Pressure generation under deformation in a large-volume press

Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters. However, accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation ex...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 9; pp. 98104 - 625
Main Authors Wang, Saisai, Zhao, Xinyu, Hu, Kuo, Feng, Bingtao, Hou, Xuyuan, Zhang, Yiming, Liu, Shucheng, Shang, Yuchen, Liu, Zhaodong, Yao, Mingguang, Liu, Bingbing
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.08.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad58c6

Cover

Abstract Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters. However, accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments, resulting in the synthesis of complex multiphase materials. Here, pressure generations of three types of deformation assemblies were well calibrated in a Walker-type large-volume press (LVP) by electrical resistance measurements combined with finite element simulations (FESs). Hard Al 2 O 3 or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly. The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies. This finding is further confirmed by stress distribution analysis based on FESs. With this deformation assembly, we found shear can effectively promote the transformation of C 60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions. The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
AbstractList Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type large-volume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al203 or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters. However, accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments, resulting in the synthesis of complex multiphase materials. Here, pressure generations of three types of deformation assemblies were well calibrated in a Walker-type large-volume press (LVP) by electrical resistance measurements combined with finite element simulations (FESs). Hard Al 2 O 3 or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly. The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies. This finding is further confirmed by stress distribution analysis based on FESs. With this deformation assembly, we found shear can effectively promote the transformation of C 60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions. The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
Author Wang, Saisai
Liu, Zhaodong
Hu, Kuo
Hou, Xuyuan
Zhang, Yiming
Yao, Mingguang
Feng, Bingtao
Shang, Yuchen
Liu, Bingbing
Zhao, Xinyu
Liu, Shucheng
Author_xml – sequence: 1
  givenname: Saisai
  surname: Wang
  fullname: Wang, Saisai
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 2
  givenname: Xinyu
  surname: Zhao
  fullname: Zhao, Xinyu
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 3
  givenname: Kuo
  surname: Hu
  fullname: Hu, Kuo
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 4
  givenname: Bingtao
  surname: Feng
  fullname: Feng, Bingtao
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 5
  givenname: Xuyuan
  surname: Hou
  fullname: Hou, Xuyuan
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 6
  givenname: Yiming
  surname: Zhang
  fullname: Zhang, Yiming
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 7
  givenname: Shucheng
  surname: Liu
  fullname: Liu, Shucheng
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 8
  givenname: Yuchen
  surname: Shang
  fullname: Shang, Yuchen
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 9
  givenname: Zhaodong
  surname: Liu
  fullname: Liu, Zhaodong
  organization: Jilin University College of Earth Sciences, Changchun 130012, China
– sequence: 10
  givenname: Mingguang
  surname: Yao
  fullname: Yao, Mingguang
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
– sequence: 11
  givenname: Bingbing
  surname: Liu
  fullname: Liu, Bingbing
  organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China
BookMark eNp1kL1PwzAQxS1UJNrCzpiNhdCz49juwIAqvqRKMMBsufY5SpXaldNQwV9PoiCYmE569967029GJiEGJOSSwg0FpRZUSJ5TKMXCuFJZcUKmDEqVF6rgEzL9XZ-RWdtuAQQFVkzJ7WvCtu0SZhUGTOZQx5B1wWHKHPqYdqNSh8xkjUkV5h-x6XaY7YfcOTn1pmnx4mfOyfvD_dvqKV-_PD6v7ta5LUAe-h-kV547i5Yvqe1FZYEJazecspItkTlpRGm4AMnAceOYkEZuJKJlXopiTq7G3qMJ3oRKb2OXQn9Rf1XHRiMDxmEJEnonjE6bYtsm9Hqf6p1Jn5qCHkDpgYQeSOgRVB-5HiN13P8V_2v_Bmxfazc
Cites_doi 10.1016/j.carbon.2019.02.012
10.1038/355237a0
10.1063/1.2208353
10.1016/j.pepi.2008.05.019
10.1016/S0038-1098(01)00082-5
10.1016/S0040-1951(99)00229-2
10.1142/S0217984918503426
10.1016/S0375-9601(01)00345-0
10.1007/s10118-018-2169-9
10.1016/j.pepi.2012.05.001
10.1080/08957950802250607
10.1016/j.pepi.2008.06.027
10.1088/0256-307X/37/8/080701
10.1103/PhysRevLett.124.065701
10.1002/grl.v44.6
10.1016/j.epsl.2016.02.029
10.1029/97JB01732
10.3103/S1063457612060135
10.2138/am-2019-6574
10.1088/0953-8984/14/45/305
10.1007/s12583-010-0110-4
10.1029/2001GC000258
10.1126/science.270.5235.458
10.1016/j.epsl.2021.117360
10.1038/s41586-021-03882-9
10.1103/PhysRevB.42.9113
10.1063/1.1570948
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad58c6
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 625
ExternalDocumentID zgwl_e202409070
10_1088_1674_1056_ad58c6
cpb_33_9_098104
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c307t-387f8f4dcec491cc308c026ccb412529e2d7a65a460720d4ad267a7b7eec2f763
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:15 EDT 2025
Tue Sep 03 22:26:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords finite element simulations
large-volume press
shear/uniaxial deformation
pressure calibration
high pressure
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-387f8f4dcec491cc308c026ccb412529e2d7a65a460720d4ad267a7b7eec2f763
OpenAccessLink https://doi.org/10.1088/1674-1056/ad58c6
PageCount 5
ParticipantIDs wanfang_journals_zgwl_e202409070
iop_journals_10_1088_1674_1056_ad58c6
crossref_primary_10_1088_1674_1056_ad58c6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Shang (cpb_33_9_098104bib25) 2021; 599
Wang (cpb_33_9_098104bib15) 2017; 44
Li (cpb_33_9_098104bib13) 2018; 36
Gao (cpb_33_9_098104bib4) 2019; 146
Karato (cpb_33_9_098104bib17) 1997; 102
Ohuchi (cpb_33_9_098104bib12) 2010; 21
Kawazoe (cpb_33_9_098104bib9) 2009; 174
Serebryanaya (cpb_33_9_098104bib3) 2001; 118
Ves (cpb_33_9_098104bib14) 1990; 42
Karato (cpb_33_9_098104bib7) 1995; 270
Holtzman (cpb_33_9_098104bib22) 2003; 4
Tyukalova (cpb_33_9_098104bib5)
Wang (cpb_33_9_098104bib18) 2022; 579
Shang (cpb_33_9_098104bib23) 2020; 37
Wang (cpb_33_9_098104bib10) 2003; 74
Regueiro (cpb_33_9_098104bib1) 1992; 355
Levitas (cpb_33_9_098104bib8) 2006; 125
Dong (cpb_33_9_098104bib2) 2020; 124
Katayama (cpb_33_9_098104bib21) 2008; 168
Wood (cpb_33_9_098104bib27) 2002; 14
Horikawa (cpb_33_9_098104bib26) 2001; 287
Wang (cpb_33_9_098104bib19) 2019; 104
Nishiyama (cpb_33_9_098104bib11) 2008; 28
Zhuang (cpb_33_9_098104bib24) 2018; 32
Brazhkin (cpb_33_9_098104bib28) 2012; 34
Demouchy (cpb_33_9_098104bib20) 2012; 202–203
Zhang (cpb_33_9_098104bib6) 2000; 316
Wang (cpb_33_9_098104bib16) 2016; 441
References_xml – volume: 146
  start-page: 364
  year: 2019
  ident: cpb_33_9_098104bib4
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.012
– volume: 355
  start-page: 237
  year: 1992
  ident: cpb_33_9_098104bib1
  publication-title: Nature
  doi: 10.1038/355237a0
– volume: 125
  year: 2006
  ident: cpb_33_9_098104bib8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2208353
– volume: 168
  start-page: 125
  year: 2008
  ident: cpb_33_9_098104bib21
  publication-title: Physics of the Earth and Planetary Interiors
  doi: 10.1016/j.pepi.2008.05.019
– volume: 118
  start-page: 183
  year: 2001
  ident: cpb_33_9_098104bib3
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(01)00082-5
– volume: 316
  start-page: 133
  year: 2000
  ident: cpb_33_9_098104bib6
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(99)00229-2
– volume: 32
  year: 2018
  ident: cpb_33_9_098104bib24
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984918503426
– volume: 287
  start-page: 143
  year: 2001
  ident: cpb_33_9_098104bib26
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00345-0
– volume: 36
  start-page: 1093
  year: 2018
  ident: cpb_33_9_098104bib13
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-018-2169-9
– volume: 202–203
  start-page: 56
  year: 2012
  ident: cpb_33_9_098104bib20
  publication-title: Physics of the Earth and Planetary Interiors
  doi: 10.1016/j.pepi.2012.05.001
– volume: 28
  start-page: 307
  year: 2008
  ident: cpb_33_9_098104bib11
  publication-title: High Pressure Res.
  doi: 10.1080/08957950802250607
– volume: 174
  start-page: 128
  year: 2009
  ident: cpb_33_9_098104bib9
  publication-title: Physics of the Earth and Planetary Interiors
  doi: 10.1016/j.pepi.2008.06.027
– volume: 37
  year: 2020
  ident: cpb_33_9_098104bib23
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/37/8/080701
– volume: 124
  year: 2020
  ident: cpb_33_9_098104bib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.065701
– volume: 44
  start-page: 2687
  year: 2017
  ident: cpb_33_9_098104bib15
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.v44.6
– volume: 441
  start-page: 81
  year: 2016
  ident: cpb_33_9_098104bib16
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2016.02.029
– volume: 102
  year: 1997
  ident: cpb_33_9_098104bib17
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JB01732
– volume: 34
  start-page: 400
  year: 2012
  ident: cpb_33_9_098104bib28
  publication-title: J. Superhard Mater.
  doi: 10.3103/S1063457612060135
– volume: 104
  start-page: 47
  year: 2019
  ident: cpb_33_9_098104bib19
  publication-title: American Mineralogist
  doi: 10.2138/am-2019-6574
– volume: 14
  year: 2002
  ident: cpb_33_9_098104bib27
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/45/305
– volume: 21
  start-page: 523
  year: 2010
  ident: cpb_33_9_098104bib12
  publication-title: J. Earth Sci.
  doi: 10.1007/s12583-010-0110-4
– ident: cpb_33_9_098104bib5
– volume: 4
  start-page: 8607
  year: 2003
  ident: cpb_33_9_098104bib22
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2001GC000258
– volume: 270
  start-page: 458
  year: 1995
  ident: cpb_33_9_098104bib7
  publication-title: Science
  doi: 10.1126/science.270.5235.458
– volume: 579
  year: 2022
  ident: cpb_33_9_098104bib18
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2021.117360
– volume: 599
  start-page: 599
  year: 2021
  ident: cpb_33_9_098104bib25
  publication-title: Nature
  doi: 10.1038/s41586-021-03882-9
– volume: 42
  start-page: 9113
  year: 1990
  ident: cpb_33_9_098104bib14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.9113
– volume: 74
  start-page: 3002
  year: 2003
  ident: cpb_33_9_098104bib10
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1570948
SSID ssj0061023
Score 2.3453734
Snippet Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters....
Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 98104
SubjectTerms finite element simulations
high pressure
large-volume press
pressure calibration
shear/uniaxial deformation
Title Pressure generation under deformation in a large-volume press
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad58c6
https://d.wanfangdata.com.cn/periodical/zgwl-e202409070
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvjiXZw38qAPPnRruzRJER9EHFPw8uBgD0JJTpMhjm5sHcJ-vUnTzgsi4lspp2n7JTnJId_5DkInkQ64ANAmNknBIyqgHo915BFCoC18GatC8ebunnZ75LYf9WvofJELMxqXrr9pLp1QsIOwJMTxluXNe7ZgfEukEQe6hJZt4Uo7vG8eHis3TK0mgY22KuvyjPKnFr6sSUvmvUUGT6ZFNvi02HTW0XP1mY5j8tqc5bIJ828Kjv_8jw20Vm5C8aUz3UQ1lW2hlYIMCtNtdOFyBicKDwpRatt32CabTXCqFtmO-CXDAg8tk9xzPg4XpNod1OtcP111vbLMggdmgudWXVdzTVJQQOIAzE0OJjIDkMTsfsJYhSkTNBKE-iz0UyLSkDLBJFMKQm380y6qZ6NM7SFMlZY6CGRbc2oiIc51W9BQMCYjpoGRBjqrgE7GTk0jKU7BOU8sHImFI3FwNNCpQS4pp9T0Fztc9tWH7XzwNkxUaPXbTPDv7_-xqQO0ap9x_L5DVM8nM3Vk9hy5PC7G1jsgls4O
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVoEYgLO6KsPsCBQ9omdWznwAEBVctSeqBSb8F27ApRpVWbCqlfj5eETQghcYuisZM8x2OP_OYNACeh8ikTQunYJBEekj72aKRCDyEkGqzOI2kVb-47uNVDN_2wn9c5tbkwo3Hu-qv60gkFOwhzQhytGd68ZwrG11gSUoFr40SVwGKoXbHhdLUfuoUrxkaXwERcRYv8nPKnXr6sSyX9bJvFkyqWDj4tOM018FS8quOZvFRnGa-K-TcVx398yzpYzTej8MKZb4AFmW6CJUsKFdMtcO5yBycSDqw4tRlDaJLOJjCR71mP8DmFDA4No9xzvg5acu026DWvHy9bXl5uwRN6omdGZVdRhRIhBYp8oW9SoSM0ITjSu6AgkkFCGA4ZwnUS1BPEkgATRjiRUgRK-6kdUE5HqdwFEEvFle_zhqJYR0SUqgbDASOEh0QJgirgrAA7HjtVjdiehlMaG0hiA0nsIKmAU41enE-t6S92MB-vD9v54HUYy8DouEXat-39satjsNy9asZ37c7tPlgxzR3l7wCUs8lMHuptSMaP7K_2Bsbe03I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+generation+under+deformation+in+a+large-volume+press&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Saisai+Wang&rft.au=Xinyu+Zhao&rft.au=Kuo+Hu&rft.au=Bingtao+Feng&rft.date=2024-08-01&rft.issn=1674-1056&rft.volume=33&rft.issue=9&rft.spage=620&rft.epage=625&rft_id=info:doi/10.1088%2F1674-1056%2Fad58c6&rft.externalDocID=zgwl_e202409070
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg