Fabrication of anti-fouling PVDF nanocomposite membranes using manganese dioxide nanospheres with tailored morphology, hydrophilicity and permeation

Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO 2 nanospheres (such as 0.0, 0....

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 42; no. 19; pp. 1583 - 1581
Main Authors Sri Abirami Saraswathi, Meenakshi Sundaram, Rana, Dipak, Divya, Kumar, Alwarappan, Subbiah, Nagendran, Alagumalai
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO 2 nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO 2 nanospheres, there is an increase in the surface roughness of the PVDF/MnO 2 nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO 2 on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm −2 h −1 for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO 2 membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO 2 membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO 2 beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO 2 nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications. Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated.
AbstractList Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO 2 nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO 2 nanospheres, there is an increase in the surface roughness of the PVDF/MnO 2 nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO 2 on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm −2 h −1 for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO 2 membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO 2 membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO 2 beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO 2 nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications. Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated.
Manganese dioxide (MnO2) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO2 nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO2 nanospheres, there is an increase in the surface roughness of the PVDF/MnO2 nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO2 on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm−2 h−1 for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO2 membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO2 membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO2 beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO2 nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications.
Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes was investigated. Different concentrations of MnO 2 nanospheres (such as 0.0, 0.5, 1.0 and 2.0 wt%) were added and they were designated as pristine PVDF, PVDF-0.5, PVDF-1 and PVDF-2, respectively. AFM images confirmed that upon increasing the wt% of MnO 2 nanospheres, there is an increase in the surface roughness of the PVDF/MnO 2 nanocomposite membranes. Further, SEM images revealed the formation of finger-like macrovoids along with improved porosity. Moreover, upon increasing the wt% of MnO 2 on PVDF, the pure water flux was enhanced and attains a value of 153.4 Lm −2 h −1 for the PVDF-2 nanocomposite membrane. Fouling experiments were performed using bovine serum albumin (BSA) and humic acid (HA) as model fouling contaminants. Experimental results confirmed that the higher flux recovery ratio (FRR) of the PVDF/MnO 2 membranes indicates the enhancement of their hydrophilicity and antifouling ability. Tensile strength results suggested that the PVDF/MnO 2 membranes possess improved mechanical resistance compared with the pristine PVDF due to the change in their morphologies. However, increasing the concentration of MnO 2 beyond 2% resulted in phase inversion during membrane fabrication and hindered the membrane formation. The results confirmed that the PVDF-2 membrane outperformed other membranes employed in this work in terms of improved permeation and antifouling properties, without compromising the BSA or HA rejection and membrane strength. In light of all these results, it is evident that the MnO 2 nanosphere incorporated PVDF nanocomposite UF membrane shows potential for water treatment applications.
Author Nagendran, Alagumalai
Alwarappan, Subbiah
Divya, Kumar
Rana, Dipak
Sri Abirami Saraswathi, Meenakshi Sundaram
AuthorAffiliation Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St
CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
Polymeric Materials Research Lab, PG & Research Department of Chemistry, Alagappa Government Arts College
AuthorAffiliation_xml – name: Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St
– name: Polymeric Materials Research Lab, PG & Research Department of Chemistry, Alagappa Government Arts College
– name: CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
Author_xml – sequence: 1
  givenname: Meenakshi Sundaram
  surname: Sri Abirami Saraswathi
  fullname: Sri Abirami Saraswathi, Meenakshi Sundaram
– sequence: 2
  givenname: Dipak
  surname: Rana
  fullname: Rana, Dipak
– sequence: 3
  givenname: Kumar
  surname: Divya
  fullname: Divya, Kumar
– sequence: 4
  givenname: Subbiah
  surname: Alwarappan
  fullname: Alwarappan, Subbiah
– sequence: 5
  givenname: Alagumalai
  surname: Nagendran
  fullname: Nagendran, Alagumalai
BookMark eNp9kU9PGzEQxa0KpPLv0nslI24VSz3xrh0fq9AAFaIcoNeV1_ZmHe3aW9sRzffgA-MkVSshxGk80m_ezHs-RHvOO4PQJyAXQKj4qqZuSSacgPqADoAyUYgJg738hrIsSFWyj-gwxiUhAJzBAXqeyyZYJZP1DvsWS5ds0fpVb90C3_-6nGMnnVd-GH20yeDBDE2QzkS8ihtkkG6xaQ3W1v-x2mz5OHYmZObJpg4naXsfjMaDD2Pne79Yn-NurYMfO9tbZdM6r9V4NGEw20OO0X4r-2hO_tYj9Dj__jC7Lm5_Xt3Mvt0WihKeCloZYLxSJWsZtAIAhBZC8mYqSgpV9qiBNQqmIBnTbWWqhmpeNpyCJEwYeoTOdrpj8L9XJqZ66VfB5ZX1JKtNKuCUZ-rLjlLBxxhMW4_BDjKsayD1JvV6Nr37sU19lmHyCs7-tqZSyDm8PXK6GwlR_ZP-_5H1qNvMfH6PoS84lZ6v
CitedBy_id crossref_primary_10_1016_j_molstruc_2023_135449
crossref_primary_10_1016_j_reactfunctpolym_2020_104538
crossref_primary_10_1016_j_jece_2024_112850
crossref_primary_10_1016_j_matchemphys_2019_122224
crossref_primary_10_1016_j_memsci_2022_120984
crossref_primary_10_1021_acs_iecr_0c06045
crossref_primary_10_1039_D1RA00376C
crossref_primary_10_1016_j_dwt_2024_100088
crossref_primary_10_1016_j_seppur_2020_116889
crossref_primary_10_2166_wst_2021_364
crossref_primary_10_1002_ceat_202200320
crossref_primary_10_1016_j_jiec_2019_03_014
crossref_primary_10_1002_pen_26294
crossref_primary_10_1007_s11356_022_20047_x
crossref_primary_10_1016_j_ijbiomac_2019_05_200
crossref_primary_10_1016_j_jiec_2024_12_070
crossref_primary_10_1039_C8NJ04511A
crossref_primary_10_3390_membranes10090197
crossref_primary_10_1002_pat_4626
crossref_primary_10_1039_C9NJ05300J
crossref_primary_10_1016_j_polymertesting_2020_106367
crossref_primary_10_1016_j_colsurfa_2023_131587
crossref_primary_10_1016_j_memsci_2023_121846
crossref_primary_10_1016_j_jmst_2021_11_061
crossref_primary_10_1021_acsami_0c07670
crossref_primary_10_1002_app_54585
crossref_primary_10_1002_pat_6068
crossref_primary_10_1016_j_diamond_2023_109945
crossref_primary_10_1002_pen_25764
crossref_primary_10_1088_2053_1591_ab1032
crossref_primary_10_1016_j_heliyon_2023_e12823
crossref_primary_10_1021_acs_iecr_0c04303
crossref_primary_10_1016_j_chemosphere_2021_130024
crossref_primary_10_1016_j_cherd_2020_04_014
crossref_primary_10_3390_su142315843
crossref_primary_10_1016_j_jece_2020_104426
crossref_primary_10_1038_s41598_022_23952_w
Cites_doi 10.1016/j.matchemphys.2005.03.006
10.1016/j.apsusc.2006.03.090
10.1016/j.desal.2014.12.040
10.1016/j.jcis.2017.05.074
10.1039/C5RA05204A
10.1016/j.desal.2011.11.025
10.1016/j.memsci.2014.09.018
10.1016/j.memsci.2011.05.047
10.1016/j.memsci.2013.02.012
10.1016/j.desal.2015.01.012
10.1021/es100244s
10.1016/j.memsci.2011.10.007
10.1016/S1004-9541(09)60175-0
10.1021/acs.iecr.5b03290
10.1016/j.ijbiomac.2017.10.027
10.1038/srep30144
10.1016/j.desal.2013.12.011
10.1088/0957-4484/27/41/415706
10.1039/c3ce40603b
10.1016/j.matdes.2015.10.018
10.1021/acs.est.6b04280
10.1016/j.msec.2017.11.015
10.1016/j.memsci.2005.09.044
10.1016/j.polymer.2005.05.155
10.1016/j.memsci.2010.01.033
10.1039/C7NJ03193A
10.1016/j.memsci.2009.03.054
10.1021/ie5015712
10.1016/j.jece.2013.05.014
10.1002/app.28687
10.1016/j.seppur.2012.02.014
10.1016/0376-7388(92)85056-O
10.1016/j.ijbiomac.2016.04.054
10.1002/adma.200701231
10.1021/jp809561p
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/c8nj02701c
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 1581
ExternalDocumentID 10_1039_C8NJ02701C
c8nj02701c
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
R7C
R7D
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SKH
SLH
VH6
---
-DZ
-~X
0R~
0UZ
123
29N
2WC
3EH
4.4
53G
71~
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABCQX
ABDVN
ABEFU
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACHDF
ACIWK
ACNCT
ACRPL
ADMRA
ADNMO
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EEHRC
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~9
IDY
J3G
J3H
L-8
L7B
M4U
N9A
NDZJH
O9-
P2P
R56
RAOCF
RCLXC
RNS
ROL
RRA
TN5
TWZ
XJT
YNT
YQT
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c307t-35e1675c46f61f91119d99a7b894315001d16bc181a66df5e5b3d74b731a069e3
ISSN 1144-0546
IngestDate Mon Jun 30 10:04:13 EDT 2025
Tue Jul 01 00:46:06 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Mon Jan 28 17:10:30 EST 2019
Thu May 30 17:35:43 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-35e1675c46f61f91119d99a7b894315001d16bc181a66df5e5b3d74b731a069e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8878-2761
0000-0002-4795-0965
0000-0001-9559-8989
PQID 2111251737
PQPubID 2048886
PageCount 8
ParticipantIDs crossref_primary_10_1039_C8NJ02701C
rsc_primary_c8nj02701c
crossref_citationtrail_10_1039_C8NJ02701C
proquest_journals_2111251737
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
SKH
ADSRN
ABGFH
705
R7B
R7D
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yu (C8NJ02701C-(cit8)/*[position()=1]) 2009; 337
Zhao (C8NJ02701C-(cit22)/*[position()=1]) 2013; 1
Razmjou (C8NJ02701C-(cit5)/*[position()=1]) 2012; 287
Ramprasath (C8NJ02701C-(cit12)/*[position()=1]) 2016; 20
Saraswathi (C8NJ02701C-(cit14)/*[position()=1]) 2017; 41
Westgate (C8NJ02701C-(cit1)/*[position()=1]) 2010; 44
Sengur (C8NJ02701C-(cit29)/*[position()=1]) 2015; 359
Pradeep Kumar (C8NJ02701C-(cit23)/*[position()=1]) 2014; 2
Shirazi (C8NJ02701C-(cit16)/*[position()=1]) 2011; 378
Saraswathi (C8NJ02701C-(cit25)/*[position()=1]) 2018; 83
Thuyavan (C8NJ02701C-(cit37)/*[position()=1]) 2014; 53
Sun (C8NJ02701C-(cit36)/*[position()=1]) 2015; 5
Kanagaraj (C8NJ02701C-(cit18)/*[position()=1]) 2015; 54
Fei (C8NJ02701C-(cit21)/*[position()=1]) 2008; 20
Yan (C8NJ02701C-(cit2)/*[position()=1]) 2006; 276
Gekas (C8NJ02701C-(cit15)/*[position()=1]) 1992; 72
Padaki (C8NJ02701C-(cit30)/*[position()=1]) 2015; 362
Nagendran (C8NJ02701C-(cit19)/*[position()=1]) 2008; 110
Yan (C8NJ02701C-(cit34)/*[position()=1]) 2005; 46
Sun (C8NJ02701C-(cit13)/*[position()=1]) 2013; 15
Vatanpour (C8NJ02701C-(cit28)/*[position()=1]) 2012; 90
Luo (C8NJ02701C-(cit6)/*[position()=1]) 2011; 19
Jamshidi Gohari (C8NJ02701C-(cit9)/*[position()=1]) 2014; 335
Yu (C8NJ02701C-(cit10)/*[position()=1]) 2016; 6
Amin (C8NJ02701C-(cit31)/*[position()=1]) 2010; 351
Cao (C8NJ02701C-(cit33)/*[position()=1]) 2006; 253
Bai (C8NJ02701C-(cit17)/*[position()=1]) 2017; 51
Kanagaraj (C8NJ02701C-(cit11)/*[position()=1]) 2016; 89
Dong (C8NJ02701C-(cit7)/*[position()=1]) 2012; 387–388
Khan (C8NJ02701C-(cit4)/*[position()=1]) 2016; 89
Zhao (C8NJ02701C-(cit35)/*[position()=1]) 2017; 505
Akar (C8NJ02701C-(cit3)/*[position()=1]) 2013; 437
Vetrivel (C8NJ02701C-(cit26)/*[position()=1]) 2018; 107
Cheraghi Bidsorkhi (C8NJ02701C-(cit27)/*[position()=1]) 2016; 27
Yang (C8NJ02701C-(cit24)/*[position()=1]) 2005; 93
Xia (C8NJ02701C-(cit32)/*[position()=1]) 2015; 473
Jana (C8NJ02701C-(cit20)/*[position()=1]) 2009; 113
References_xml – volume: 93
  start-page: 149
  year: 2005
  ident: C8NJ02701C-(cit24)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.03.006
– volume: 253
  start-page: 2003
  year: 2006
  ident: C8NJ02701C-(cit33)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.03.090
– volume: 359
  start-page: 123
  year: 2015
  ident: C8NJ02701C-(cit29)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.040
– volume: 505
  start-page: 341
  year: 2017
  ident: C8NJ02701C-(cit35)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.05.074
– volume: 5
  start-page: 40753
  year: 2015
  ident: C8NJ02701C-(cit36)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05204A
– volume: 287
  start-page: 271
  year: 2012
  ident: C8NJ02701C-(cit5)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.11.025
– volume: 473
  start-page: 54
  year: 2015
  ident: C8NJ02701C-(cit32)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.09.018
– volume: 378
  start-page: 551
  year: 2011
  ident: C8NJ02701C-(cit16)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.05.047
– volume: 437
  start-page: 216
  year: 2013
  ident: C8NJ02701C-(cit3)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.02.012
– volume: 362
  start-page: 141
  year: 2015
  ident: C8NJ02701C-(cit30)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.01.012
– volume: 44
  start-page: 5352
  year: 2010
  ident: C8NJ02701C-(cit1)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100244s
– volume: 387–388
  start-page: 40
  year: 2012
  ident: C8NJ02701C-(cit7)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.10.007
– volume: 19
  start-page: 45
  year: 2011
  ident: C8NJ02701C-(cit6)/*[position()=1]
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(09)60175-0
– volume: 54
  start-page: 11628
  year: 2015
  ident: C8NJ02701C-(cit18)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03290
– volume: 107
  start-page: 1607
  year: 2018
  ident: C8NJ02701C-(cit26)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.10.027
– volume: 2
  start-page: 27
  year: 2014
  ident: C8NJ02701C-(cit23)/*[position()=1]
  publication-title: Res. Rev.: J. Mater. Sci.
– volume: 6
  start-page: 30144
  year: 2016
  ident: C8NJ02701C-(cit10)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep30144
– volume: 335
  start-page: 87
  year: 2014
  ident: C8NJ02701C-(cit9)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.12.011
– volume: 27
  start-page: 415706
  year: 2016
  ident: C8NJ02701C-(cit27)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/41/415706
– volume: 15
  start-page: 7010
  year: 2013
  ident: C8NJ02701C-(cit13)/*[position()=1]
  publication-title: Cryst. Eng. Commun.
  doi: 10.1039/c3ce40603b
– volume: 89
  start-page: 549
  year: 2016
  ident: C8NJ02701C-(cit4)/*[position()=1]
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.10.018
– volume: 51
  start-page: 253
  year: 2017
  ident: C8NJ02701C-(cit17)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04280
– volume: 83
  start-page: 108
  year: 2018
  ident: C8NJ02701C-(cit25)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2017.11.015
– volume: 276
  start-page: 162
  year: 2006
  ident: C8NJ02701C-(cit2)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.09.044
– volume: 46
  start-page: 7701
  year: 2005
  ident: C8NJ02701C-(cit34)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.05.155
– volume: 351
  start-page: 75
  year: 2010
  ident: C8NJ02701C-(cit31)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.01.033
– volume: 41
  start-page: 14315
  year: 2017
  ident: C8NJ02701C-(cit14)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ03193A
– volume: 337
  start-page: 257
  year: 2009
  ident: C8NJ02701C-(cit8)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.03.054
– volume: 20
  start-page: 1409
  year: 2016
  ident: C8NJ02701C-(cit12)/*[position()=1]
  publication-title: Int. J. Intercult. Relat.
– volume: 53
  start-page: 11355
  year: 2014
  ident: C8NJ02701C-(cit37)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5015712
– volume: 1
  start-page: 349
  year: 2013
  ident: C8NJ02701C-(cit22)/*[position()=1]
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2013.05.014
– volume: 110
  start-page: 20
  year: 2008
  ident: C8NJ02701C-(cit19)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.28687
– volume: 90
  start-page: 69
  year: 2012
  ident: C8NJ02701C-(cit28)/*[position()=1]
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.02.014
– volume: 72
  start-page: 293
  year: 1992
  ident: C8NJ02701C-(cit15)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(92)85056-O
– volume: 89
  start-page: 81
  year: 2016
  ident: C8NJ02701C-(cit11)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.04.054
– volume: 20
  start-page: 452
  year: 2008
  ident: C8NJ02701C-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701231
– volume: 113
  start-page: 1386
  year: 2009
  ident: C8NJ02701C-(cit20)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp809561p
SSID ssj0011761
Score 2.4064264
Snippet Manganese dioxide (MnO 2 ) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of...
Manganese dioxide (MnO2) nanospheres were prepared by a facile hydrothermal technique and their influence on the permeation and antifouling properties of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1583
SubjectTerms Antifouling
Contaminants
Humic acids
Hydrophilicity
Manganese dioxide
Membranes
Morphology
Nanocomposites
Nanospheres
Penetration
Polyvinylidene fluorides
Porosity
Serum albumin
Surface roughness
Ultrafiltration
Vinylidene fluoride
Water treatment
Title Fabrication of anti-fouling PVDF nanocomposite membranes using manganese dioxide nanospheres with tailored morphology, hydrophilicity and permeation
URI https://www.proquest.com/docview/2111251737
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l6QEuiK0ipaCR4IKCIc7YY_sYJY1KhSokWtSbNZupoV7kJJTyL5D4wbwZj5dIQQIuVjyesZO8z2-btyD0kgTKl4HHHB4mgeNJmjiRVIEjiev5TAopEhMge0ZPLrzTS_9yMPjZi1rarPkb8WNnXsn_UBXGgK46S_YfKNveFAbgM9AXjkBhOP4VjZeMV9bnZvbz83XqJLrFOZj_Hz4tluOc5YUOGteRWWqcqQxsY-Bt443xEGQs_6xP1VimxfdUKjN_pQsNKJv1puNLCx2inhVAkDaz5epWVkWpfTFCa_Gm2ACweLW1rf-xSscznlYsS43jeXWjIx2NBxaMZ_Z1dQXjOhGlYlm33VTnqC3SkrU5RIv0222duabjwVuIXt_AyrK0HtwN56n1bVsnxhbHBYvOAb3R1sOuxwiNnGhaV2lv2LQ37cMx6jFd16974VgBDqfuTuEwIbq2qgjzL2CLT1zRicA2MLG7uIf2p2B5TIdof3Z8_u59uzXlBnUR3uZ7NzVvSfS2W72t5XSmy17V9JUx-sv5fXTPGh54VqPoARqo_CG6M2_6_T1Cv3powkWC-2jCGk14C024RRM2aMItmrBFE-6hCWs04QZNuEPTa7yNJXisxB2WHqOL5fH5_MSxPTscAdJi7RBfuWCDCo8m1E20JI1kFLGA6zr_YHxMXOlSLkCvZJTKxFc-J8AreEBcNqGRIgdomBe5eoKw4FRRKUUQusrzPS-iElQpuAVnoZck4Qi9av7jWNiC9rqvynVsAitIFM_Ds1NDj_kIvWjnlnUZl52zjhpSxfY1X8VT-A26rh8JRugAyNeu76g9Qoe7L8SlTA7_tOopuqtfhdqfd4SG62qjnoGGu-bPLeZ-A2zAsJ0
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+anti-fouling+PVDF+nanocomposite+membranes+using+manganese+dioxide+nanospheres+with+tailored+morphology%2C+hydrophilicity+and+permeation&rft.au=Sri+Abirami+Saraswathi%2C+Meenakshi+Sundaram&rft.au=Rana%2C+Dipak&rft.au=Divya%2C+Kumar&rft.au=Alwarappan%2C+Subbiah&rft.date=2018&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=42&rft.issue=19&rft.spage=1583&rft.epage=1581&rft_id=info:doi/10.1039%2Fc8nj02701c&rft.externalDocID=c8nj02701c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon