Fabrication of anti-fouling PVDF nanocomposite membranes using manganese dioxide nanospheres with tailored morphology, hydrophilicity and permeation
Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO 2 nanospheres (such as 0.0, 0....
Saved in:
Published in | New journal of chemistry Vol. 42; no. 19; pp. 1583 - 1581 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Manganese dioxide (MnO
2
) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO
2
nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO
2
nanospheres, there is an increase in the surface roughness of the PVDF/MnO
2
nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO
2
on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm
−2
h
−1
for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO
2
membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO
2
membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO
2
beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO
2
nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications.
Manganese dioxide (MnO
2
) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. |
---|---|
AbstractList | Manganese dioxide (MnO
2
) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO
2
nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO
2
nanospheres, there is an increase in the surface roughness of the PVDF/MnO
2
nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO
2
on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm
−2
h
−1
for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO
2
membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO
2
membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO
2
beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO
2
nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications.
Manganese dioxide (MnO
2
) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Manganese dioxide (MnO2) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO2 nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO2 nanospheres, there is an increase in the surface roughness of the PVDF/MnO2 nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO2 on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm−2 h−1 for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO2 membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO2 membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO2 beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO2 nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications. Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO 2 nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO 2 nanospheres, there is an increase in the surface roughness of the PVDF/MnO 2 nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO 2 on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm −2 h −1 for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO 2 membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO 2 membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO 2 beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO 2 nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications. |
Author | Nagendran, Alagumalai Alwarappan, Subbiah Divya, Kumar Rana, Dipak Sri Abirami Saraswathi, Meenakshi Sundaram |
AuthorAffiliation | Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Polymeric Materials Research Lab, PG & Research Department of Chemistry, Alagappa Government Arts College |
AuthorAffiliation_xml | – name: Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St – name: Polymeric Materials Research Lab, PG & Research Department of Chemistry, Alagappa Government Arts College – name: CSIR-Central Electrochemical Research Institute (CSIR-CECRI) |
Author_xml | – sequence: 1 givenname: Meenakshi Sundaram surname: Sri Abirami Saraswathi fullname: Sri Abirami Saraswathi, Meenakshi Sundaram – sequence: 2 givenname: Dipak surname: Rana fullname: Rana, Dipak – sequence: 3 givenname: Kumar surname: Divya fullname: Divya, Kumar – sequence: 4 givenname: Subbiah surname: Alwarappan fullname: Alwarappan, Subbiah – sequence: 5 givenname: Alagumalai surname: Nagendran fullname: Nagendran, Alagumalai |
BookMark | eNp9kU9PGzEQxa0KpPLv0nslI24VSz3xrh0fq9AAFaIcoNeV1_ZmHe3aW9sRzffgA-MkVSshxGk80m_ezHs-RHvOO4PQJyAXQKj4qqZuSSacgPqADoAyUYgJg738hrIsSFWyj-gwxiUhAJzBAXqeyyZYJZP1DvsWS5ds0fpVb90C3_-6nGMnnVd-GH20yeDBDE2QzkS8ihtkkG6xaQ3W1v-x2mz5OHYmZObJpg4naXsfjMaDD2Pne79Yn-NurYMfO9tbZdM6r9V4NGEw20OO0X4r-2hO_tYj9Dj__jC7Lm5_Xt3Mvt0WihKeCloZYLxSJWsZtAIAhBZC8mYqSgpV9qiBNQqmIBnTbWWqhmpeNpyCJEwYeoTOdrpj8L9XJqZ66VfB5ZX1JKtNKuCUZ-rLjlLBxxhMW4_BDjKsayD1JvV6Nr37sU19lmHyCs7-tqZSyDm8PXK6GwlR_ZP-_5H1qNvMfH6PoS84lZ6v |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2023_135449 crossref_primary_10_1016_j_reactfunctpolym_2020_104538 crossref_primary_10_1016_j_jece_2024_112850 crossref_primary_10_1016_j_matchemphys_2019_122224 crossref_primary_10_1016_j_memsci_2022_120984 crossref_primary_10_1021_acs_iecr_0c06045 crossref_primary_10_1039_D1RA00376C crossref_primary_10_1016_j_dwt_2024_100088 crossref_primary_10_1016_j_seppur_2020_116889 crossref_primary_10_2166_wst_2021_364 crossref_primary_10_1002_ceat_202200320 crossref_primary_10_1016_j_jiec_2019_03_014 crossref_primary_10_1002_pen_26294 crossref_primary_10_1007_s11356_022_20047_x crossref_primary_10_1016_j_ijbiomac_2019_05_200 crossref_primary_10_1016_j_jiec_2024_12_070 crossref_primary_10_1039_C8NJ04511A crossref_primary_10_3390_membranes10090197 crossref_primary_10_1002_pat_4626 crossref_primary_10_1039_C9NJ05300J crossref_primary_10_1016_j_polymertesting_2020_106367 crossref_primary_10_1016_j_colsurfa_2023_131587 crossref_primary_10_1016_j_memsci_2023_121846 crossref_primary_10_1016_j_jmst_2021_11_061 crossref_primary_10_1021_acsami_0c07670 crossref_primary_10_1002_app_54585 crossref_primary_10_1002_pat_6068 crossref_primary_10_1016_j_diamond_2023_109945 crossref_primary_10_1002_pen_25764 crossref_primary_10_1088_2053_1591_ab1032 crossref_primary_10_1016_j_heliyon_2023_e12823 crossref_primary_10_1021_acs_iecr_0c04303 crossref_primary_10_1016_j_chemosphere_2021_130024 crossref_primary_10_1016_j_cherd_2020_04_014 crossref_primary_10_3390_su142315843 crossref_primary_10_1016_j_jece_2020_104426 crossref_primary_10_1038_s41598_022_23952_w |
Cites_doi | 10.1016/j.matchemphys.2005.03.006 10.1016/j.apsusc.2006.03.090 10.1016/j.desal.2014.12.040 10.1016/j.jcis.2017.05.074 10.1039/C5RA05204A 10.1016/j.desal.2011.11.025 10.1016/j.memsci.2014.09.018 10.1016/j.memsci.2011.05.047 10.1016/j.memsci.2013.02.012 10.1016/j.desal.2015.01.012 10.1021/es100244s 10.1016/j.memsci.2011.10.007 10.1016/S1004-9541(09)60175-0 10.1021/acs.iecr.5b03290 10.1016/j.ijbiomac.2017.10.027 10.1038/srep30144 10.1016/j.desal.2013.12.011 10.1088/0957-4484/27/41/415706 10.1039/c3ce40603b 10.1016/j.matdes.2015.10.018 10.1021/acs.est.6b04280 10.1016/j.msec.2017.11.015 10.1016/j.memsci.2005.09.044 10.1016/j.polymer.2005.05.155 10.1016/j.memsci.2010.01.033 10.1039/C7NJ03193A 10.1016/j.memsci.2009.03.054 10.1021/ie5015712 10.1016/j.jece.2013.05.014 10.1002/app.28687 10.1016/j.seppur.2012.02.014 10.1016/0376-7388(92)85056-O 10.1016/j.ijbiomac.2016.04.054 10.1002/adma.200701231 10.1021/jp809561p |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/c8nj02701c |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 1581 |
ExternalDocumentID | 10_1039_C8NJ02701C c8nj02701c |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B R7C R7D RCNCU RPMJG RRC RSCEA SKA SKF SKH SLH VH6 --- -DZ -~X 0R~ 0UZ 123 29N 2WC 3EH 4.4 53G 71~ AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABCQX ABDVN ABEFU ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACNCT ACRPL ADMRA ADNMO AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV CAG CITATION COF CS3 D0L DU5 EBS ECGLT EEHRC EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~9 IDY J3G J3H L-8 L7B M4U N9A NDZJH O9- P2P R56 RAOCF RCLXC RNS ROL RRA TN5 TWZ XJT YNT YQT 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c307t-35e1675c46f61f91119d99a7b894315001d16bc181a66df5e5b3d74b731a069e3 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 10:04:13 EDT 2025 Tue Jul 01 00:46:06 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Mon Jan 28 17:10:30 EST 2019 Thu May 30 17:35:43 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-35e1675c46f61f91119d99a7b894315001d16bc181a66df5e5b3d74b731a069e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8878-2761 0000-0002-4795-0965 0000-0001-9559-8989 |
PQID | 2111251737 |
PQPubID | 2048886 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_C8NJ02701C rsc_primary_c8nj02701c crossref_citationtrail_10_1039_C8NJ02701C proquest_journals_2111251737 |
ProviderPackageCode | J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT SKF SKH ADSRN ABGFH 705 R7B R7D AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yu (C8NJ02701C-(cit8)/*[position()=1]) 2009; 337 Zhao (C8NJ02701C-(cit22)/*[position()=1]) 2013; 1 Razmjou (C8NJ02701C-(cit5)/*[position()=1]) 2012; 287 Ramprasath (C8NJ02701C-(cit12)/*[position()=1]) 2016; 20 Saraswathi (C8NJ02701C-(cit14)/*[position()=1]) 2017; 41 Westgate (C8NJ02701C-(cit1)/*[position()=1]) 2010; 44 Sengur (C8NJ02701C-(cit29)/*[position()=1]) 2015; 359 Pradeep Kumar (C8NJ02701C-(cit23)/*[position()=1]) 2014; 2 Shirazi (C8NJ02701C-(cit16)/*[position()=1]) 2011; 378 Saraswathi (C8NJ02701C-(cit25)/*[position()=1]) 2018; 83 Thuyavan (C8NJ02701C-(cit37)/*[position()=1]) 2014; 53 Sun (C8NJ02701C-(cit36)/*[position()=1]) 2015; 5 Kanagaraj (C8NJ02701C-(cit18)/*[position()=1]) 2015; 54 Fei (C8NJ02701C-(cit21)/*[position()=1]) 2008; 20 Yan (C8NJ02701C-(cit2)/*[position()=1]) 2006; 276 Gekas (C8NJ02701C-(cit15)/*[position()=1]) 1992; 72 Padaki (C8NJ02701C-(cit30)/*[position()=1]) 2015; 362 Nagendran (C8NJ02701C-(cit19)/*[position()=1]) 2008; 110 Yan (C8NJ02701C-(cit34)/*[position()=1]) 2005; 46 Sun (C8NJ02701C-(cit13)/*[position()=1]) 2013; 15 Vatanpour (C8NJ02701C-(cit28)/*[position()=1]) 2012; 90 Luo (C8NJ02701C-(cit6)/*[position()=1]) 2011; 19 Jamshidi Gohari (C8NJ02701C-(cit9)/*[position()=1]) 2014; 335 Yu (C8NJ02701C-(cit10)/*[position()=1]) 2016; 6 Amin (C8NJ02701C-(cit31)/*[position()=1]) 2010; 351 Cao (C8NJ02701C-(cit33)/*[position()=1]) 2006; 253 Bai (C8NJ02701C-(cit17)/*[position()=1]) 2017; 51 Kanagaraj (C8NJ02701C-(cit11)/*[position()=1]) 2016; 89 Dong (C8NJ02701C-(cit7)/*[position()=1]) 2012; 387–388 Khan (C8NJ02701C-(cit4)/*[position()=1]) 2016; 89 Zhao (C8NJ02701C-(cit35)/*[position()=1]) 2017; 505 Akar (C8NJ02701C-(cit3)/*[position()=1]) 2013; 437 Vetrivel (C8NJ02701C-(cit26)/*[position()=1]) 2018; 107 Cheraghi Bidsorkhi (C8NJ02701C-(cit27)/*[position()=1]) 2016; 27 Yang (C8NJ02701C-(cit24)/*[position()=1]) 2005; 93 Xia (C8NJ02701C-(cit32)/*[position()=1]) 2015; 473 Jana (C8NJ02701C-(cit20)/*[position()=1]) 2009; 113 |
