Pressure generation under deformation in a large-volume press
Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters. However, accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation ex...
Saved in:
Published in | Chinese physics B Vol. 33; no. 9; pp. 98104 - 625 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad58c6 |
Cover
Abstract | Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters. However, accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments, resulting in the synthesis of complex multiphase materials. Here, pressure generations of three types of deformation assemblies were well calibrated in a Walker-type large-volume press (LVP) by electrical resistance measurements combined with finite element simulations (FESs). Hard Al
2
O
3
or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly. The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies. This finding is further confirmed by stress distribution analysis based on FESs. With this deformation assembly, we found shear can effectively promote the transformation of C
60
into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions. The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology. |
---|---|
AbstractList | Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type large-volume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al203 or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology. Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters. However, accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments, resulting in the synthesis of complex multiphase materials. Here, pressure generations of three types of deformation assemblies were well calibrated in a Walker-type large-volume press (LVP) by electrical resistance measurements combined with finite element simulations (FESs). Hard Al 2 O 3 or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly. The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies. This finding is further confirmed by stress distribution analysis based on FESs. With this deformation assembly, we found shear can effectively promote the transformation of C 60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions. The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology. |
Author | Wang, Saisai Liu, Zhaodong Hu, Kuo Hou, Xuyuan Zhang, Yiming Yao, Mingguang Feng, Bingtao Shang, Yuchen Liu, Bingbing Zhao, Xinyu Liu, Shucheng |
Author_xml | – sequence: 1 givenname: Saisai surname: Wang fullname: Wang, Saisai organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 2 givenname: Xinyu surname: Zhao fullname: Zhao, Xinyu organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 3 givenname: Kuo surname: Hu fullname: Hu, Kuo organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 4 givenname: Bingtao surname: Feng fullname: Feng, Bingtao organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 5 givenname: Xuyuan surname: Hou fullname: Hou, Xuyuan organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 6 givenname: Yiming surname: Zhang fullname: Zhang, Yiming organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 7 givenname: Shucheng surname: Liu fullname: Liu, Shucheng organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 8 givenname: Yuchen surname: Shang fullname: Shang, Yuchen organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 9 givenname: Zhaodong surname: Liu fullname: Liu, Zhaodong organization: Jilin University College of Earth Sciences, Changchun 130012, China – sequence: 10 givenname: Mingguang surname: Yao fullname: Yao, Mingguang organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China – sequence: 11 givenname: Bingbing surname: Liu fullname: Liu, Bingbing organization: Jilin University State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Changchun 130012, China |
BookMark | eNp1kL1PwzAQxS1UJNrCzpiNhdCz49juwIAqvqRKMMBsufY5SpXaldNQwV9PoiCYmE569967029GJiEGJOSSwg0FpRZUSJ5TKMXCuFJZcUKmDEqVF6rgEzL9XZ-RWdtuAQQFVkzJ7WvCtu0SZhUGTOZQx5B1wWHKHPqYdqNSh8xkjUkV5h-x6XaY7YfcOTn1pmnx4mfOyfvD_dvqKV-_PD6v7ta5LUAe-h-kV547i5Yvqe1FZYEJazecspItkTlpRGm4AMnAceOYkEZuJKJlXopiTq7G3qMJ3oRKb2OXQn9Rf1XHRiMDxmEJEnonjE6bYtsm9Hqf6p1Jn5qCHkDpgYQeSOgRVB-5HiN13P8V_2v_Bmxfazc |
Cites_doi | 10.1016/j.carbon.2019.02.012 10.1038/355237a0 10.1063/1.2208353 10.1016/j.pepi.2008.05.019 10.1016/S0038-1098(01)00082-5 10.1016/S0040-1951(99)00229-2 10.1142/S0217984918503426 10.1016/S0375-9601(01)00345-0 10.1007/s10118-018-2169-9 10.1016/j.pepi.2012.05.001 10.1080/08957950802250607 10.1016/j.pepi.2008.06.027 10.1088/0256-307X/37/8/080701 10.1103/PhysRevLett.124.065701 10.1002/grl.v44.6 10.1016/j.epsl.2016.02.029 10.1029/97JB01732 10.3103/S1063457612060135 10.2138/am-2019-6574 10.1088/0953-8984/14/45/305 10.1007/s12583-010-0110-4 10.1029/2001GC000258 10.1126/science.270.5235.458 10.1016/j.epsl.2021.117360 10.1038/s41586-021-03882-9 10.1103/PhysRevB.42.9113 10.1063/1.1570948 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad58c6 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 625 |
ExternalDocumentID | zgwl_e202409070 10_1088_1674_1056_ad58c6 cpb_33_9_098104 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c307t-387f8f4dcec491cc308c026ccb412529e2d7a65a460720d4ad267a7b7eec2f763 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:15 EDT 2025 Tue Sep 03 22:26:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | finite element simulations large-volume press shear/uniaxial deformation pressure calibration high pressure |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-387f8f4dcec491cc308c026ccb412529e2d7a65a460720d4ad267a7b7eec2f763 |
OpenAccessLink | https://doi.org/10.1088/1674-1056/ad58c6 |
PageCount | 5 |
ParticipantIDs | wanfang_journals_zgwl_e202409070 iop_journals_10_1088_1674_1056_ad58c6 crossref_primary_10_1088_1674_1056_ad58c6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Shang (cpb_33_9_098104bib25) 2021; 599 Wang (cpb_33_9_098104bib15) 2017; 44 Li (cpb_33_9_098104bib13) 2018; 36 Gao (cpb_33_9_098104bib4) 2019; 146 Karato (cpb_33_9_098104bib17) 1997; 102 Ohuchi (cpb_33_9_098104bib12) 2010; 21 Kawazoe (cpb_33_9_098104bib9) 2009; 174 Serebryanaya (cpb_33_9_098104bib3) 2001; 118 Ves (cpb_33_9_098104bib14) 1990; 42 Karato (cpb_33_9_098104bib7) 1995; 270 Holtzman (cpb_33_9_098104bib22) 2003; 4 Tyukalova (cpb_33_9_098104bib5) Wang (cpb_33_9_098104bib18) 2022; 579 Shang (cpb_33_9_098104bib23) 2020; 37 Wang (cpb_33_9_098104bib10) 2003; 74 Regueiro (cpb_33_9_098104bib1) 1992; 355 Levitas (cpb_33_9_098104bib8) 2006; 125 Dong (cpb_33_9_098104bib2) 2020; 124 Katayama (cpb_33_9_098104bib21) 2008; 168 Wood (cpb_33_9_098104bib27) 2002; 14 Horikawa (cpb_33_9_098104bib26) 2001; 287 Wang (cpb_33_9_098104bib19) 2019; 104 Nishiyama (cpb_33_9_098104bib11) 2008; 28 Zhuang (cpb_33_9_098104bib24) 2018; 32 Brazhkin (cpb_33_9_098104bib28) 2012; 34 Demouchy (cpb_33_9_098104bib20) 2012; 202–203 Zhang (cpb_33_9_098104bib6) 2000; 316 Wang (cpb_33_9_098104bib16) 2016; 441 |
References_xml | – volume: 146 start-page: 364 year: 2019 ident: cpb_33_9_098104bib4 publication-title: Carbon doi: 10.1016/j.carbon.2019.02.012 – volume: 355 start-page: 237 year: 1992 ident: cpb_33_9_098104bib1 publication-title: Nature doi: 10.1038/355237a0 – volume: 125 year: 2006 ident: cpb_33_9_098104bib8 publication-title: J. Chem. Phys. doi: 10.1063/1.2208353 – volume: 168 start-page: 125 year: 2008 ident: cpb_33_9_098104bib21 publication-title: Physics of the Earth and Planetary Interiors doi: 10.1016/j.pepi.2008.05.019 – volume: 118 start-page: 183 year: 2001 ident: cpb_33_9_098104bib3 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(01)00082-5 – volume: 316 start-page: 133 year: 2000 ident: cpb_33_9_098104bib6 publication-title: Tectonophysics doi: 10.1016/S0040-1951(99)00229-2 – volume: 32 year: 2018 ident: cpb_33_9_098104bib24 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984918503426 – volume: 287 start-page: 143 year: 2001 ident: cpb_33_9_098104bib26 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00345-0 – volume: 36 start-page: 1093 year: 2018 ident: cpb_33_9_098104bib13 publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-018-2169-9 – volume: 202–203 start-page: 56 year: 2012 ident: cpb_33_9_098104bib20 publication-title: Physics of the Earth and Planetary Interiors doi: 10.1016/j.pepi.2012.05.001 – volume: 28 start-page: 307 year: 2008 ident: cpb_33_9_098104bib11 publication-title: High Pressure Res. doi: 10.1080/08957950802250607 – volume: 174 start-page: 128 year: 2009 ident: cpb_33_9_098104bib9 publication-title: Physics of the Earth and Planetary Interiors doi: 10.1016/j.pepi.2008.06.027 – volume: 37 year: 2020 ident: cpb_33_9_098104bib23 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/37/8/080701 – volume: 124 year: 2020 ident: cpb_33_9_098104bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.065701 – volume: 44 start-page: 2687 year: 2017 ident: cpb_33_9_098104bib15 publication-title: Geophys. Res. Lett. doi: 10.1002/grl.v44.6 – volume: 441 start-page: 81 year: 2016 ident: cpb_33_9_098104bib16 publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2016.02.029 – volume: 102 year: 1997 ident: cpb_33_9_098104bib17 publication-title: J. Geophys. Res. doi: 10.1029/97JB01732 – volume: 34 start-page: 400 year: 2012 ident: cpb_33_9_098104bib28 publication-title: J. Superhard Mater. doi: 10.3103/S1063457612060135 – volume: 104 start-page: 47 year: 2019 ident: cpb_33_9_098104bib19 publication-title: American Mineralogist doi: 10.2138/am-2019-6574 – volume: 14 year: 2002 ident: cpb_33_9_098104bib27 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/45/305 – volume: 21 start-page: 523 year: 2010 ident: cpb_33_9_098104bib12 publication-title: J. Earth Sci. doi: 10.1007/s12583-010-0110-4 – ident: cpb_33_9_098104bib5 – volume: 4 start-page: 8607 year: 2003 ident: cpb_33_9_098104bib22 publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2001GC000258 – volume: 270 start-page: 458 year: 1995 ident: cpb_33_9_098104bib7 publication-title: Science doi: 10.1126/science.270.5235.458 – volume: 579 year: 2022 ident: cpb_33_9_098104bib18 publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2021.117360 – volume: 599 start-page: 599 year: 2021 ident: cpb_33_9_098104bib25 publication-title: Nature doi: 10.1038/s41586-021-03882-9 – volume: 42 start-page: 9113 year: 1990 ident: cpb_33_9_098104bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.9113 – volume: 74 start-page: 3002 year: 2003 ident: cpb_33_9_098104bib10 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1570948 |
SSID | ssj0061023 |
Score | 2.3453734 |
Snippet | Deformation can change the transition pathway of materials under high pressure, thus significantly affects physical and chemical properties of matters.... Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 98104 |
SubjectTerms | finite element simulations high pressure large-volume press pressure calibration shear/uniaxial deformation |
Title | Pressure generation under deformation in a large-volume press |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad58c6 https://d.wanfangdata.com.cn/periodical/zgwl-e202409070 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvjiXZw38qAPPnRruzRJER9EHFPw8uBgD0JJTpMhjm5sHcJ-vUnTzgsi4lspp2n7JTnJId_5DkInkQ64ANAmNknBIyqgHo915BFCoC18GatC8ebunnZ75LYf9WvofJELMxqXrr9pLp1QsIOwJMTxluXNe7ZgfEukEQe6hJZt4Uo7vG8eHis3TK0mgY22KuvyjPKnFr6sSUvmvUUGT6ZFNvi02HTW0XP1mY5j8tqc5bIJ828Kjv_8jw20Vm5C8aUz3UQ1lW2hlYIMCtNtdOFyBicKDwpRatt32CabTXCqFtmO-CXDAg8tk9xzPg4XpNod1OtcP111vbLMggdmgudWXVdzTVJQQOIAzE0OJjIDkMTsfsJYhSkTNBKE-iz0UyLSkDLBJFMKQm380y6qZ6NM7SFMlZY6CGRbc2oiIc51W9BQMCYjpoGRBjqrgE7GTk0jKU7BOU8sHImFI3FwNNCpQS4pp9T0Fztc9tWH7XzwNkxUaPXbTPDv7_-xqQO0ap9x_L5DVM8nM3Vk9hy5PC7G1jsgls4O |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVoEYgLO6KsPsCBQ9omdWznwAEBVctSeqBSb8F27ApRpVWbCqlfj5eETQghcYuisZM8x2OP_OYNACeh8ikTQunYJBEekj72aKRCDyEkGqzOI2kVb-47uNVDN_2wn9c5tbkwo3Hu-qv60gkFOwhzQhytGd68ZwrG11gSUoFr40SVwGKoXbHhdLUfuoUrxkaXwERcRYv8nPKnXr6sSyX9bJvFkyqWDj4tOM018FS8quOZvFRnGa-K-TcVx398yzpYzTej8MKZb4AFmW6CJUsKFdMtcO5yBycSDqw4tRlDaJLOJjCR71mP8DmFDA4No9xzvg5acu026DWvHy9bXl5uwRN6omdGZVdRhRIhBYp8oW9SoSM0ITjSu6AgkkFCGA4ZwnUS1BPEkgATRjiRUgRK-6kdUE5HqdwFEEvFle_zhqJYR0SUqgbDASOEh0QJgirgrAA7HjtVjdiehlMaG0hiA0nsIKmAU41enE-t6S92MB-vD9v54HUYy8DouEXat-39satjsNy9asZ37c7tPlgxzR3l7wCUs8lMHuptSMaP7K_2Bsbe03I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+generation+under+deformation+in+a+large-volume+press&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Saisai+Wang&rft.au=Xinyu+Zhao&rft.au=Kuo+Hu&rft.au=Bingtao+Feng&rft.date=2024-08-01&rft.issn=1674-1056&rft.volume=33&rft.issue=9&rft.spage=620&rft.epage=625&rft_id=info:doi/10.1088%2F1674-1056%2Fad58c6&rft.externalDocID=zgwl_e202409070 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |