Diagrammatic representation for interval arithmetic
The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval arithmetic and derive its various properties using the diagram. The representation is an extension and refinement of the IS-diagram representati...
Saved in:
Published in | Linear algebra and its applications Vol. 324; no. 1; pp. 55 - 80 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.02.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval arithmetic and derive its various properties using the diagram. The representation is an extension and refinement of the IS-diagram representation devised earlier by the author to represent interval relations. First, the MR-diagram is defined together with appropriate graphical notions and constructions for basic interval relations and operations. Second, diagrammatic constructions for all standard arithmetic operations are presented. Several examples of the use of these constructions to aid reasoning about various simple, though nontrivial, properties of interval arithmetic are included in order to show how the representation facilitates both deeper understanding of the subject matter and reasoning about its properties. |
---|---|
AbstractList | The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval arithmetic and derive its various properties using the diagram. The representation is an extension and refinement of the IS-diagram representation devised earlier by the author to represent interval relations. First, the MR-diagram is defined together with appropriate graphical notions and constructions for basic interval relations and operations. Second, diagrammatic constructions for all standard arithmetic operations are presented. Several examples of the use of these constructions to aid reasoning about various simple, though nontrivial, properties of interval arithmetic are included in order to show how the representation facilitates both deeper understanding of the subject matter and reasoning about its properties. |
Author | Kulpa, Zenon |
Author_xml | – sequence: 1 givenname: Zenon surname: Kulpa fullname: Kulpa, Zenon email: zkulpa@ippt.gov.pl organization: DepartmentofComputationalScience,InstituteofFundamentalTechnologicalResearch,Polish Academy of Sciences, ul.Świętokrzyska 21, 00-049 Warsaw, Poland |
BookMark | eNqFj01LAzEURYNUsK3-BGGWuhh9mUwmGVyItH5BwYW6DunLG410ZkoSCv57p624cNPV5cI9F86Ejbq-I8bOOVxx4NX1K0BR5kLV8gLgEoCLOldHbMy1EjnXshqx8d_khE1i_AKAUkExZmLu7UewbWuTxyzQOlCkLg2t77KmD5nvEoWNXWU2-PTZ0jA7ZceNXUU6-80pe3-4f5s95YuXx-fZ3SJHASrlhRa45HVToyNwHGuNIPSyrLSsodBYauW0KMDqSlrhgANhKZ0EkA2KohRTJve_GPoYAzVmHXxrw7fhYLbmZmdutloGwOzMjRq4m38c-r1RCtavDtK3e5oGtY2nYCJ66pCcD4TJuN4fePgBjQZz8A |
CitedBy_id | crossref_primary_10_1007_s40819_014_0006_6 crossref_primary_10_1016_j_ijar_2011_07_002 crossref_primary_10_1016_j_jvlc_2005_10_004 crossref_primary_10_1109_TFUZZ_2018_2837651 crossref_primary_10_1093_llc_fqad097 crossref_primary_10_1177_1473871612436775 crossref_primary_10_1109_TFUZZ_2005_861619 crossref_primary_10_1016_j_engappai_2019_07_014 crossref_primary_10_1109_TFUZZ_2011_2167515 crossref_primary_10_1137_070696982 crossref_primary_10_1287_deca_1120_0253 crossref_primary_10_1007_s41066_019_00208_z crossref_primary_10_1016_j_csda_2006_01_015 crossref_primary_10_1007_s12198_014_0135_5 crossref_primary_10_1016_j_fss_2013_08_003 crossref_primary_10_1016_j_asoc_2021_107145 crossref_primary_10_1016_j_ins_2012_02_040 |
Cites_doi | 10.1023/A:1008323427489 10.1111/j.1551-6708.1987.tb00863.x 10.1007/978-1-4615-2025-2_14 10.1007/978-3-7091-8577-3_3 10.2514/2.164 10.1016/S0952-1976(98)00067-0 10.1016/0165-0114(90)90204-J 10.1006/jvlc.1993.1020 10.1145/182.358434 10.1016/0004-3702(92)90090-K 10.1007/3-540-07170-9_23 10.1007/3-540-54316-3 10.1007/BF02388185 10.1007/BF02281714 10.1023/A:1009919304728 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science Inc. |
Copyright_xml | – notice: 2001 Elsevier Science Inc. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/S0024-3795(00)00139-7 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 80 |
ExternalDocumentID | 10_1016_S0024_3795_00_00139_7 S0024379500001397 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K T9H TN5 TWZ WH7 WUQ XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c307t-283cb19f9cde0d1c98c038b46859028c487d8320a865a3d010ec45d5005fc3243 |
IEDL.DBID | .~1 |
ISSN | 0024-3795 |
IngestDate | Tue Jul 01 03:52:29 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 23 02:18:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Interval space 65G40 51M15 Geometric interpretation 00A35 Diagrammatic representation Interval arithmetic Diagrammatic reasoning |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-283cb19f9cde0d1c98c038b46859028c487d8320a865a3d010ec45d5005fc3243 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0024379500001397 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1016_S0024_3795_00_00139_7 crossref_citationtrail_10_1016_S0024_3795_00_00139_7 elsevier_sciencedirect_doi_10_1016_S0024_3795_00_00139_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-02-15 |
PublicationDateYYYYMMDD | 2001-02-15 |
PublicationDate_xml | – month: 02 year: 2001 text: 2001-02-15 day: 15 |
PublicationDecade | 2000 |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2001 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | H. Ratschek, J. Rokne, Interval methods, in: R. Horst, P.M. Pardalos (Eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Boston, MA, 1995, pp. 751–828 Buckley, Qu (NEWBIB5) 1990; 38 Jamnik, Bundy, Green (NEWBIB12) 1999; 8 Ratschek (NEWBIB34) 1980; 24 M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci., Cl. III, IV (1956) 253–259 Z. Kulpa, Diagrammatic representation of interval space. Part I. Basics. Part II. Arithmetic, Internal Report, IFTR PAS, Warsaw, 1999, 27 + 39 pp Allen (NEWBIB2) 1983; 26 Freksa (NEWBIB6) 1992; 54 Kulpa, Radomski, Gajl, Kleiber, Skalna (NEWBIB24) 1999; 12 Kulpa (NEWBIB17) 1994; 3 Z. Kulpa, K. Ros Kulpa, Pownuk, Skalna (NEWBIB23) 1998; 5 Needham (NEWBIB30) 1997 E. Kaucher, Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, 1973 Neumaier (NEWBIB31) 1990 Kleiber, Kulpa (NEWBIB16) 1995; 2 Kulpa (NEWBIB19) 1997; 3 Larkin, Simon (NEWBIB26) 1987; 11 Computing (Suppl. 2) (1980) 33–49 Barker-Plummer, Bailin (NEWBIB4) 1997; 6 J. Glasgow, N.H. Narayanan, B. Chandrasekaran (Eds.), Diagrammatic Reasoning: Computational and Cognitive Perspectives, AAAI Press, Menlo Park, CA; MIT Press, Cambridge, MA, 1995 Hansen (NEWBIB11) 1992 Moore (NEWBIB29) 1966 Z. Kulpa (Ed.), Diagrammatic Representation and Reasoning (special issue), Machine Graphics and Vision 6 (1997) Hammer (NEWBIB10) 1996 Wang, Lee (NEWBIB40) 1993; 4 S.E. Laveuve, Definition einer Kahan-Arithmetik und ihre Implementierung, in: K. Nickel (Ed.), Interval Mathematics 1975, Lecture Notes in Computer Science, vol. 29, Springer, Berlin, 1975, pp. 236–245 K. Nökel, Temporally Distributed Symptoms in Technical Diagnosis, Lecture Notes in AI, vol. 517, Springer, Berlin, 1991 W.M. Kahan, A more complete interval arithmetic, Lecture notes, University of Toronto, Toronto, 1968 Gardeñes, Trepat, Janer (NEWBIB8) 1981; 81/8 (NEWBIB3) 1996 Gardeñes, Trepat (NEWBIB7) 1979; 79/8 Ratschek (NEWBIB33) 1972; 252 J.-F. Rit, Propagating temporal constraints for scheduling, in: Proceedings of the Fifth National Conference on AI (AAAI-86), Morgan Kaufmann, Los Altos, CA, 1986, pp. 383–388 E. Kaucher, Interval analysis in the extended interval space Markov (NEWBIB28) 1995; 1 Rao, Berke (NEWBIB36) 1997; 35 aniec, Solution sets for systems of linear interval equations, CAMES 7 (2000) (in print) Shary (NEWBIB38) 1996; 2 Sunaga (NEWBIB39) 1958; 2 M. Warmus, Approximations and inequalities in the calculus of approximations: classification of approximate numbers, Bull. Acad. Polon. Sci., Ser. Math. Astr. et Phys. IX (1961) 241–245 Z. Kulpa, Two-dimensional representation of interval relations: preliminaries, Internal Report IFTR PAS, Warsaw, 1995, 8 pp Alefeld, Herzberger (NEWBIB1) 1983 Kulpa (NEWBIB21) 1997; 6 Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB17) 1994; 3 10.1016/S0024-3795(00)00139-7_NEWBIB27 10.1016/S0024-3795(00)00139-7_NEWBIB25 Shary (10.1016/S0024-3795(00)00139-7_NEWBIB38) 1996; 2 Buckley (10.1016/S0024-3795(00)00139-7_NEWBIB5) 1990; 38 10.1016/S0024-3795(00)00139-7_NEWBIB9 Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB23) 1998; 5 Freksa (10.1016/S0024-3795(00)00139-7_NEWBIB6) 1992; 54 Gardeñes (10.1016/S0024-3795(00)00139-7_NEWBIB8) 1981; 81/8 10.1016/S0024-3795(00)00139-7_NEWBIB41 Ratschek (10.1016/S0024-3795(00)00139-7_NEWBIB33) 1972; 252 10.1016/S0024-3795(00)00139-7_NEWBIB22 Hammer (10.1016/S0024-3795(00)00139-7_NEWBIB10) 1996 Hansen (10.1016/S0024-3795(00)00139-7_NEWBIB11) 1992 10.1016/S0024-3795(00)00139-7_NEWBIB20 Rao (10.1016/S0024-3795(00)00139-7_NEWBIB36) 1997; 35 10.1016/S0024-3795(00)00139-7_NEWBIB42 (10.1016/S0024-3795(00)00139-7_NEWBIB3) 1996 Wang (10.1016/S0024-3795(00)00139-7_NEWBIB40) 1993; 4 Neumaier (10.1016/S0024-3795(00)00139-7_NEWBIB31) 1990 Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB21) 1997; 6 Jamnik (10.1016/S0024-3795(00)00139-7_NEWBIB12) 1999; 8 Markov (10.1016/S0024-3795(00)00139-7_NEWBIB28) 1995; 1 Needham (10.1016/S0024-3795(00)00139-7_NEWBIB30) 1997 10.1016/S0024-3795(00)00139-7_NEWBIB15 10.1016/S0024-3795(00)00139-7_NEWBIB37 Allen (10.1016/S0024-3795(00)00139-7_NEWBIB2) 1983; 26 Barker-Plummer (10.1016/S0024-3795(00)00139-7_NEWBIB4) 1997; 6 10.1016/S0024-3795(00)00139-7_NEWBIB13 10.1016/S0024-3795(00)00139-7_NEWBIB35 10.1016/S0024-3795(00)00139-7_NEWBIB14 Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB24) 1999; 12 10.1016/S0024-3795(00)00139-7_NEWBIB18 Moore (10.1016/S0024-3795(00)00139-7_NEWBIB29) 1966 Gardeñes (10.1016/S0024-3795(00)00139-7_NEWBIB7) 1979; 79/8 Kleiber (10.1016/S0024-3795(00)00139-7_NEWBIB16) 1995; 2 10.1016/S0024-3795(00)00139-7_NEWBIB32 Sunaga (10.1016/S0024-3795(00)00139-7_NEWBIB39) 1958; 2 Ratschek (10.1016/S0024-3795(00)00139-7_NEWBIB34) 1980; 24 Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB19) 1997; 3 Alefeld (10.1016/S0024-3795(00)00139-7_NEWBIB1) 1983 Larkin (10.1016/S0024-3795(00)00139-7_NEWBIB26) 1987; 11 |
References_xml | – year: 1996 ident: NEWBIB10 publication-title: Logic and Visual Information – volume: 3 start-page: 77 year: 1994 end-page: 103 ident: NEWBIB17 article-title: Diagrammatic representation and reasoning publication-title: Machine Graphics and Vision – volume: 54 start-page: 199 year: 1992 end-page: 227 ident: NEWBIB6 article-title: Temporal reasoning based on semi-intervals publication-title: Artif. Intell. – volume: 12 start-page: 229 year: 1999 end-page: 240 ident: NEWBIB24 article-title: Hybrid expert system for qualitative and quantitative analysis of truss structures publication-title: Engrg. Appl. Artif. Intell. – reference: J. Glasgow, N.H. Narayanan, B. Chandrasekaran (Eds.), Diagrammatic Reasoning: Computational and Cognitive Perspectives, AAAI Press, Menlo Park, CA; MIT Press, Cambridge, MA, 1995 – volume: 11 start-page: 65 year: 1987 end-page: 99 ident: NEWBIB26 article-title: Why a diagram is (sometimes) worth ten thousand words publication-title: Cognitive Sci. – year: 1997 ident: NEWBIB30 publication-title: Visual Complex Analysis – reference: E. Kaucher, Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, 1973 – reference: J.-F. Rit, Propagating temporal constraints for scheduling, in: Proceedings of the Fifth National Conference on AI (AAAI-86), Morgan Kaufmann, Los Altos, CA, 1986, pp. 383–388 – year: 1996 ident: NEWBIB3 publication-title: Logical Reasoning with Diagrams – volume: 2 start-page: 547 year: 1958 end-page: 564 ident: NEWBIB39 article-title: Theory of an interval algebra and its application to numerical analysis publication-title: RAAG Memoirs – reference: S.E. Laveuve, Definition einer Kahan-Arithmetik und ihre Implementierung, in: K. Nickel (Ed.), Interval Mathematics 1975, Lecture Notes in Computer Science, vol. 29, Springer, Berlin, 1975, pp. 236–245 – reference: Z. Kulpa, Diagrammatic representation of interval space. Part I. Basics. Part II. Arithmetic, Internal Report, IFTR PAS, Warsaw, 1999, 27 + 39 pp – volume: 5 start-page: 443 year: 1998 end-page: 477 ident: NEWBIB23 article-title: Analysis of linear mechanical structures with uncertainties by means of interval methods publication-title: CAMES – volume: 81/8 start-page: 1 year: 1981 end-page: 28 ident: NEWBIB8 article-title: Approaches to simulation and to the linear problem in the SIGLA system publication-title: Freiburger Intervall-Berichte – volume: 252 start-page: 128 year: 1972 end-page: 138 ident: NEWBIB33 article-title: Teilbarkeitskriterien der Intervallarithmetik publication-title: J. Reine Angew. Math. – volume: 4 start-page: 327 year: 1993 end-page: 356 ident: NEWBIB40 article-title: Visual reasoning: its formal semantics and applications publication-title: J. Visual Languages Computing – reference: K. Nökel, Temporally Distributed Symptoms in Technical Diagnosis, Lecture Notes in AI, vol. 517, Springer, Berlin, 1991 – reference: aniec, Solution sets for systems of linear interval equations, CAMES 7 (2000) (in print) – year: 1966 ident: NEWBIB29 publication-title: Interval Analysis – reference: H. Ratschek, J. Rokne, Interval methods, in: R. Horst, P.M. Pardalos (Eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Boston, MA, 1995, pp. 751–828 – reference: M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci., Cl. III, IV (1956) 253–259 – volume: 79/8 start-page: 1 year: 1979 end-page: 55 ident: NEWBIB7 article-title: The interval computing system SIGLA-PL/1(0) publication-title: Freiburger Intervall-Berichte – volume: 35 start-page: 727 year: 1997 end-page: 735 ident: NEWBIB36 article-title: Analysis of uncertain structural systems using interval analysis publication-title: AIAA J. – reference: Z. Kulpa, K. Ros – volume: 2 start-page: 165 year: 1995 end-page: 186 ident: NEWBIB16 article-title: Computer-assisted hybrid reasoning in simulation and analysis of physical systems publication-title: CAMES – reference: W.M. Kahan, A more complete interval arithmetic, Lecture notes, University of Toronto, Toronto, 1968 – volume: 26 start-page: 832 year: 1983 end-page: 843 ident: NEWBIB2 article-title: Maintaining knowledge about temporal relations publication-title: Comm. ACM – volume: 8 start-page: 297 year: 1999 end-page: 321 ident: NEWBIB12 article-title: On automating diagrammatic proofs of arithmetic arguments publication-title: J. Logic Language and Information – year: 1983 ident: NEWBIB1 publication-title: Introduction to Interval Computations – volume: 6 start-page: 5 year: 1997 end-page: 24 ident: NEWBIB21 article-title: Diagrammatic representation for a space of intervals publication-title: Machine Graphics and Vision – reference: Z. Kulpa, Two-dimensional representation of interval relations: preliminaries, Internal Report IFTR PAS, Warsaw, 1995, 8 pp – reference: , Computing (Suppl. 2) (1980) 33–49 – volume: 2 start-page: 3 year: 1996 end-page: 33 ident: NEWBIB38 article-title: Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic publication-title: Reliable Computing – year: 1990 ident: NEWBIB31 publication-title: Interval Methods for Systems of Equations – year: 1992 ident: NEWBIB11 publication-title: Global Optimization Using Interval Analysis – volume: 1 start-page: 510 year: 1995 end-page: 522 ident: NEWBIB28 article-title: On directed interval arithmetic and its applications publication-title: J. Univ. Comput. Sci. – volume: 24 start-page: 93 year: 1980 end-page: 96 ident: NEWBIB34 article-title: Representation of interval operations by coordinates publication-title: Computing – reference: M. Warmus, Approximations and inequalities in the calculus of approximations: classification of approximate numbers, Bull. Acad. Polon. Sci., Ser. Math. Astr. et Phys. IX (1961) 241–245 – volume: 38 start-page: 309 year: 1990 end-page: 312 ident: NEWBIB5 article-title: On using publication-title: Fuzzy Sets and Systems – reference: E. Kaucher, Interval analysis in the extended interval space – volume: 6 start-page: 25 year: 1997 end-page: 56 ident: NEWBIB4 article-title: The role of diagrams in mathematical proofs publication-title: Machine Graphics and Vision – volume: 3 start-page: 209 year: 1997 end-page: 217 ident: NEWBIB19 article-title: Diagrammatic representation of interval space in proving theorems about interval relations publication-title: Reliable Computing – reference: Z. Kulpa (Ed.), Diagrammatic Representation and Reasoning (special issue), Machine Graphics and Vision 6 (1997) – volume: 2 start-page: 547 year: 1958 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB39 article-title: Theory of an interval algebra and its application to numerical analysis publication-title: RAAG Memoirs – year: 1996 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB10 – volume: 6 start-page: 5 year: 1997 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB21 article-title: Diagrammatic representation for a space of intervals publication-title: Machine Graphics and Vision – volume: 5 start-page: 443 year: 1998 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB23 article-title: Analysis of linear mechanical structures with uncertainties by means of interval methods publication-title: CAMES – volume: 8 start-page: 297 year: 1999 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB12 article-title: On automating diagrammatic proofs of arithmetic arguments publication-title: J. Logic Language and Information doi: 10.1023/A:1008323427489 – volume: 3 start-page: 77 year: 1994 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB17 article-title: Diagrammatic representation and reasoning publication-title: Machine Graphics and Vision – volume: 252 start-page: 128 year: 1972 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB33 article-title: Teilbarkeitskriterien der Intervallarithmetik publication-title: J. Reine Angew. Math. – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB13 – year: 1996 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB3 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB9 – volume: 11 start-page: 65 year: 1987 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB26 article-title: Why a diagram is (sometimes) worth ten thousand words publication-title: Cognitive Sci. doi: 10.1111/j.1551-6708.1987.tb00863.x – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB35 doi: 10.1007/978-1-4615-2025-2_14 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB15 doi: 10.1007/978-3-7091-8577-3_3 – volume: 2 start-page: 165 year: 1995 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB16 article-title: Computer-assisted hybrid reasoning in simulation and analysis of physical systems publication-title: CAMES – volume: 35 start-page: 727 year: 1997 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB36 article-title: Analysis of uncertain structural systems using interval analysis publication-title: AIAA J. doi: 10.2514/2.164 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB22 – volume: 1 start-page: 510 year: 1995 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB28 article-title: On directed interval arithmetic and its applications publication-title: J. Univ. Comput. Sci. – year: 1966 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB29 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB41 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB20 – volume: 6 start-page: 25 year: 1997 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB4 article-title: The role of diagrams in mathematical proofs publication-title: Machine Graphics and Vision – volume: 12 start-page: 229 year: 1999 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB24 article-title: Hybrid expert system for qualitative and quantitative analysis of truss structures publication-title: Engrg. Appl. Artif. Intell. doi: 10.1016/S0952-1976(98)00067-0 – volume: 38 start-page: 309 year: 1990 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB5 article-title: On using α-cuts to evaluate fuzzy equations publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(90)90204-J – year: 1983 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB1 – volume: 4 start-page: 327 year: 1993 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB40 article-title: Visual reasoning: its formal semantics and applications publication-title: J. Visual Languages Computing doi: 10.1006/jvlc.1993.1020 – volume: 26 start-page: 832 year: 1983 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB2 article-title: Maintaining knowledge about temporal relations publication-title: Comm. ACM doi: 10.1145/182.358434 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB14 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB37 – year: 1997 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB30 – volume: 79/8 start-page: 1 year: 1979 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB7 article-title: The interval computing system SIGLA-PL/1(0) publication-title: Freiburger Intervall-Berichte – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB18 – volume: 54 start-page: 199 year: 1992 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB6 article-title: Temporal reasoning based on semi-intervals publication-title: Artif. Intell. doi: 10.1016/0004-3702(92)90090-K – year: 1992 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB11 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB27 doi: 10.1007/3-540-07170-9_23 – volume: 81/8 start-page: 1 year: 1981 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB8 article-title: Approaches to simulation and to the linear problem in the SIGLA system publication-title: Freiburger Intervall-Berichte – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB32 doi: 10.1007/3-540-54316-3 – volume: 2 start-page: 3 year: 1996 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB38 article-title: Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic publication-title: Reliable Computing doi: 10.1007/BF02388185 – volume: 24 start-page: 93 year: 1980 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB34 article-title: Representation of interval operations by coordinates publication-title: Computing doi: 10.1007/BF02281714 – volume: 3 start-page: 209 year: 1997 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB19 article-title: Diagrammatic representation of interval space in proving theorems about interval relations publication-title: Reliable Computing doi: 10.1023/A:1009919304728 – year: 1990 ident: 10.1016/S0024-3795(00)00139-7_NEWBIB31 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB25 – ident: 10.1016/S0024-3795(00)00139-7_NEWBIB42 |
SSID | ssj0004702 |
Score | 1.7530366 |
Snippet | The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 55 |
SubjectTerms | Diagrammatic reasoning Diagrammatic representation Geometric interpretation Interval arithmetic Interval space |
Title | Diagrammatic representation for interval arithmetic |
URI | https://dx.doi.org/10.1016/S0024-3795(00)00139-7 |
Volume | 324 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jXvQgfuL8GD140EO2tE3S5jinY1O2k4PdSpukWNBuaL36232TppuCKHhM6Bvap8n7Ae_zBKFLHggpQz_HPFcBpjqjWKhM40xD8KRQb3Bu2MjTGR_P6f2CLVpo2HBhTFul8_21T7fe2s30HZr9VVEYjq8V02PE5TGGwU4js8t7H5s2DxoRpxhOsXl6w-KpV7CTV4Rc20Vw9HN8-hJzRnto1yWL3qB-n33U0uUB2pmulVbfDlF4W6SmwcqOPStR2dCJSg8SUq-wTY2wChTF1dOL4Sweofno7nE4xu4iBCzhCFYYUgCZ-SIXUmmifCliScI4ozy24isSig4FJ5OkMWdpqKDE0pIyBciwXELGFB6jdrks9QnyhMyZEjRQPILYLVishSmxcp2mYRbytINo8_mJdCrh5rKK52TTDgaoJQa1hBhpUUAtiTqotzZb1TIZfxnEDbbJt_-dgCv_3fT0_6ZnaLvuIQuwz85Ru3p91xeQVFRZ1-6aLtoaTB7GMxhNFjefpInE0g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlmYEBBhcnsZ14RIWqQNuplbpFie2ISBAqCCu_nbPjtCAhkBhj5U7Jl9xLuvsOoXMeCClDP8c8VwGmOqNYqEzjTEPwpFBvcG6mkUdjPpjS-xmbtVCvmYUxbZXO99c-3Xprd3Ll0LyaF4WZ8bVkeoy4PGYFrVIwX7PGoPux7POgEXGU4RSb25djPLUKe3hByKXVgqOfA9SXoNPfQpsuW_Su6wfaRi1d7qCN0YJq9W0XhTdFajqs7LVnOSqbeaLSg4zUK2xXI2iBqrh6fDZDi3to2r-d9AbYbULAEmywwpADyMwXuZBKE-VLEUsSxhnlsWVfkVB1KDBNksacpaGCGktLyhRAw3IJKVO4j9rlS6kPkCdkzpSggeIRBG_BYi1MjZXrNA2zkKcdRJvXT6SjCTfbKp6SZT8YoJYY1BJiuEUBtSTqoO5CbF7zZPwlEDfYJt8-eAK-_HfRw_-LnqG1wWQ0TIZ344cjtF43lAXYZ8eoXb2-6xPIMKrs1P5Bn8ZSxVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagrammatic+representation+for+interval+arithmetic&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Kulpa%2C+Zenon&rft.date=2001-02-15&rft.issn=0024-3795&rft.volume=324&rft.issue=1-3&rft.spage=55&rft.epage=80&rft_id=info:doi/10.1016%2FS0024-3795%2800%2900139-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0024_3795_00_00139_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |