Gorenstein Isolated Quotient Singularities of Odd Prime Dimension are Cyclic

In this article, we shall prove that Gorenstein isolated quotient singularities of odd prime dimension are cyclic. In the case where the dimension is bigger than 1 and is not an odd prime number, then there exist Gorenstein isolated noncyclic quotient singularities.

Saved in:
Bibliographic Details
Published inCommunications in algebra Vol. 40; no. 8; pp. 3010 - 3020
Main Authors Kurano, Kazuhiko, Nishi, Shougo
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we shall prove that Gorenstein isolated quotient singularities of odd prime dimension are cyclic. In the case where the dimension is bigger than 1 and is not an odd prime number, then there exist Gorenstein isolated noncyclic quotient singularities.
AbstractList In this article, we shall prove that Gorenstein isolated quotient singularities of odd prime dimension are cyclic. In the case where the dimension is bigger than 1 and is not an odd prime number, then there exist Gorenstein isolated noncyclic quotient singularities.
Author Kurano, Kazuhiko
Nishi, Shougo
Author_xml – sequence: 1
  givenname: Kazuhiko
  surname: Kurano
  fullname: Kurano, Kazuhiko
  email: kurano@isc.meiji.ac.jp
  organization: Department of Mathematics, School of Science and Technology , Meiji University
– sequence: 2
  givenname: Shougo
  surname: Nishi
  fullname: Nishi, Shougo
  organization: Department of Mathematics, School of Science and Technology , Meiji University
BookMark eNp9kF9LwzAUxYNMcJt-Ax_yBTrzp2nSJ5Gpc1CYoj6HtLmRSJdI0iH79rZMX305hwvnHC6_BZqFGACha0pWlChyQ0jNpJJsxQilK6FKztUZmlPBWVFSJmZoPkWKKXOBFjl_EkKFVGyOmk1MEPIAPuBtjr0ZwOKXQxw8hAG_-vBx6E3y45lxdHhnLX5Ofg_4fpSQfQzYJMDrY9f77hKdO9NnuPr1JXp_fHhbPxXNbrNd3zVFx4kcCm5lDc6JuoaWWakUa4WFSsmula1k7agEHC-ZYKqiVV13siqBE2aINSAkX6LytNulmHMCp7_Gn0w6akr0RET_EdETEX0iMtZuTzUfXEx78x1Tb_Vgjn1MLpnQ-az5vws_ex1prQ
CitedBy_id crossref_primary_10_1017_S0013091513000643
crossref_primary_10_1017_S1474748017000172
Cites_doi 10.1007/978-1-4612-4176-8
10.1017/CBO9780511565809
10.1090/memo/0505
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
DBID AAYXX
CITATION
DOI 10.1080/00927872.2011.584338
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4125
EndPage 3020
ExternalDocumentID 10_1080_00927872_2011_584338
584338
Genre Original Articles
GroupedDBID -DZ
-~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TWF
UPT
UT5
UU3
V1K
WH7
XSW
ZGOLN
~S~
07G
1TA
6TJ
AAIKQ
AAKBW
AAYXX
ABJNI
ABPAQ
ABTAH
ABXYU
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHDZW
AHMOU
ALCKM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
H~9
IVXBP
LJTGL
MVM
NUSFT
OHT
QCRFL
TAQ
TBQAZ
TDBHL
TFMCV
TUROJ
UB9
UU8
V3K
V4Q
XJT
ZY4
ID FETCH-LOGICAL-c307t-3d79eff599eb2d7882b5de687cb7b72bb7b0ef34252861699c764e302a0dae573
ISSN 0092-7872
IngestDate Thu Sep 12 17:35:19 EDT 2024
Tue Jun 13 19:30:17 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-3d79eff599eb2d7882b5de687cb7b72bb7b0ef34252861699c764e302a0dae573
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_00927872_2011_584338
crossref_primary_10_1080_00927872_2011_584338
PublicationCentury 2000
PublicationDate 2012-08-00
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-00
PublicationDecade 2010
PublicationTitle Communications in algebra
PublicationYear 2012
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Benson D. J. (CIT0001) 1993; 190
Rotman J. J. (CIT0003) 1995
Wolf J. A. (CIT0006) 1984
Watanabe K.-I. (CIT0004) 1974; 11
CIT0005
CIT0007
Nagata M. (CIT0002) 1962
References_xml – volume-title: An Introduction to the Theory of Groups.
  year: 1995
  ident: CIT0003
  doi: 10.1007/978-1-4612-4176-8
  contributor:
    fullname: Rotman J. J.
– volume-title: Local Rings, Interscience Tracts in Pure and Applied Mathematics
  year: 1962
  ident: CIT0002
  contributor:
    fullname: Nagata M.
– volume: 190
  volume-title: Polynomial Invariants of Finite Groups
  year: 1993
  ident: CIT0001
  doi: 10.1017/CBO9780511565809
  contributor:
    fullname: Benson D. J.
– volume: 11
  start-page: 1
  year: 1974
  ident: CIT0004
  publication-title: Osaka J. Math.
  contributor:
    fullname: Watanabe K.-I.
– ident: CIT0005
– volume-title: Spaces of Constant Curvature.
  year: 1984
  ident: CIT0006
  contributor:
    fullname: Wolf J. A.
– ident: CIT0007
  doi: 10.1090/memo/0505
SSID ssj0015782
Score 1.9997505
Snippet In this article, we shall prove that Gorenstein isolated quotient singularities of odd prime dimension are cyclic. In the case where the dimension is bigger...
SourceID crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 3010
SubjectTerms Cyclic quotient singularity
Gorenstein
Isolated singularity
Primary 13A50
Secondary 14L30
Title Gorenstein Isolated Quotient Singularities of Odd Prime Dimension are Cyclic
URI https://www.tandfonline.com/doi/abs/10.1080/00927872.2011.584338
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgvcAB8SkKBfnAbZUqaydxfKxaYPkoCLUVFZcodibqqnSDluyh_fV9jpNsAlVFuVi7kdbOZp6eZ5yZN4y9ESFJS0oHQhYCAUpEgVHWVXLlMtHCwAl25x0HX5LZcfTxJD5ZJ7E31SW12bGX19aV_I9VcQ12dVWyt7BsPyku4DPsixEWxvhPNn5fLRGFun6Vkw9YKXfe47dV1SilTg6xKbkc00Yy1fmEXwtXFzA_J_Dcuctbd4nIS5rsXdifczv0UkdVI03CrOsGYpY9hX9aYYurfDbG5ep0flYN3m80bYInh6dwzavhoYLLzki7Q4WWKDUc79R31dmhjhthzamvU-7I02sttSBJB0wI4ggHu6oMm5q3vxm7S3HUwi3nNVXhFEmv-TIWyP5j4-rTCae9zqmfJXOzZH6Wu2xTgINAfpu7s_0f3_tXTE7H30uU-n_a1VU64fVr7mbkt4xUbQf-yNFD9qANJPiuR8UjdocWj9n9g16F9_cT9nmND97hg3f44CN88KrkwAdv8MF7fHDgg3t8PGXH794e7c2CtntGYMHbdSALpaksY63JiEIhkjJxQUmqrFFGCYMxpFKCs0WaTBOtrUoigp3ysMgpVvIZ21hUC3rOOL4rUjGpXE4jImvg-MQUGY3oQBdxvsWC7tlkv7xISnaTTbZYOnyAWd0cTpW-k0wmb_rpi1su9ZLdW-N7m23UyxW9ghtZm9ctIK4Akuxqlw
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwFMAbxYN68NuInz14HY52W-nRoAgKqBESb8vaviVGAwbGQf96X1dGwEQPelmyLF229rXvo6-_R8g584FrENJj3DB0UALwlND2JFfCI8kUGsE23tHpRs1-cPscFtmE42lapfWhUweKyNdqO7ltMLpIibuwoCAUNOYInKhC0c9aJiuR5X_ZUxx-d7aRYGntDkSJhiQ2KU7P_fCWBe20wC6d0zqNTaKK73XJJq-VSaYq-vMbyvFfP7RFNqY2Kb10QrRNlmCwQ9Y7M6DreJe0b4YjdHhtaUzaQnFFC9XQx8kwh7LSJ9R_Np01p7PSYUrvjaEPtnAAvbLVA2xEjiYjoPUP_fai90i_cd2rN71pIQZP4xKQedwICWkaSol-uEGnmanQQFQTWgklmMKrDynH6c9qUTWSUosoAO6zxDcJhILvk9JgOIADQvFegAhBJLwaAGiFOjSEQEk0NKUJkzLxigGI3x1vI67OMKaul2LbS7HrpTKpzY9SnOVxjtQVJYn5b00P_970jKw2e5123G51747IGj5hLinwmJSy0QRO0FDJ1Gkuil-k6Nr9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJkYPvo343IPXYtltu-zRgAgKiFESbk13d5oYDRAsB_31znaBgIke9NKkaaZpp7M730xnviHkkvnANQjpMW4YBigBeEpo28mV8EgyhSDY5jvanajRC-76YX-hi9-WVdoYOnVEEflebRf3yKSzirgryxOEdsYcASd6UAyzVskaAgHfWjr3O_P_CJas3fFQIo5EkVnz3A93WXJOS9SlC06nvk2S2eO6WpPX0iRTJf35jcnxP--zQ7amiJReOxPaJSsw2COb7Tmd6_s-ad0Oxxju2sGYtInGivjU0MfJMKdkpU_o_Wwxa87NSocpfTCGdu3YAFqzswNsPo4mY6DVD_32og9Ir37zXG140zEMnsYNIPO4ERLSNJQSo3CDITNToYGoIrQSSjCFRx9SjoufVaJyJKUWUQDcZ4lvEggFPySFwXAAR4TiuQARgkh4OQDQCj1oCIGSCDOlCZMi8Wb6j0eObSMuz0lMnZZiq6XYaalIKosfKc7yLEfqRpLE_DfR47-LXpD1bq0et5qd-xOygReYqwg8JYVsPIEzRCmZOs8N8QsiQdmq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gorenstein+Isolated+Quotient+Singularities+of+Odd+Prime+Dimension+are+Cyclic&rft.jtitle=Communications+in+algebra&rft.au=Kurano%2C+Kazuhiko&rft.au=Nishi%2C+Shougo&rft.date=2012-08-01&rft.issn=0092-7872&rft.eissn=1532-4125&rft.volume=40&rft.issue=8&rft.spage=3010&rft.epage=3020&rft_id=info:doi/10.1080%2F00927872.2011.584338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00927872_2011_584338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-7872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-7872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-7872&client=summon