo4BqVdgiZEKIWTkxPZ-h0Mx2zHaYTHGI66oDqdQ5z1WkG5F94X6BZcG-GSvvutS_D5_PSxea227y9vm_W2khTxXDFEcWtU2xCFcCe7TkpmMFdCMYYkagwzVHGtB8o5b4ZmQKpDlGBBGs0H1dEleLjklmO-Jp1yfwhT9GVlT1hLcccYJWWKXaZkDClFbXppc3km-ByFdT1G_Vlm_yOzP8vsi8yC1X-wY7SjiKf_gG9VNHvZ |
CitedBy_id | crossref_primary_10_3390_agriculture13050927 crossref_primary_10_1155_2021_5547889 crossref_primary_10_1155_2021_8574063 crossref_primary_10_1109_ACCESS_2023_3302252 crossref_primary_10_1186_s41256_020_00175_y crossref_primary_10_1155_2021_9984934 crossref_primary_10_1002_cae_22358 crossref_primary_10_3390_w15122187 crossref_primary_10_3390_w15101876 crossref_primary_10_1007_s00704_022_04274_3 crossref_primary_10_1007_s10668_023_03263_4 crossref_primary_10_1155_2021_6627011 crossref_primary_10_1155_2021_9945218 crossref_primary_10_2166_hydro_2021_050 crossref_primary_10_1007_s00704_023_04710_y crossref_primary_10_1155_2020_7056285 crossref_primary_10_1007_s11269_022_03323_w crossref_primary_10_3390_agronomy11091878 crossref_primary_10_1007_s12145_023_01069_6 |
Cites_doi | 10.2166/hydro.2011.105 10.1007/s42241-018-0155-x 10.2166/hydro.2000.0004 10.1007/s11242-018-1138-7 10.2166/hydro.2004.0013 10.1007/s40996-017-0091-y 10.2166/hydro.2017.081 10.29333/ejgm/8232 10.2166/ws.2015.128 10.1002/cae.21796 10.1061/(ASCE)CR.1943-5495.0000128 10.2166/hydro.2017.125 10.1007/s11269-018-2141-z 10.1007/s11269-009-9444-z 10.1007/s11269-009-9548-5 10.1007/s11269-016-1225-x 10.1061/(ASCE)0733-9437(2008)134:3(405) 10.1061/(ASCE)0733-9437(2007)133:4(323) 10.1007/s12205-019-0988-z 10.1061/(ASCE)0733-9437(2006)132:5(513) 10.1007/s11269-016-1449-9 10.3826/jhr.2009.3468 10.1061/(ASCE)HE.1943-5584.0000385 10.1080/15715124.2011.565771 10.1061/(ASCE)IR.1943-4774.0001059 10.1023/A:1008198602337 10.1007/s11269-015-0919-9 10.1007/s12205-017-0652-4 10.2166/hydro.2010.189 10.1061/(ASCE)IR.1943-4774.0000334 10.1007/s11269-019-02384-8 10.1007/s12205-019-2217-1 10.1139/l06-008 10.1061/(ASCE)0733-9437(2007)133:1(53) 10.1016/j.aej.2017.05.004 10.1007/s11269-014-0652-9 10.1002/cae.21786 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Sep 2020 |
Copyright_xml | – notice: Copyright IWA Publishing Sep 2020 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
DOI | 10.2166/hydro.2020.050 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 1423 |
ExternalDocumentID | 10_2166_hydro_2020_050 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c307t-40318fd862d019c99cc4f17dad440c06f4f3d7eeb37776b6b0d90321a26e7bd93 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Fri Jul 04 21:50:44 EDT 2025 Tue Jul 01 04:10:33 EDT 2025 Thu Apr 24 22:57:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-40318fd862d019c99cc4f17dad440c06f4f3d7eeb37776b6b0d90321a26e7bd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/22/5/1410/763791/jh0221410.pdf |
PQID | 2483194432 |
PQPubID | 2044529 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2483194432 crossref_citationtrail_10_2166_hydro_2020_050 crossref_primary_10_2166_hydro_2020_050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2020 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | (2020100510385245100_HYDRO-D-20-00050C2) 2000; 2 (2020100510385245100_HYDRO-D-20-00050C5) 2008; 134 (2020100510385245100_HYDRO-D-20-00050C19) 2015; 29 (2020100510385245100_HYDRO-D-20-00050C6) 2007; 133 (2020100510385245100_HYDRO-D-20-00050C24) 2017; 21 (2020100510385245100_HYDRO-D-20-00050C20) 2016; 30 (2020100510385245100_HYDRO-D-20-00050C33) 2017; 19 (2020100510385245100_HYDRO-D-20-00050C41) 2011; 16 (2020100510385245100_HYDRO-D-20-00050C25) 2020; 17 (2020100510385245100_HYDRO-D-20-00050C22) 2017; 25 (2020100510385245100_HYDRO-D-20-00050C29) 2019; 33 (2020100510385245100_HYDRO-D-20-00050C38) 2000; 14 (2020100510385245100_HYDRO-D-20-00050C36) 2017; 19 Yurish (2020100510385245100_HYDRO-D-20-00050C8) 2018 (2020100510385245100_HYDRO-D-20-00050C21) 2017; 25 (2020100510385245100_HYDRO-D-20-00050C35) 2012; 14 (2020100510385245100_HYDRO-D-20-00050C37) 2015 (2020100510385245100_HYDRO-D-20-00050C17) 2019; 23 (2020100510385245100_HYDRO-D-20-00050C4) 2007; 133 (2020100510385245100_HYDRO-D-20-00050C32) 2016; 142 (2020100510385245100_HYDRO-D-20-00050C30) 2020 (2020100510385245100_HYDRO-D-20-00050C7) 2010; 24 (2020100510385245100_HYDRO-D-20-00050C15) 2016; 16 (2020100510385245100_HYDRO-D-20-00050C11) 2011; 137 (2020100510385245100_HYDRO-D-20-00050C1) 2006; 33 (2020100510385245100_HYDRO-D-20-00050C27) 2019; 33 (2020100510385245100_HYDRO-D-20-00050C10) 1998 (2020100510385245100_HYDRO-D-20-00050C12) 2004; 6 (2020100510385245100_HYDRO-D-20-00050C18) 2014; 20 (2020100510385245100_HYDRO-D-20-00050C26) 2018; 42 (2020100510385245100_HYDRO-D-20-00050C23) 2017; 48 (2020100510385245100_HYDRO-D-20-00050C28) 2019; 23 (2020100510385245100_HYDRO-D-20-00050C39) 2016; 30 (2020100510385245100_HYDRO-D-20-00050C9) 2011; 9 (2020100510385245100_HYDRO-D-20-00050C3) 2006; 132 (2020100510385245100_HYDRO-D-20-00050C42) 2011; 13 (2020100510385245100_HYDRO-D-20-00050C16) 2018; 125 (2020100510385245100_HYDRO-D-20-00050C31) 2009; 47 (2020100510385245100_HYDRO-D-20-00050C40) 2014; 28 (2020100510385245100_HYDRO-D-20-00050C14) 2019; 31 (2020100510385245100_HYDRO-D-20-00050C34) 2010; 24 (2020100510385245100_HYDRO-D-20-00050C13) 2017; 31 (2020100510385245100_HYDRO-D-20-00050C25a) 2018; 57 |
References_xml | – volume: 14 start-page: 108 issue: 1 year: 2012 ident: 2020100510385245100_HYDRO-D-20-00050C35 article-title: Rainfall–runoff modelling using genetic programming publication-title: J. Hydroinf. doi: 10.2166/hydro.2011.105 – volume: 31 start-page: 1034 issue: 5 year: 2019 ident: 2020100510385245100_HYDRO-D-20-00050C14 article-title: General explicit solutions of most economic sections and applications for trapezoidal and parabolic channels publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0155-x – volume: 2 start-page: 35 issue: 1 year: 2000 ident: 2020100510385245100_HYDRO-D-20-00050C2 article-title: Genetic programming as a model induction engine publication-title: J. Hydroinf. doi: 10.2166/hydro.2000.0004 – volume: 125 start-page: 543 issue: 3 year: 2018 ident: 2020100510385245100_HYDRO-D-20-00050C16 article-title: Application of RBF-DQ method to time-dependent analysis of unsaturated seepage publication-title: Transp. Porous Media doi: 10.1007/s11242-018-1138-7 – volume: 6 start-page: 157 issue: 3 year: 2004 ident: 2020100510385245100_HYDRO-D-20-00050C12 article-title: Using genetic programming to determine Chezy resistance coefficient in corrugated channels publication-title: J. Hydroinf. doi: 10.2166/hydro.2004.0013 – volume-title: Discipulus Owner's Manual year: 1998 ident: 2020100510385245100_HYDRO-D-20-00050C10 – volume: 42 start-page: 133 issue: 2 year: 2018 ident: 2020100510385245100_HYDRO-D-20-00050C26 article-title: Deriving explicit equations for optimum design of a circular channel incorporating a variable roughness publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. doi: 10.1007/s40996-017-0091-y – volume: 48 start-page: 1253 issue: 4 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C23 article-title: Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method publication-title: Hydrol. Res. – volume: 19 start-page: 456 issue: 3 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C36 article-title: A cost model with several hydraulic constraints for optimizing in practice a trapezoidal cross section publication-title: J. Hydroinf. doi: 10.2166/hydro.2017.081 – volume: 17 start-page: em247 issue: 5 year: 2020 ident: 2020100510385245100_HYDRO-D-20-00050C25 article-title: COVID-19 Outbreak: application of multi-gene genetic programming to country-based prediction models publication-title: Electron. J. Gen. Med. doi: 10.29333/ejgm/8232 – volume: 16 start-page: 219 issue: 1 year: 2016 ident: 2020100510385245100_HYDRO-D-20-00050C15 article-title: Optimizing channel cross-section based on cat swarm optimization publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2015.128 – volume: 25 start-page: 277 issue: 2 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C22 article-title: Analysis of water distribution networks using MATLAB and Excel spreadsheet: Q-based methods publication-title: Comput. Appl. Eng. Edu. doi: 10.1002/cae.21796 – volume: 31 start-page: 06017001 issue: 3 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C13 article-title: Optimal hydraulic section of ice-covered open trapezoidal channel publication-title: J. Cold Reg. Eng. doi: 10.1061/(ASCE)CR.1943-5495.0000128 – volume: 19 start-page: 349 issue: 3 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C33 article-title: Predicting scour depth at seawalls using GP and ANNs publication-title: J. Hydroinf. doi: 10.2166/hydro.2017.125 – volume: 33 start-page: 757 issue: 2 year: 2019 ident: 2020100510385245100_HYDRO-D-20-00050C27 article-title: Novel grain and form roughness estimator scheme incorporating artificial intelligence models publication-title: Water Resour. Manage. doi: 10.1007/s11269-018-2141-z – volume: 24 start-page: 193 issue: 2 year: 2010 ident: 2020100510385245100_HYDRO-D-20-00050C7 article-title: Cost and flooding probability minimization based design of HBPS channel publication-title: Water Resour. Manage. doi: 10.1007/s11269-009-9444-z – volume: 20 start-page: 04014055 issue: 4 year: 2014 ident: 2020100510385245100_HYDRO-D-20-00050C18 article-title: Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models publication-title: J. Hydrol. Eng. – volume: 24 start-page: 2221 issue: 10 year: 2010 ident: 2020100510385245100_HYDRO-D-20-00050C34 article-title: Chance constrained optimal design of composite channels using meta-heuristic techniques publication-title: Water Resour. Manage. doi: 10.1007/s11269-009-9548-5 – volume: 30 start-page: 1271 issue: 3 year: 2016 ident: 2020100510385245100_HYDRO-D-20-00050C39 article-title: The integrated approach of simulation and optimization in determining the optimum dimensions of canal for seepage control publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1225-x – volume: 134 start-page: 405 issue: 3 year: 2008 ident: 2020100510385245100_HYDRO-D-20-00050C5 article-title: Flooding probability-based optimal design of trapezoidal open channel using freeboard as a design variable publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2008)134:3(405) – volume: 133 start-page: 323 issue: 4 year: 2007 ident: 2020100510385245100_HYDRO-D-20-00050C4 article-title: Optimal design of a stable trapezoidal channel section using hybrid optimization techniques publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(323) – volume: 23 start-page: 2108 issue: 5 year: 2019 ident: 2020100510385245100_HYDRO-D-20-00050C28 article-title: Development of a new flow-dependent scheme for calculating grain and form roughness coefficients publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-019-0988-z – volume: 132 start-page: 513 issue: 5 year: 2006 ident: 2020100510385245100_HYDRO-D-20-00050C3 article-title: Optimal design of open channel section incorporating critical flow condition publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2006)132:5(513) – year: 2020 ident: 2020100510385245100_HYDRO-D-20-00050C30 article-title: Bridge backwater estimation: a comparison between artificial intelligence models and explicit equations publication-title: Sci. Iran – volume: 30 start-page: 4713 issue: 13 year: 2016 ident: 2020100510385245100_HYDRO-D-20-00050C20 article-title: Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1449-9 – volume: 47 start-page: 656 issue: 5 year: 2009 ident: 2020100510385245100_HYDRO-D-20-00050C31 article-title: Application of ant colony optimization to optimal design of open channels publication-title: J. Hydraul. Res. doi: 10.3826/jhr.2009.3468 – volume: 16 start-page: 960 issue: 11 year: 2011 ident: 2020100510385245100_HYDRO-D-20-00050C41 article-title: Simplified accurate solution for design of erodible trapezoidal channels publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000385 – volume: 9 start-page: 85 issue: 2 year: 2011 ident: 2020100510385245100_HYDRO-D-20-00050C9 article-title: A simplified direct method for finding optimal stable trapezoidal channels publication-title: Int. J. River Basin Manage. doi: 10.1080/15715124.2011.565771 – volume: 142 start-page: 06016008 issue: 10 year: 2016 ident: 2020100510385245100_HYDRO-D-20-00050C32 article-title: Shuffled frog-leaping algorithm for optimal design of open channels publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0001059 – volume: 14 start-page: 1 issue: 1 year: 2000 ident: 2020100510385245100_HYDRO-D-20-00050C38 article-title: Minimum cost design of lined canal sections publication-title: Water Resour. Manage. doi: 10.1023/A:1008198602337 – volume-title: Advances in Measurements and Instrumentation: Reviews year: 2018 ident: 2020100510385245100_HYDRO-D-20-00050C8 article-title: Open channel cross section design: review of recent developments, Chapter 6 – volume: 29 start-page: 1921 issue: 6 year: 2015 ident: 2020100510385245100_HYDRO-D-20-00050C19 article-title: Optimum design of lined channel sections publication-title: Water Resour. Manage. doi: 10.1007/s11269-015-0919-9 – volume: 21 start-page: 2958 issue: 7 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C24 article-title: New nonlinear variable-parameter Muskingum models publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-0652-4 – volume: 13 start-page: 419 issue: 3 year: 2011 ident: 2020100510385245100_HYDRO-D-20-00050C42 article-title: Application of genetic programming to modeling pipe failures in water distribution systems publication-title: J. Hydroinf. doi: 10.2166/hydro.2010.189 – volume: 137 start-page: 585 issue: 9 year: 2011 ident: 2020100510385245100_HYDRO-D-20-00050C11 article-title: Most hydraulically efficient riprap-lined drainage channels publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000334 – volume: 33 start-page: 4599 issue: 13 year: 2019 ident: 2020100510385245100_HYDRO-D-20-00050C29 article-title: One dimensional hydraulic flow routing incorporating a variable grain roughness coefficient publication-title: Water Resour. Manage. doi: 10.1007/s11269-019-02384-8 – volume: 23 start-page: 4311 issue: 10 year: 2019 ident: 2020100510385245100_HYDRO-D-20-00050C17 article-title: Revisiting the estimation of Colebrook friction factor: a comparison between artificial intelligence models and C-W based explicit equations publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-019-2217-1 – volume-title: Design of Canals year: 2015 ident: 2020100510385245100_HYDRO-D-20-00050C37 – volume: 33 start-page: 535 issue: 5 year: 2006 ident: 2020100510385245100_HYDRO-D-20-00050C1 article-title: Optimal lined channel design publication-title: Can. J. Civ. Eng. doi: 10.1139/l06-008 – volume: 133 start-page: 53 issue: 1 year: 2007 ident: 2020100510385245100_HYDRO-D-20-00050C6 article-title: Flooding probability constrained optimal design of trapezoidal channels publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:1(53) – volume: 57 start-page: 1741 issue: 3 year: 2018 ident: 2020100510385245100_HYDRO-D-20-00050C25a article-title: Application of new hybrid method in developing a new semicircular-weir discharge model publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2017.05.004 – volume: 28 start-page: 3019 issue: 10 year: 2014 ident: 2020100510385245100_HYDRO-D-20-00050C40 article-title: Optimal design of concrete canal section for minimizing costs of water loss, lining and earthworks publication-title: Water Resour. Manage. doi: 10.1007/s11269-014-0652-9 – volume: 25 start-page: 129 issue: 1 year: 2017 ident: 2020100510385245100_HYDRO-D-20-00050C21 article-title: Analysis of water distribution networks using MATLAB and Excel spreadsheet: h-based methods publication-title: Comput. Appl. Eng. Educ. doi: 10.1002/cae.21786 |
SSID | ssj0021381 |
Score | 2.3346307 |
Snippet | Lined channels with trapezoidal, rectangular and triangular sections are the most common manmade canals in practice. Since the construction cost plays a key... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1410 |
SubjectTerms | Artificial intelligence Artificial neural networks Canals Channels Construction costs Design optimization Genetic algorithms Hydraulics Lagrange multiplier Model accuracy Neural networks Objective function Optimization Optimization algorithms Optimization techniques Trapezoidal channels Water conveyance |
Title | Assessment of artificial intelligence models for calculating optimum properties of lined channels |
URI | https://www.proquest.com/docview/2483194432 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oHPRifEYUzR5MPK30sd12TwYNhJhIjJGEW7OPVkykII8D_96ZdkE86LnbOcx0nt35PkJurE10mMuEmcAYxhNpGNJZMaGU5pE0PMpw3vHcF70BfxpGQzdwm7trleuYWAZqOzE4I28FHGRIzsPgfvrFkDUK_646Co1dUocQnEDzVX_o9F9eNy2XH5Y0pRAO8NYh9yvYxsAXojVa2Rlu_wXenYdb99tp6XdULlNN95AcuBqRtiujHpGdrDgme46ufLQ6Iaq9wdOkk5yi9SsgCPqxhbBJS5abOYWylIIlTEnUVbzTCUSJ8XJMpziHnyGgKgrBctNS3AMu4KVTMuh23h57zHElMANeuoA2EJwzt9CfWCjajJTG8NyPrbKce8YTOc9DG2fQOsdxLLTQnpVeGPgqEFmsrQzPSK2YFNk5oZnGpG81WpFLq8DDY6WCPBQ8j3gWNghbqyo1Dkgc-Sw-U2goULVpqdoUVZuCahvkdnN-WkFo_HmyudZ86lxpnv4Y_uL_x5dkHwVVF8CapLaYLbMrqBgW-tp9Ft-ZmcLR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2h9gAXxCrK6gOIUyBxXKc5IFSgqECpEAKJW0hshyJBWroI9af4RmaylHKAW89xfHh-Gc84nvcA9rWuRW7s1yzFlbJEzVcW2VlZMgwjUfWVqBo677hty-ajuH6qPs3BV9ELQ9cqi5iYBmrdVXRGfswFzuEL4fLT3odFrlH0d7Ww0MhocWPGn1iyDU6uLnB9Dzi_bDycN63cVcBSyOchFkxI41hjJq8xvVG-r5SIHU-HWghb2TIWsas9g0Wm53kykpGtfdvlTsil8SJN4ksY8svCxVKmBOWzRvvuflLiOW5qi4rhh245CieTieSOlMedse5TtyG3j2zq8p_eBn_vAunWdrkEi3lOyuoZiZZhziQrMJ_bo3fGqxDWJ_qdrBszYlsmPMFepxQ9WeqqM2CYBjNceZUagyUvrItR6X30znp07t8nAVeahNJbzajvOMGX1uBxJiiuQynpJmYDmIkoydARsUb4OsSI4oUhj10p4qowbgWsAqpA5cLl5J_xFmABQ9AGKbQBQRsgtBU4nIzvZZIdf47cLpAP8k93EPwQbfP_x3sw33y4bQWtq_bNFizQpNnls20oDfsjs4PZyjDazSnC4HnWrPwGxef_dg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsNADLVQKwEXxCoKBeYA4hSaTKaT5oAQW8VaIQQSt5DMAkiQlrYI9df4OuwsBQ5w45yJD86Lx56x3wPY1LqV-DZsOYor5YhWqBySs3JkHCeiGSrRNHTecdmRJ7fi7K55NwEf5SwMtVWWMTEL1Lqr6Iy8wQXaCIXwecMWbRFXR-293qtDClJ001rKaeQQOTejdyzfBrunR_ittzhvH98cnjiFwoCjENtDLJ4Q0lZjVq8x1VFhqJSwXqBjLYSrXGmF9XVgsOAMgkAmMnF16Prci7k0QaKJiAnDfzXAqsitQPXguHN1PS73PD-TSMVQRB2PwsspI7knZeNxpPs0ecjdHZcm_r9viT93hGyba8_CTJGfsv0cUHMwYdJ5mCqk0h9HCxDvj7k8WdcyQl5OQsGevrF7skxhZ8AwJWaIApWJhKUPrIsR6uXthfXoDqBPZK5khFJdzWgGOcWXFuH2X7y4BJW0m5plYCahhEMnhCAR6hijSxDH3PpS2KYwfg2c0lWRKkjMSUvjOcJihlwbZa6NyLURurYG2-P1vZy-49eV9dLzUfEbD6Iv0K38_XgDJhGN0cVp53wVpslm3odWh8qw_2bWMHEZJusFQhjc_zcoPwFHQAO6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+artificial+intelligence+models+for+calculating+optimum+properties+of+lined+channels&rft.jtitle=Journal+of+hydroinformatics&rft.au=Niazkar%2C+Majid&rft.date=2020-09-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=22&rft.issue=5&rft.spage=1410&rft_id=info:doi/10.2166%2Fhydro.2020.050&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |