Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming
Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with...
Saved in:
Published in | Journal of educational and behavioral statistics Vol. 49; no. 5; pp. 817 - 847 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.10.2024
American Educational Research Association |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based approach must be adopted for at least two reasons: (1) to take into account the correlations between the measures of the same subject, in order to test certain scientific hypotheses and to reduce misclassification of subjects in clinical practice, and (2) to reduce the number of significance tests involved in selecting predictors for the purpose of norming, thus preventing the inflation of the type I error rate. A new multivariate regression-based approach is proposed that combines all measures for an individual through the Mahalanobis distance, thus providing an indicator of the individual’s overall performance. Furthermore, optimal designs for the normative study are derived under five multivariate polynomial regression models, assuming multivariate normality and homoscedasticity of the residuals, and efficient robust designs are presented in case of uncertainty about the correct model for the analysis of the normative sample. Sample size calculation formulas are provided for the new Mahalanobis distance-based approach. The results are illustrated with data from the Maastricht Aging Study (MAAS). |
---|---|
AbstractList | Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based approach must be adopted for at least two reasons: (1) to take into account the correlations between the measures of the same subject, in order to test certain scientific hypotheses and to reduce misclassification of subjects in clinical practice, and (2) to reduce the number of significance tests involved in selecting predictors for the purpose of norming, thus preventing the inflation of the type I error rate. A new multivariate regression-based approach is proposed that combines all measures for an individual through the Mahalanobis distance, thus providing an indicator of the individual’s overall performance. Furthermore, optimal designs for the normative study are derived under five multivariate polynomial regression models, assuming multivariate normality and homoscedasticity of the residuals, and efficient robust designs are presented in case of uncertainty about the correct model for the analysis of the normative sample. Sample size calculation formulas are provided for the new Mahalanobis distance-based approach. The results are illustrated with data from the Maastricht Aging Study (MAAS). |
Author | Candel, Math J. J. M. Tan, Frans E. S. Innocenti, Francesco van Breukelen, Gerard J. P. |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0001-6113-8992 surname: Innocenti fullname: Innocenti, Francesco organization: Maastricht University – sequence: 2 givenname: Math J. J. M. surname: Candel fullname: Candel, Math J. J. M. organization: Maastricht University – sequence: 3 givenname: Frans E. S. surname: Tan fullname: Tan, Frans E. S. organization: Maastricht University – sequence: 4 givenname: Gerard J. P. surname: van Breukelen fullname: van Breukelen, Gerard J. P. organization: Maastricht University |
BookMark | eNp1kFFLwzAUhYNMcJv-AN8CPnfmJm3TPup0KkwHbj6XLLkpHV1bk1bQX2_GBB_Ep3vhfudczpmQUdM2SMglsJkAxq-ByTTPs5QL4MAyJk_IGHKRRMCSeBT2cI8OwBmZeL9jDASPxZhs1mrf1UjX1RfSuar1UKu-ahuqGkNXXV_tVU3v0FdlQ23r6PNQ99WHcpXqkb5i6dD7gEe3yqOhL63bV015Tk6tqj1e_MwpeVvcb-aP0XL18DS_WUZaMNlHkFiFsTExSzGVHDHNOdPamBx5zKQBaxWX2prAyAw55jwTWQIKtrnm2VZMydXRt3Pt-4C-L3bt4JrwshAQekhYnKaBgiOlXeu9Q1t0LsRynwWw4lBe8ae8oJkdNV6V-Ov6v-AbrP9wrg |
Cites_doi | 10.1017/S1355617719000298 10.1371/journal.pone.0173218 10.1177/1073191116656437 10.1037/met0000348 10.1007/978-3-319-19425-7 10.1080/09638280600747637 10.1002/9780470746912 10.1016/0167-7152(93)90200-3 10.3758/s13428-021-01684-5 10.1177/1073191120913607 10.1093/biomet/57.3.519 10.1093/oso/9780199296590.001.0001 10.1037/1040-3590.17.3.336 10.3758/s13428-019-01331-0 10.1007/s11336-016-9535-8 10.1080/0094965042000193233 10.3758/BF03198078 10.1037/met0000394 10.1007/978-1-4612-4038-9 10.1177/1073191115580638 10.1016/j.dadm.2015.11.005 10.1097/QAD.0000000000000573 10.1177/1073191105283427 10.1111/bmsp.12206 10.3389/fpsyg.2016.01601 10.1186/s12877-019-1234-8 10.1177/0013164420928457 10.1080/13803395.2011.589509 10.1002/sim.2385 10.1177/0734282910396323 10.1080/13854046.2017.1294202 10.1016/j.neuropsychologia.2007.03.011 10.1002/9781119974017 10.1006/jmaa.1994.1198 10.3102/1076998609346961 10.3758/s13428-012-0305-y 10.1080/00031305.1998.10480531 10.1080/13854046.2022.2106890 10.1146/annurev.psych.59.103006.093735 |
ContentType | Journal Article |
Copyright | 2023 AERA |
Copyright_xml | – notice: 2023 AERA |
DBID | AFRWT AAYXX CITATION AHOVV |
DOI | 10.3102/10769986231210807 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Education Research Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Statistics |
EISSN | 1935-1054 |
EndPage | 847 |
ExternalDocumentID | 10_3102_10769986231210807 10.3102_10769986231210807 |
GroupedDBID | -TM -~X .2G .2L 0-V 01A 09Z 0R~ 18M 1~K 29K 31S 31V 31W 31X 4.4 56W 5GY 5VS 8FI 8FJ 8FW 8R4 8R5 AAAZS AACKU AADIR AADUE AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWIL AAWLO ABAWP ABAWQ ABBHK ABCCA ABCJG ABDLQ ABEIX ABFAN ABFXH ABHQH ABIDT ABIVO ABJNI ABKRH ABLWH ABOPQ ABPNF ABQKF ABQPY ABQXT ABRHV ABTDE ABUJY ABUWG ABXSQ ABYTW ABYWD ACAEP ACDXX ACFUR ACFZE ACGFO ACGFS ACHJO ACHQT ACJER ACLZU ACMTB ACNCT ACOFE ACOXC ACROE ACRPL ACSIQ ACTMH ACUFS ACUIR ACZOB ADBBV ADDLC ADEBD ADEIA ADEPB ADMHC ADNFJ ADNMO ADNON ADODI ADPEE ADRRZ ADSTG ADTOS ADUKL ADULT ADYCS AEDXQ AEOBU AESMA AESZF AEUHG AEUPB AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRA AFKRG AFMOU AFQAA AFRWT AFUIA AFVYC AFWMB AGDVU AGKLV AGLNM AGNHF AGNWV AGQPQ AGWNL AGWVZ AHDMH AHHFK AHWHD AIHAF AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ALRMG ALSLI ANDLU ARALO ARTOV ARYUH ASPBG AS~ ATKJL AUTPY AUVAJ AVWKF AYPQM AZFZN AZQEC B8O B8S B8T B8Z BDZRT BENPR BMVBW BPACV BPHCQ BVXVI CAG CBRKF CCGJY CCPQU CEADM CJNVE COF CS3 D-I D0L DD0 DD~ DG~ DOPDO DQDLB DSRWC DU5 DV7 DV8 DWQXO EBS ECEWR EJD F5P FEDTE FHBDP FYUFA GENNL GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HGD HQ6 HVGLF HZ~ IPSME J8X JAAYA JAV JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST M0P M2M N9A O9- P.B P2P PHGZM PHGZT PQEDU PQQKQ PROAC PSYQQ Q1R Q2X Q7O Q7P Q7X RNS ROL RWL S01 S0X SA0 SASJQ SAUOL SCNPE SFB SFC SFF SFK SFN SFT SFX SGP SGU SGV SHB SHF SHM SQCSI SSDHQ TAE TN5 UBC UKHRP XOL ZPLXX ZPPRI ~32 AAYXX ACCVC AJGYC AMNSR CITATION AAPII AHOVV AJHME AJVBE |
ID | FETCH-LOGICAL-c307t-15fae4dd406e672ee6920ccdd9e2407d1ffa27cfd4dd78e2e9283851a1b9c28b3 |
IEDL.DBID | AFRWT |
ISSN | 1076-9986 |
IngestDate | Wed Aug 13 09:38:24 EDT 2025 Tue Jul 01 05:17:06 EDT 2025 Tue Jun 17 22:36:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | optimal design Z-score sample size calculation normative data Mahalanobis distance |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-15fae4dd406e672ee6920ccdd9e2407d1ffa27cfd4dd78e2e9283851a1b9c28b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6113-8992 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.3102/10769986231210807?utm_source=summon&utm_medium=discovery-provider |
PQID | 3112150466 |
PQPubID | 6204 |
PageCount | 31 |
ParticipantIDs | proquest_journals_3112150466 crossref_primary_10_3102_10769986231210807 sage_journals_10_3102_10769986231210807 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241000 2024-10-00 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: Washington |
PublicationTitle | Journal of educational and behavioral statistics |
PublicationYear | 2024 |
Publisher | SAGE Publications American Educational Research Association |
Publisher_xml | – name: SAGE Publications – name: American Educational Research Association |
References | Chang 1994; 184 bibr21-10769986231210807 bibr34-10769986231210807 bibr44-10769986231210807 bibr24-10769986231210807 bibr11-10769986231210807 bibr14-10769986231210807 bibr41-10769986231210807 bibr31-10769986231210807 bibr1-10769986231210807 Fedorov V. V. (bibr12-10769986231210807) 1972 bibr3-10769986231210807 Casella G. (bibr6-10769986231210807) 2002 bibr16-10769986231210807 Johnson R. A (bibr18-10769986231210807) 2007 bibr29-10769986231210807 bibr9-10769986231210807 bibr26-10769986231210807 bibr13-10769986231210807 bibr7-10769986231210807 bibr10-10769986231210807 bibr4-10769986231210807 bibr17-10769986231210807 Jolles J. (bibr19-10769986231210807) 1995 bibr37-10769986231210807 bibr2-10769986231210807 bibr15-10769986231210807 Mitrushina M. (bibr27-10769986231210807) 2005 bibr28-10769986231210807 bibr38-10769986231210807 bibr30-10769986231210807 bibr20-10769986231210807 bibr23-10769986231210807 bibr40-10769986231210807 bibr46-10769986231210807 bibr33-10769986231210807 bibr36-10769986231210807 bibr43-10769986231210807 bibr39-10769986231210807 bibr42-10769986231210807 bibr45-10769986231210807 bibr8-10769986231210807 bibr35-10769986231210807 bibr22-10769986231210807 bibr25-10769986231210807 bibr5-10769986231210807 bibr32-10769986231210807 |
References_xml | – volume: 184 start-page: 256 year: 1994 end-page: 262 article-title: Some properties of multiresponse D-optimal designs publication-title: Journal of Mathematical Analysis and Applications – ident: bibr1-10769986231210807 doi: 10.1017/S1355617719000298 – ident: bibr2-10769986231210807 doi: 10.1371/journal.pone.0173218 – ident: bibr21-10769986231210807 doi: 10.1177/1073191116656437 – ident: bibr35-10769986231210807 doi: 10.1037/met0000348 – ident: bibr15-10769986231210807 doi: 10.1007/978-3-319-19425-7 – ident: bibr20-10769986231210807 doi: 10.1080/09638280600747637 – ident: bibr4-10769986231210807 doi: 10.1002/9780470746912 – volume-title: Statistical inference year: 2002 ident: bibr6-10769986231210807 – volume-title: Applied multivariate statistical analysis year: 2007 ident: bibr18-10769986231210807 – ident: bibr42-10769986231210807 doi: 10.1016/0167-7152(93)90200-3 – ident: bibr9-10769986231210807 doi: 10.3758/s13428-021-01684-5 – ident: bibr14-10769986231210807 doi: 10.1177/1073191120913607 – ident: bibr24-10769986231210807 doi: 10.1093/biomet/57.3.519 – ident: bibr3-10769986231210807 doi: 10.1093/oso/9780199296590.001.0001 – ident: bibr37-10769986231210807 doi: 10.1037/1040-3590.17.3.336 – ident: bibr44-10769986231210807 doi: 10.3758/s13428-019-01331-0 – ident: bibr29-10769986231210807 doi: 10.1007/s11336-016-9535-8 – ident: bibr26-10769986231210807 doi: 10.1080/0094965042000193233 – ident: bibr10-10769986231210807 doi: 10.3758/BF03198078 – volume-title: Handbook of normative data for neuropsychological assessment year: 2005 ident: bibr27-10769986231210807 – ident: bibr17-10769986231210807 doi: 10.1037/met0000394 – ident: bibr31-10769986231210807 doi: 10.1007/978-1-4612-4038-9 – ident: bibr28-10769986231210807 doi: 10.1177/1073191115580638 – ident: bibr32-10769986231210807 doi: 10.1016/j.dadm.2015.11.005 – ident: bibr34-10769986231210807 doi: 10.1097/QAD.0000000000000573 – ident: bibr41-10769986231210807 doi: 10.1177/1073191105283427 – ident: bibr43-10769986231210807 doi: 10.1111/bmsp.12206 – ident: bibr8-10769986231210807 doi: 10.3389/fpsyg.2016.01601 – ident: bibr5-10769986231210807 doi: 10.1186/s12877-019-1234-8 – ident: bibr22-10769986231210807 doi: 10.1177/0013164420928457 – ident: bibr38-10769986231210807 doi: 10.1080/13803395.2011.589509 – ident: bibr45-10769986231210807 doi: 10.1002/sim.2385 – ident: bibr33-10769986231210807 – ident: bibr46-10769986231210807 doi: 10.1177/0734282910396323 – ident: bibr40-10769986231210807 doi: 10.1080/13854046.2017.1294202 – ident: bibr16-10769986231210807 doi: 10.1016/j.neuropsychologia.2007.03.011 – ident: bibr13-10769986231210807 doi: 10.1002/9781119974017 – volume-title: Maastricht aging study: Determinants of cognitive aging year: 1995 ident: bibr19-10769986231210807 – ident: bibr7-10769986231210807 doi: 10.1006/jmaa.1994.1198 – ident: bibr36-10769986231210807 doi: 10.3102/1076998609346961 – ident: bibr39-10769986231210807 doi: 10.3758/s13428-012-0305-y – ident: bibr23-10769986231210807 doi: 10.1080/00031305.1998.10480531 – ident: bibr30-10769986231210807 – ident: bibr11-10769986231210807 doi: 10.1080/13854046.2022.2106890 – volume-title: Theory of optimal experiments year: 1972 ident: bibr12-10769986231210807 – ident: bibr25-10769986231210807 doi: 10.1146/annurev.psych.59.103006.093735 |
SSID | ssj0013243 |
Score | 2.3768277 |
Snippet | Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 817 |
SubjectTerms | Computation Educational tests & measurements Sample Size |
Title | Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming |
URI | https://journals.sagepub.com/doi/full/10.3102/10769986231210807 https://www.proquest.com/docview/3112150466 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-Lr2IVsX6IgdBEKLddDdpTlKrpQi-akU9Ldk8imC3oq2gv96ZfdCKCp4WdkMSZpPMN5lvZgjZ07xuAm8EM5xLFlqlGKYtZ1HkAqGMMpJj7PDFpejehecP0cMcGZWxMIUE3w6RVgUzyg5r3N14G32U2Zh1Dk8pwE4A1Y35r5p1eTwZD-P8urusqoFv0D89GaJr2yAh8oOV4W3zZJFLEcFOXmx1evf9GcdDwcmXguEIuSP090G_q7IpPp2hhGVaqrNMlgp4SVv5elghcy6tYmXmgsVRJRVEl3ly5lXSv9WYHJjePn062tbPpqjlRXVq6RUcJkPo6zTjeFAAtzSL1n0H6xoAKu25Qc6hTdkJqEJLL0fIqxmskbvOWb_dZUWZBWZgg49ZEHntQmtBtTshuXNCwQ801iqH5p4NvNdcGm-hjWw67hRAEgBqOkiU4c2ksU4W0lHqNggNveA-dLapQfWbINFW-YYJAy90vaGipEYOSonFL3k2jRisEBRv_EO8NbJdyjQulwU0xXQYYNSLGtlHOU8__dnR5r9bbpEKh5nnZL1tsjB-nbgdAB3jZLdYKPh8vL65-AKsDdEB |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA3SHuxFtCpWq-YgCEKkm-5mm2OtlqpthX6gtyWbjyLoVrR68Nc7001pRQVPe9jssDuzyXtD3kwIOVG8pgOnBdOcxyw0UjJsW86iyAZCaqljjrXDvb7ojMObh-jBqyqxFsZ78O0cZVXwRvPF2s9uYCIcrrGAFAFQG1tfNbCQvBgiahVIsdke3I9W9hC8vD4WDJ_I9zR_N_IdlZZUc0XdNQec9ibZ8EyRNvPQbpE1m5XxkGUvyCiTEhLFvM_yNhkNFfb5pcPHT0tb6kn7Y7moygy9g3XhGWxdzuUaFHgqnRfefkCiDFyTDuwkl8Nm7AJQzdD-FCUykx0ybl-NWh3mT0xgGubqjAWRUzY0BlDaiphbKyTEQhsjLWZuJnBO8Vg7A2PihuVWArsAzqWCVGreSOu7pJBNM7tHaOgEd6E1DQUoroNUGenqOgycULW6jNIKOVt4LHnJG2MkkFCge5Mf7q2Q6sKnySLCMBQ7W0B-LirkFP28vPWnof1_jzwm651Rr5t0r_u3B6TE4StyDV6VFGav7_YQuMQsPfI_zRelJLy_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7IBNmLl6k4nZoHQRAy16xNl8e5OeZtzhvoU0lzEVGr6ObDfr0nbYfzBuJTH5qG9Jw05zvNd74AbElWU55VnCrGQuprIaiTLadBYDwulFAhc7XDJz3evfIPr4Pr_Iebq4XJLfhadbQqHFG6WLuv-1nb3TTFrDG8hhzTBIzcTv6q4YrJpzFQMVaA6eZN_-xkYh8hp9iHnLonsn3Nnzv5HJk-4OYEwysNOp05iMbDzbgm99XhAEc6-qLk-P_3mYfZHI-SZjaBFmDKJCV3lHNO-yhB0cHRTM15ES4vpFMTJhd3I0Na8kHlh38RmWhyiqvPI_bVTkkhBNEwSct73zAdR0RLzs1tRrpN6B7GTk16T46Ic7sEV539y1aX5ucyUIUrwoB6gZXG1xqxgOEhM4YL9LjSWhiXH2rPWslCZTW2CRuGGYEYBpGd9GKhWCOuL0MheUrMChDfcmZ9oxsSsYLyYqmFrSvfs1zW6iKIy7Az9kn0nMlvRJi2OKtF36xWhsrYa9HY7tjU6WfUfM7LsO2c8HHr145W_9xyE2b67U50fNA7WoMiw5fIiH4VKAxehmYdAcsg3shn5Ts02d06 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+Size+Calculation+and+Optimal+Design+for+Multivariate+Regression-Based+Norming&rft.jtitle=Journal+of+educational+and+behavioral+statistics&rft.au=Innocenti%2C+Francesco&rft.au=Candel%2C+Math+J.+J.+M.&rft.au=Tan%2C+Frans+E.+S.&rft.au=van+Breukelen%2C+Gerard+J.+P.&rft.date=2024-10-01&rft.issn=1076-9986&rft.eissn=1935-1054&rft.volume=49&rft.issue=5&rft.spage=817&rft.epage=847&rft_id=info:doi/10.3102%2F10769986231210807&rft.externalDBID=n%2Fa&rft.externalDocID=10_3102_10769986231210807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9986&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9986&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9986&client=summon |