References_xml | – volume: 93 start-page: 149 year: 2005 ident: C8NJ02701C-(cit24)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.03.006 – volume: 253 start-page: 2003 year: 2006 ident: C8NJ02701C-(cit33)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.03.090 – volume: 359 start-page: 123 year: 2015 ident: C8NJ02701C-(cit29)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2014.12.040 – volume: 505 start-page: 341 year: 2017 ident: C8NJ02701C-(cit35)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.05.074 – volume: 5 start-page: 40753 year: 2015 ident: C8NJ02701C-(cit36)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA05204A – volume: 287 start-page: 271 year: 2012 ident: C8NJ02701C-(cit5)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2011.11.025 – volume: 473 start-page: 54 year: 2015 ident: C8NJ02701C-(cit32)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.09.018 – volume: 378 start-page: 551 year: 2011 ident: C8NJ02701C-(cit16)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.05.047 – volume: 437 start-page: 216 year: 2013 ident: C8NJ02701C-(cit3)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.02.012 – volume: 362 start-page: 141 year: 2015 ident: C8NJ02701C-(cit30)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2015.01.012 – volume: 44 start-page: 5352 year: 2010 ident: C8NJ02701C-(cit1)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es100244s – volume: 387–388 start-page: 40 year: 2012 ident: C8NJ02701C-(cit7)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.10.007 – volume: 19 start-page: 45 year: 2011 ident: C8NJ02701C-(cit6)/*[position()=1] publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(09)60175-0 – volume: 54 start-page: 11628 year: 2015 ident: C8NJ02701C-(cit18)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03290 – volume: 107 start-page: 1607 year: 2018 ident: C8NJ02701C-(cit26)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.027 – volume: 2 start-page: 27 year: 2014 ident: C8NJ02701C-(cit23)/*[position()=1] publication-title: Res. Rev.: J. Mater. Sci. – volume: 6 start-page: 30144 year: 2016 ident: C8NJ02701C-(cit10)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep30144 – volume: 335 start-page: 87 year: 2014 ident: C8NJ02701C-(cit9)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2013.12.011 – volume: 27 start-page: 415706 year: 2016 ident: C8NJ02701C-(cit27)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/27/41/415706 – volume: 15 start-page: 7010 year: 2013 ident: C8NJ02701C-(cit13)/*[position()=1] publication-title: Cryst. Eng. Commun. doi: 10.1039/c3ce40603b – volume: 89 start-page: 549 year: 2016 ident: C8NJ02701C-(cit4)/*[position()=1] publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.10.018 – volume: 51 start-page: 253 year: 2017 ident: C8NJ02701C-(cit17)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04280 – volume: 83 start-page: 108 year: 2018 ident: C8NJ02701C-(cit25)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.11.015 – volume: 276 start-page: 162 year: 2006 ident: C8NJ02701C-(cit2)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.09.044 – volume: 46 start-page: 7701 year: 2005 ident: C8NJ02701C-(cit34)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2005.05.155 – volume: 351 start-page: 75 year: 2010 ident: C8NJ02701C-(cit31)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.01.033 – volume: 41 start-page: 14315 year: 2017 ident: C8NJ02701C-(cit14)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C7NJ03193A – volume: 337 start-page: 257 year: 2009 ident: C8NJ02701C-(cit8)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.03.054 – volume: 20 start-page: 1409 year: 2016 ident: C8NJ02701C-(cit12)/*[position()=1] publication-title: Int. J. Intercult. Relat. – volume: 53 start-page: 11355 year: 2014 ident: C8NJ02701C-(cit37)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5015712 – volume: 1 start-page: 349 year: 2013 ident: C8NJ02701C-(cit22)/*[position()=1] publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2013.05.014 – volume: 110 start-page: 20 year: 2008 ident: C8NJ02701C-(cit19)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28687 – volume: 90 start-page: 69 year: 2012 ident: C8NJ02701C-(cit28)/*[position()=1] publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.02.014 – volume: 72 start-page: 293 year: 1992 ident: C8NJ02701C-(cit15)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)85056-O – volume: 89 start-page: 81 year: 2016 ident: C8NJ02701C-(cit11)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.04.054 – volume: 20 start-page: 452 year: 2008 ident: C8NJ02701C-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200701231 – volume: 113 start-page: 1386 year: 2009 ident: C8NJ02701C-(cit20)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp809561p |
SSID | ssj0011761 |
Score | 2.4064264 |
Snippet | Manganese dioxide (MnO
2
) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of... Manganese dioxide (MnO2) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1583 |
SubjectTerms | Antifouling Contaminants Humic acids Hydrophilicity Manganese dioxide Membranes Morphology Nanocomposites Nanospheres Penetration Polyvinylidene fluorides Porosity Serum albumin Surface roughness Ultrafiltration Vinylidene fluoride Water treatment |
Title | Fabrication of anti-fouling PVDF nanocomposite membranes using manganese dioxide nanospheres with tailored morphology, hydrophilicity and permeation |
URI | https://www.proquest.com/docview/2111251737 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l6QEuiK0ipaCR4IKCIc7YY_sYJY1KhSokWtSbNZupoV7kJJTyL5D4wbwZj5dIQQIuVjyesZO8z2-btyD0kgTKl4HHHB4mgeNJmjiRVIEjiev5TAopEhMge0ZPLrzTS_9yMPjZi1rarPkb8WNnXsn_UBXGgK46S_YfKNveFAbgM9AXjkBhOP4VjZeMV9bnZvbz83XqJLrFOZj_Hz4tluOc5YUOGteRWWqcqQxsY-Bt443xEGQs_6xP1VimxfdUKjN_pQsNKJv1puNLCx2inhVAkDaz5epWVkWpfTFCa_Gm2ACweLW1rf-xSscznlYsS43jeXWjIx2NBxaMZ_Z1dQXjOhGlYlm33VTnqC3SkrU5RIv0222duabjwVuIXt_AyrK0HtwN56n1bVsnxhbHBYvOAb3R1sOuxwiNnGhaV2lv2LQ37cMx6jFd16974VgBDqfuTuEwIbq2qgjzL2CLT1zRicA2MLG7uIf2p2B5TIdof3Z8_u59uzXlBnUR3uZ7NzVvSfS2W72t5XSmy17V9JUx-sv5fXTPGh54VqPoARqo_CG6M2_6_T1Cv3powkWC-2jCGk14C024RRM2aMItmrBFE-6hCWs04QZNuEPTa7yNJXisxB2WHqOL5fH5_MSxPTscAdJi7RBfuWCDCo8m1E20JI1kFLGA6zr_YHxMXOlSLkCvZJTKxFc-J8AreEBcNqGRIgdomBe5eoKw4FRRKUUQusrzPS-iElQpuAVnoZck4Qi9av7jWNiC9rqvynVsAitIFM_Ds1NDj_kIvWjnlnUZl52zjhpSxfY1X8VT-A26rh8JRugAyNeu76g9Qoe7L8SlTA7_tOopuqtfhdqfd4SG62qjnoGGu-bPLeZ-A2zAsJ0 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+anti-fouling+PVDF+nanocomposite+membranes+using+manganese+dioxide+nanospheres+with+tailored+morphology%2C+hydrophilicity+and+permeation&rft.au=Sri+Abirami+Saraswathi%2C+Meenakshi+Sundaram&rft.au=Rana%2C+Dipak&rft.au=Divya%2C+Kumar&rft.au=Alwarappan%2C+Subbiah&rft.date=2018&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=42&rft.issue=19&rft.spage=1583&rft.epage=1581&rft_id=info:doi/10.1039%2Fc8nj02701c&rft.externalDocID=c8nj02701c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |