Diagrammatic representation for interval arithmetic

The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval arithmetic and derive its various properties using the diagram. The representation is an extension and refinement of the IS-diagram representati...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 324; no. 1; pp. 55 - 80
Main Author Kulpa, Zenon
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.02.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval arithmetic and derive its various properties using the diagram. The representation is an extension and refinement of the IS-diagram representation devised earlier by the author to represent interval relations. First, the MR-diagram is defined together with appropriate graphical notions and constructions for basic interval relations and operations. Second, diagrammatic constructions for all standard arithmetic operations are presented. Several examples of the use of these constructions to aid reasoning about various simple, though nontrivial, properties of interval arithmetic are included in order to show how the representation facilitates both deeper understanding of the subject matter and reasoning about its properties.
AbstractList The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval arithmetic and derive its various properties using the diagram. The representation is an extension and refinement of the IS-diagram representation devised earlier by the author to represent interval relations. First, the MR-diagram is defined together with appropriate graphical notions and constructions for basic interval relations and operations. Second, diagrammatic constructions for all standard arithmetic operations are presented. Several examples of the use of these constructions to aid reasoning about various simple, though nontrivial, properties of interval arithmetic are included in order to show how the representation facilitates both deeper understanding of the subject matter and reasoning about its properties.
Author Kulpa, Zenon
Author_xml – sequence: 1
  givenname: Zenon
  surname: Kulpa
  fullname: Kulpa, Zenon
  email: zkulpa@ippt.gov.pl
  organization: DepartmentofComputationalScience,InstituteofFundamentalTechnologicalResearch,Polish Academy of Sciences, ul.Świętokrzyska 21, 00-049 Warsaw, Poland
BookMark eNqFj01LAzEURYNUsK3-BGGWuhh9mUwmGVyItH5BwYW6DunLG410ZkoSCv57p624cNPV5cI9F86Ejbq-I8bOOVxx4NX1K0BR5kLV8gLgEoCLOldHbMy1EjnXshqx8d_khE1i_AKAUkExZmLu7UewbWuTxyzQOlCkLg2t77KmD5nvEoWNXWU2-PTZ0jA7ZceNXUU6-80pe3-4f5s95YuXx-fZ3SJHASrlhRa45HVToyNwHGuNIPSyrLSsodBYauW0KMDqSlrhgANhKZ0EkA2KohRTJve_GPoYAzVmHXxrw7fhYLbmZmdutloGwOzMjRq4m38c-r1RCtavDtK3e5oGtY2nYCJ66pCcD4TJuN4fePgBjQZz8A
CitedBy_id crossref_primary_10_1007_s40819_014_0006_6
crossref_primary_10_1016_j_ijar_2011_07_002
crossref_primary_10_1016_j_jvlc_2005_10_004
crossref_primary_10_1109_TFUZZ_2018_2837651
crossref_primary_10_1093_llc_fqad097
crossref_primary_10_1177_1473871612436775
crossref_primary_10_1109_TFUZZ_2005_861619
crossref_primary_10_1016_j_engappai_2019_07_014
crossref_primary_10_1109_TFUZZ_2011_2167515
crossref_primary_10_1137_070696982
crossref_primary_10_1287_deca_1120_0253
crossref_primary_10_1007_s41066_019_00208_z
crossref_primary_10_1016_j_csda_2006_01_015
crossref_primary_10_1007_s12198_014_0135_5
crossref_primary_10_1016_j_fss_2013_08_003
crossref_primary_10_1016_j_asoc_2021_107145
crossref_primary_10_1016_j_ins_2012_02_040
Cites_doi 10.1023/A:1008323427489
10.1111/j.1551-6708.1987.tb00863.x
10.1007/978-1-4615-2025-2_14
10.1007/978-3-7091-8577-3_3
10.2514/2.164
10.1016/S0952-1976(98)00067-0
10.1016/0165-0114(90)90204-J
10.1006/jvlc.1993.1020
10.1145/182.358434
10.1016/0004-3702(92)90090-K
10.1007/3-540-07170-9_23
10.1007/3-540-54316-3
10.1007/BF02388185
10.1007/BF02281714
10.1023/A:1009919304728
ContentType Journal Article
Copyright 2001 Elsevier Science Inc.
Copyright_xml – notice: 2001 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0024-3795(00)00139-7
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 80
ExternalDocumentID 10_1016_S0024_3795_00_00139_7
S0024379500001397
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c307t-283cb19f9cde0d1c98c038b46859028c487d8320a865a3d010ec45d5005fc3243
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Tue Jul 01 03:52:29 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 23 02:18:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Interval space
65G40
51M15
Geometric interpretation
00A35
Diagrammatic representation
Interval arithmetic
Diagrammatic reasoning
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-283cb19f9cde0d1c98c038b46859028c487d8320a865a3d010ec45d5005fc3243
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0024379500001397
PageCount 26
ParticipantIDs crossref_primary_10_1016_S0024_3795_00_00139_7
crossref_citationtrail_10_1016_S0024_3795_00_00139_7
elsevier_sciencedirect_doi_10_1016_S0024_3795_00_00139_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-02-15
PublicationDateYYYYMMDD 2001-02-15
PublicationDate_xml – month: 02
  year: 2001
  text: 2001-02-15
  day: 15
PublicationDecade 2000
PublicationTitle Linear algebra and its applications
PublicationYear 2001
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References H. Ratschek, J. Rokne, Interval methods, in: R. Horst, P.M. Pardalos (Eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Boston, MA, 1995, pp. 751–828
Buckley, Qu (NEWBIB5) 1990; 38
Jamnik, Bundy, Green (NEWBIB12) 1999; 8
Ratschek (NEWBIB34) 1980; 24
M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci., Cl. III, IV (1956) 253–259
Z. Kulpa, Diagrammatic representation of interval space. Part I. Basics. Part II. Arithmetic, Internal Report, IFTR PAS, Warsaw, 1999, 27 + 39 pp
Allen (NEWBIB2) 1983; 26
Freksa (NEWBIB6) 1992; 54
Kulpa, Radomski, Gajl, Kleiber, Skalna (NEWBIB24) 1999; 12
Kulpa (NEWBIB17) 1994; 3
Z. Kulpa, K. Ros
Kulpa, Pownuk, Skalna (NEWBIB23) 1998; 5
Needham (NEWBIB30) 1997
E. Kaucher, Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, 1973
Neumaier (NEWBIB31) 1990
Kleiber, Kulpa (NEWBIB16) 1995; 2
Kulpa (NEWBIB19) 1997; 3
Larkin, Simon (NEWBIB26) 1987; 11
Computing (Suppl. 2) (1980) 33–49
Barker-Plummer, Bailin (NEWBIB4) 1997; 6
J. Glasgow, N.H. Narayanan, B. Chandrasekaran (Eds.), Diagrammatic Reasoning: Computational and Cognitive Perspectives, AAAI Press, Menlo Park, CA; MIT Press, Cambridge, MA, 1995
Hansen (NEWBIB11) 1992
Moore (NEWBIB29) 1966
Z. Kulpa (Ed.), Diagrammatic Representation and Reasoning (special issue), Machine Graphics and Vision 6 (1997)
Hammer (NEWBIB10) 1996
Wang, Lee (NEWBIB40) 1993; 4
S.E. Laveuve, Definition einer Kahan-Arithmetik und ihre Implementierung, in: K. Nickel (Ed.), Interval Mathematics 1975, Lecture Notes in Computer Science, vol. 29, Springer, Berlin, 1975, pp. 236–245
K. Nökel, Temporally Distributed Symptoms in Technical Diagnosis, Lecture Notes in AI, vol. 517, Springer, Berlin, 1991
W.M. Kahan, A more complete interval arithmetic, Lecture notes, University of Toronto, Toronto, 1968
Gardeñes, Trepat, Janer (NEWBIB8) 1981; 81/8
(NEWBIB3) 1996
Gardeñes, Trepat (NEWBIB7) 1979; 79/8
Ratschek (NEWBIB33) 1972; 252
J.-F. Rit, Propagating temporal constraints for scheduling, in: Proceedings of the Fifth National Conference on AI (AAAI-86), Morgan Kaufmann, Los Altos, CA, 1986, pp. 383–388
E. Kaucher, Interval analysis in the extended interval space
Markov (NEWBIB28) 1995; 1
Rao, Berke (NEWBIB36) 1997; 35
aniec, Solution sets for systems of linear interval equations, CAMES 7 (2000) (in print)
Shary (NEWBIB38) 1996; 2
Sunaga (NEWBIB39) 1958; 2
M. Warmus, Approximations and inequalities in the calculus of approximations: classification of approximate numbers, Bull. Acad. Polon. Sci., Ser. Math. Astr. et Phys. IX (1961) 241–245
Z. Kulpa, Two-dimensional representation of interval relations: preliminaries, Internal Report IFTR PAS, Warsaw, 1995, 8 pp
Alefeld, Herzberger (NEWBIB1) 1983
Kulpa (NEWBIB21) 1997; 6
Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB17) 1994; 3
10.1016/S0024-3795(00)00139-7_NEWBIB27
10.1016/S0024-3795(00)00139-7_NEWBIB25
Shary (10.1016/S0024-3795(00)00139-7_NEWBIB38) 1996; 2
Buckley (10.1016/S0024-3795(00)00139-7_NEWBIB5) 1990; 38
10.1016/S0024-3795(00)00139-7_NEWBIB9
Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB23) 1998; 5
Freksa (10.1016/S0024-3795(00)00139-7_NEWBIB6) 1992; 54
Gardeñes (10.1016/S0024-3795(00)00139-7_NEWBIB8) 1981; 81/8
10.1016/S0024-3795(00)00139-7_NEWBIB41
Ratschek (10.1016/S0024-3795(00)00139-7_NEWBIB33) 1972; 252
10.1016/S0024-3795(00)00139-7_NEWBIB22
Hammer (10.1016/S0024-3795(00)00139-7_NEWBIB10) 1996
Hansen (10.1016/S0024-3795(00)00139-7_NEWBIB11) 1992
10.1016/S0024-3795(00)00139-7_NEWBIB20
Rao (10.1016/S0024-3795(00)00139-7_NEWBIB36) 1997; 35
10.1016/S0024-3795(00)00139-7_NEWBIB42
(10.1016/S0024-3795(00)00139-7_NEWBIB3) 1996
Wang (10.1016/S0024-3795(00)00139-7_NEWBIB40) 1993; 4
Neumaier (10.1016/S0024-3795(00)00139-7_NEWBIB31) 1990
Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB21) 1997; 6
Jamnik (10.1016/S0024-3795(00)00139-7_NEWBIB12) 1999; 8
Markov (10.1016/S0024-3795(00)00139-7_NEWBIB28) 1995; 1
Needham (10.1016/S0024-3795(00)00139-7_NEWBIB30) 1997
10.1016/S0024-3795(00)00139-7_NEWBIB15
10.1016/S0024-3795(00)00139-7_NEWBIB37
Allen (10.1016/S0024-3795(00)00139-7_NEWBIB2) 1983; 26
Barker-Plummer (10.1016/S0024-3795(00)00139-7_NEWBIB4) 1997; 6
10.1016/S0024-3795(00)00139-7_NEWBIB13
10.1016/S0024-3795(00)00139-7_NEWBIB35
10.1016/S0024-3795(00)00139-7_NEWBIB14
Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB24) 1999; 12
10.1016/S0024-3795(00)00139-7_NEWBIB18
Moore (10.1016/S0024-3795(00)00139-7_NEWBIB29) 1966
Gardeñes (10.1016/S0024-3795(00)00139-7_NEWBIB7) 1979; 79/8
Kleiber (10.1016/S0024-3795(00)00139-7_NEWBIB16) 1995; 2
10.1016/S0024-3795(00)00139-7_NEWBIB32
Sunaga (10.1016/S0024-3795(00)00139-7_NEWBIB39) 1958; 2
Ratschek (10.1016/S0024-3795(00)00139-7_NEWBIB34) 1980; 24
Kulpa (10.1016/S0024-3795(00)00139-7_NEWBIB19) 1997; 3
Alefeld (10.1016/S0024-3795(00)00139-7_NEWBIB1) 1983
Larkin (10.1016/S0024-3795(00)00139-7_NEWBIB26) 1987; 11
References_xml – year: 1996
  ident: NEWBIB10
  publication-title: Logic and Visual Information
– volume: 3
  start-page: 77
  year: 1994
  end-page: 103
  ident: NEWBIB17
  article-title: Diagrammatic representation and reasoning
  publication-title: Machine Graphics and Vision
– volume: 54
  start-page: 199
  year: 1992
  end-page: 227
  ident: NEWBIB6
  article-title: Temporal reasoning based on semi-intervals
  publication-title: Artif. Intell.
– volume: 12
  start-page: 229
  year: 1999
  end-page: 240
  ident: NEWBIB24
  article-title: Hybrid expert system for qualitative and quantitative analysis of truss structures
  publication-title: Engrg. Appl. Artif. Intell.
– reference: J. Glasgow, N.H. Narayanan, B. Chandrasekaran (Eds.), Diagrammatic Reasoning: Computational and Cognitive Perspectives, AAAI Press, Menlo Park, CA; MIT Press, Cambridge, MA, 1995
– volume: 11
  start-page: 65
  year: 1987
  end-page: 99
  ident: NEWBIB26
  article-title: Why a diagram is (sometimes) worth ten thousand words
  publication-title: Cognitive Sci.
– year: 1997
  ident: NEWBIB30
  publication-title: Visual Complex Analysis
– reference: E. Kaucher, Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Ph.D. thesis, Universität Karlsruhe, Karlsruhe, 1973
– reference: J.-F. Rit, Propagating temporal constraints for scheduling, in: Proceedings of the Fifth National Conference on AI (AAAI-86), Morgan Kaufmann, Los Altos, CA, 1986, pp. 383–388
– year: 1996
  ident: NEWBIB3
  publication-title: Logical Reasoning with Diagrams
– volume: 2
  start-page: 547
  year: 1958
  end-page: 564
  ident: NEWBIB39
  article-title: Theory of an interval algebra and its application to numerical analysis
  publication-title: RAAG Memoirs
– reference: S.E. Laveuve, Definition einer Kahan-Arithmetik und ihre Implementierung, in: K. Nickel (Ed.), Interval Mathematics 1975, Lecture Notes in Computer Science, vol. 29, Springer, Berlin, 1975, pp. 236–245
– reference: Z. Kulpa, Diagrammatic representation of interval space. Part I. Basics. Part II. Arithmetic, Internal Report, IFTR PAS, Warsaw, 1999, 27 + 39 pp
– volume: 5
  start-page: 443
  year: 1998
  end-page: 477
  ident: NEWBIB23
  article-title: Analysis of linear mechanical structures with uncertainties by means of interval methods
  publication-title: CAMES
– volume: 81/8
  start-page: 1
  year: 1981
  end-page: 28
  ident: NEWBIB8
  article-title: Approaches to simulation and to the linear problem in the SIGLA system
  publication-title: Freiburger Intervall-Berichte
– volume: 252
  start-page: 128
  year: 1972
  end-page: 138
  ident: NEWBIB33
  article-title: Teilbarkeitskriterien der Intervallarithmetik
  publication-title: J. Reine Angew. Math.
– volume: 4
  start-page: 327
  year: 1993
  end-page: 356
  ident: NEWBIB40
  article-title: Visual reasoning: its formal semantics and applications
  publication-title: J. Visual Languages Computing
– reference: K. Nökel, Temporally Distributed Symptoms in Technical Diagnosis, Lecture Notes in AI, vol. 517, Springer, Berlin, 1991
– reference: aniec, Solution sets for systems of linear interval equations, CAMES 7 (2000) (in print)
– year: 1966
  ident: NEWBIB29
  publication-title: Interval Analysis
– reference: H. Ratschek, J. Rokne, Interval methods, in: R. Horst, P.M. Pardalos (Eds.), Handbook of Global Optimization, Kluwer Academic Publishers, Boston, MA, 1995, pp. 751–828
– reference: M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci., Cl. III, IV (1956) 253–259
– volume: 79/8
  start-page: 1
  year: 1979
  end-page: 55
  ident: NEWBIB7
  article-title: The interval computing system SIGLA-PL/1(0)
  publication-title: Freiburger Intervall-Berichte
– volume: 35
  start-page: 727
  year: 1997
  end-page: 735
  ident: NEWBIB36
  article-title: Analysis of uncertain structural systems using interval analysis
  publication-title: AIAA J.
– reference: Z. Kulpa, K. Ros
– volume: 2
  start-page: 165
  year: 1995
  end-page: 186
  ident: NEWBIB16
  article-title: Computer-assisted hybrid reasoning in simulation and analysis of physical systems
  publication-title: CAMES
– reference: W.M. Kahan, A more complete interval arithmetic, Lecture notes, University of Toronto, Toronto, 1968
– volume: 26
  start-page: 832
  year: 1983
  end-page: 843
  ident: NEWBIB2
  article-title: Maintaining knowledge about temporal relations
  publication-title: Comm. ACM
– volume: 8
  start-page: 297
  year: 1999
  end-page: 321
  ident: NEWBIB12
  article-title: On automating diagrammatic proofs of arithmetic arguments
  publication-title: J. Logic Language and Information
– year: 1983
  ident: NEWBIB1
  publication-title: Introduction to Interval Computations
– volume: 6
  start-page: 5
  year: 1997
  end-page: 24
  ident: NEWBIB21
  article-title: Diagrammatic representation for a space of intervals
  publication-title: Machine Graphics and Vision
– reference: Z. Kulpa, Two-dimensional representation of interval relations: preliminaries, Internal Report IFTR PAS, Warsaw, 1995, 8 pp
– reference: , Computing (Suppl. 2) (1980) 33–49
– volume: 2
  start-page: 3
  year: 1996
  end-page: 33
  ident: NEWBIB38
  article-title: Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic
  publication-title: Reliable Computing
– year: 1990
  ident: NEWBIB31
  publication-title: Interval Methods for Systems of Equations
– year: 1992
  ident: NEWBIB11
  publication-title: Global Optimization Using Interval Analysis
– volume: 1
  start-page: 510
  year: 1995
  end-page: 522
  ident: NEWBIB28
  article-title: On directed interval arithmetic and its applications
  publication-title: J. Univ. Comput. Sci.
– volume: 24
  start-page: 93
  year: 1980
  end-page: 96
  ident: NEWBIB34
  article-title: Representation of interval operations by coordinates
  publication-title: Computing
– reference: M. Warmus, Approximations and inequalities in the calculus of approximations: classification of approximate numbers, Bull. Acad. Polon. Sci., Ser. Math. Astr. et Phys. IX (1961) 241–245
– volume: 38
  start-page: 309
  year: 1990
  end-page: 312
  ident: NEWBIB5
  article-title: On using
  publication-title: Fuzzy Sets and Systems
– reference: E. Kaucher, Interval analysis in the extended interval space
– volume: 6
  start-page: 25
  year: 1997
  end-page: 56
  ident: NEWBIB4
  article-title: The role of diagrams in mathematical proofs
  publication-title: Machine Graphics and Vision
– volume: 3
  start-page: 209
  year: 1997
  end-page: 217
  ident: NEWBIB19
  article-title: Diagrammatic representation of interval space in proving theorems about interval relations
  publication-title: Reliable Computing
– reference: Z. Kulpa (Ed.), Diagrammatic Representation and Reasoning (special issue), Machine Graphics and Vision 6 (1997)
– volume: 2
  start-page: 547
  year: 1958
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB39
  article-title: Theory of an interval algebra and its application to numerical analysis
  publication-title: RAAG Memoirs
– year: 1996
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB10
– volume: 6
  start-page: 5
  year: 1997
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB21
  article-title: Diagrammatic representation for a space of intervals
  publication-title: Machine Graphics and Vision
– volume: 5
  start-page: 443
  year: 1998
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB23
  article-title: Analysis of linear mechanical structures with uncertainties by means of interval methods
  publication-title: CAMES
– volume: 8
  start-page: 297
  year: 1999
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB12
  article-title: On automating diagrammatic proofs of arithmetic arguments
  publication-title: J. Logic Language and Information
  doi: 10.1023/A:1008323427489
– volume: 3
  start-page: 77
  year: 1994
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB17
  article-title: Diagrammatic representation and reasoning
  publication-title: Machine Graphics and Vision
– volume: 252
  start-page: 128
  year: 1972
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB33
  article-title: Teilbarkeitskriterien der Intervallarithmetik
  publication-title: J. Reine Angew. Math.
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB13
– year: 1996
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB3
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB9
– volume: 11
  start-page: 65
  year: 1987
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB26
  article-title: Why a diagram is (sometimes) worth ten thousand words
  publication-title: Cognitive Sci.
  doi: 10.1111/j.1551-6708.1987.tb00863.x
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB35
  doi: 10.1007/978-1-4615-2025-2_14
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB15
  doi: 10.1007/978-3-7091-8577-3_3
– volume: 2
  start-page: 165
  year: 1995
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB16
  article-title: Computer-assisted hybrid reasoning in simulation and analysis of physical systems
  publication-title: CAMES
– volume: 35
  start-page: 727
  year: 1997
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB36
  article-title: Analysis of uncertain structural systems using interval analysis
  publication-title: AIAA J.
  doi: 10.2514/2.164
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB22
– volume: 1
  start-page: 510
  year: 1995
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB28
  article-title: On directed interval arithmetic and its applications
  publication-title: J. Univ. Comput. Sci.
– year: 1966
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB29
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB41
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB20
– volume: 6
  start-page: 25
  year: 1997
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB4
  article-title: The role of diagrams in mathematical proofs
  publication-title: Machine Graphics and Vision
– volume: 12
  start-page: 229
  year: 1999
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB24
  article-title: Hybrid expert system for qualitative and quantitative analysis of truss structures
  publication-title: Engrg. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(98)00067-0
– volume: 38
  start-page: 309
  year: 1990
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB5
  article-title: On using α-cuts to evaluate fuzzy equations
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(90)90204-J
– year: 1983
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB1
– volume: 4
  start-page: 327
  year: 1993
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB40
  article-title: Visual reasoning: its formal semantics and applications
  publication-title: J. Visual Languages Computing
  doi: 10.1006/jvlc.1993.1020
– volume: 26
  start-page: 832
  year: 1983
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB2
  article-title: Maintaining knowledge about temporal relations
  publication-title: Comm. ACM
  doi: 10.1145/182.358434
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB14
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB37
– year: 1997
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB30
– volume: 79/8
  start-page: 1
  year: 1979
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB7
  article-title: The interval computing system SIGLA-PL/1(0)
  publication-title: Freiburger Intervall-Berichte
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB18
– volume: 54
  start-page: 199
  year: 1992
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB6
  article-title: Temporal reasoning based on semi-intervals
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(92)90090-K
– year: 1992
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB11
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB27
  doi: 10.1007/3-540-07170-9_23
– volume: 81/8
  start-page: 1
  year: 1981
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB8
  article-title: Approaches to simulation and to the linear problem in the SIGLA system
  publication-title: Freiburger Intervall-Berichte
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB32
  doi: 10.1007/3-540-54316-3
– volume: 2
  start-page: 3
  year: 1996
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB38
  article-title: Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of Kaucher arithmetic
  publication-title: Reliable Computing
  doi: 10.1007/BF02388185
– volume: 24
  start-page: 93
  year: 1980
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB34
  article-title: Representation of interval operations by coordinates
  publication-title: Computing
  doi: 10.1007/BF02281714
– volume: 3
  start-page: 209
  year: 1997
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB19
  article-title: Diagrammatic representation of interval space in proving theorems about interval relations
  publication-title: Reliable Computing
  doi: 10.1023/A:1009919304728
– year: 1990
  ident: 10.1016/S0024-3795(00)00139-7_NEWBIB31
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB25
– ident: 10.1016/S0024-3795(00)00139-7_NEWBIB42
SSID ssj0004702
Score 1.7530366
Snippet The paper presents a diagrammatic representation of a standard interval space (the so-called “MR-diagram”), and shows how to represent and perform interval...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms Diagrammatic reasoning
Diagrammatic representation
Geometric interpretation
Interval arithmetic
Interval space
Title Diagrammatic representation for interval arithmetic
URI https://dx.doi.org/10.1016/S0024-3795(00)00139-7
Volume 324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jXvQgfuL8GD140EO2tE3S5jinY1O2k4PdSpukWNBuaL36232TppuCKHhM6Bvap8n7Ae_zBKFLHggpQz_HPFcBpjqjWKhM40xD8KRQb3Bu2MjTGR_P6f2CLVpo2HBhTFul8_21T7fe2s30HZr9VVEYjq8V02PE5TGGwU4js8t7H5s2DxoRpxhOsXl6w-KpV7CTV4Rc20Vw9HN8-hJzRnto1yWL3qB-n33U0uUB2pmulVbfDlF4W6SmwcqOPStR2dCJSg8SUq-wTY2wChTF1dOL4Sweofno7nE4xu4iBCzhCFYYUgCZ-SIXUmmifCliScI4ozy24isSig4FJ5OkMWdpqKDE0pIyBciwXELGFB6jdrks9QnyhMyZEjRQPILYLVishSmxcp2mYRbytINo8_mJdCrh5rKK52TTDgaoJQa1hBhpUUAtiTqotzZb1TIZfxnEDbbJt_-dgCv_3fT0_6ZnaLvuIQuwz85Ru3p91xeQVFRZ1-6aLtoaTB7GMxhNFjefpInE0g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlmYEBBhcnsZ14RIWqQNuplbpFie2ISBAqCCu_nbPjtCAhkBhj5U7Jl9xLuvsOoXMeCClDP8c8VwGmOqNYqEzjTEPwpFBvcG6mkUdjPpjS-xmbtVCvmYUxbZXO99c-3Xprd3Ll0LyaF4WZ8bVkeoy4PGYFrVIwX7PGoPux7POgEXGU4RSb25djPLUKe3hByKXVgqOfA9SXoNPfQpsuW_Su6wfaRi1d7qCN0YJq9W0XhTdFajqs7LVnOSqbeaLSg4zUK2xXI2iBqrh6fDZDi3to2r-d9AbYbULAEmywwpADyMwXuZBKE-VLEUsSxhnlsWVfkVB1KDBNksacpaGCGktLyhRAw3IJKVO4j9rlS6kPkCdkzpSggeIRBG_BYi1MjZXrNA2zkKcdRJvXT6SjCTfbKp6SZT8YoJYY1BJiuEUBtSTqoO5CbF7zZPwlEDfYJt8-eAK-_HfRw_-LnqG1wWQ0TIZ344cjtF43lAXYZ8eoXb2-6xPIMKrs1P5Bn8ZSxVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagrammatic+representation+for+interval+arithmetic&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Kulpa%2C+Zenon&rft.date=2001-02-15&rft.issn=0024-3795&rft.volume=324&rft.issue=1-3&rft.spage=55&rft.epage=80&rft_id=info:doi/10.1016%2FS0024-3795%2800%2900139-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0024_3795_00_00139_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon